414 research outputs found

    Lotus effect optimization algorithm (LEA): a lotus nature-inspired algorithm for engineering design optimization

    Get PDF
    Here we introduce a new evolutionary algorithm called the Lotus Effect Algorithm, which combines efficient operators from the dragonfly algorithm, such as the movement of dragonflies in flower pollination for exploration, with the self-cleaning feature of water on flower leaves known as the lotus effect, for extraction and local search operations. The authors compared this method to other improved versions of the dragonfly algorithm using standard benchmark functions, and it outperformed all other methods according to Fredman\u27s test on 29 benchmark functions. The article also highlights the practical application of LEA in reducing energy consumption in IoT nodes through clustering, resulting in increased packet delivery ratio and network lifetime. Additionally, the performance of the proposed method was tested on real-world problems with multiple constraints, such as the welded beam design optimization problem and the speed-reducer problem applied in a gearbox, and the results showed that LEA performs better than other methods in terms of accuracy

    A NOVEL AND HYBRID WHALE OPTIMIZATION WITH RESTRICTED CROSSOVER AND MUTATION BASED FEATURE SELECTION METHOD FOR ANXIETY AND DEPRESSION

    Get PDF
    Introduction: Anxiety and depression are two leading human psychological disorders. In this work, several swarm intelligence- based metaheuristic techniques have been employed to find an optimal feature set for the diagnosis of these two human psychological disorders. Subjects and Methods: To diagnose depression and anxiety among people, a random dataset comprising 1128 instances and 46 attributes has been considered and examined. The dataset was collected and compiled manually by visiting the number of clinics situated in different cities of Haryana (one of the states of India). Afterwards, nine emerging meta-heuristic techniques (Genetic algorithm, binary Grey Wolf Optimizer, Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee Colony, Firefly Algorithm, Dragonfly Algorithm, Bat Algorithm and Whale Optimization Algorithm) have been employed to find the optimal feature set used to diagnose depression and anxiety among humans. To avoid local optima and to maintain the balance between exploration and exploitation, a new hybrid feature selection technique called Restricted Crossover Mutation based Whale Optimization Algorithm (RCM-WOA) has been designed. Results: The swarm intelligence-based meta-heuristic algorithms have been applied to the datasets. The performance of these algorithms has been evaluated using different performance metrics such as accuracy, sensitivity, specificity, precision, recall, f-measure, error rate, execution time and convergence curve. The rate of accuracy reached utilizing the proposed method RCM-WOA is 91.4%. Conclusion: Depression and Anxiety are two critical psychological disorders that may lead to other chronic and life-threatening human disorders. The proposed algorithm (RCM-WOA) was found to be more suitable compared to the other state of art methods

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    A New Fusion of Salp Swarm with Sine Cosine for Optimization of Non-linear Functions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The foremost objective of this article is to develop a novel hybrid powerful meta-heuristic that integrates the Salp Swarm Algorithm with Sine Cosine Algorithm (called HSSASCA) for improving the convergence performance with the exploration and exploitation being superior to other comparative standard algorithms. In this method, the position of salp swarm in the search space is updated by using the position equations of sine cosine; hence the best and possible optimal solutions are obtained based on the sine or cosine function. During this process, each salp adopts the information sharing strategy of sine and cosine functions to improve their exploration and exploitation ability. The inspiration behind incorporating changes in Salp Swarm Optimizer Algorithm is to assist the basic approach to avoid premature convergence and to rapidly guide the search towards the probable search space. The algorithm is validated on twenty-two standard mathematical optimization functions and three applications namely the three-bar truss, tension/compression spring and cantilever beam design problems. The aim is to examine and confirm the valuable behaviors of HSSASCA in searching the best solutions for optimization functions. The experimental results reveal that HSSASCA algorithm achieves the highest accuracies with least runtime in comparison with the others

    A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A COVID-19 Case Study

    Full text link
    The "Curse of Dimensionality" induced by the rapid development of information science, might have a negative impact when dealing with big datasets. In this paper, we propose a variant of the sparrow search algorithm (SSA), called Tent L\'evy flying sparrow search algorithm (TFSSA), and use it to select the best subset of features in the packing pattern for classification purposes. SSA is a recently proposed algorithm that has not been systematically applied to feature selection problems. After verification by the CEC2020 benchmark function, TFSSA is used to select the best feature combination to maximize classification accuracy and minimize the number of selected features. The proposed TFSSA is compared with nine algorithms in the literature. Nine evaluation metrics are used to properly evaluate and compare the performance of these algorithms on twenty-one datasets from the UCI repository. Furthermore, the approach is applied to the coronavirus disease (COVID-19) dataset, yielding the best average classification accuracy and the average number of feature selections, respectively, of 93.47% and 2.1. Experimental results confirm the advantages of the proposed algorithm in improving classification accuracy and reducing the number of selected features compared to other wrapper-based algorithms

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    IoT in smart communities, technologies and applications.

    Get PDF
    Internet of Things is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The Internet of Things (IoT) for Smart Cities has many different domains and draws upon various underlying systems for its operation, in this work, we provide a holistic coverage of the Internet of Things in Smart Cities by discussing the fundamental components that make up the IoT Smart City landscape, the technologies that enable these domains to exist, the most prevalent practices and techniques which are used in these domains as well as the challenges that deployment of IoT systems for smart cities encounter and which need to be addressed for ubiquitous use of smart city applications. It also presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things. Towards this end, a mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. Within the smart health domain of IoT smart cities, human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users’ movement and are also relatively simple to implement compared to other approaches. Fall detection is one of the most important tasks in human activity recognition. With an increasingly aging world population and an inclination by the elderly to live alone, the need to incorporate dependable fall detection schemes in smart devices such as phones, watches has gained momentum. Therefore, differentiating between falls and activities of daily living (ADLs) has been the focus of researchers in recent years with very good results. However, one aspect within fall detection that has not been investigated much is direction and severity aware fall detection. Since a fall detection system aims to detect falls in people and notify medical personnel, it could be of added value to health professionals tending to a patient suffering from a fall to know the nature of the accident. In this regard, as a case study for smart health, four different experiments have been conducted for the task of fall detection with direction and severity consideration on two publicly available datasets. These four experiments not only tackle the problem on an increasingly complicated level (the first one considers a fall only scenario and the other two a combined activity of daily living and fall scenario) but also present methodologies which outperform the state of the art techniques as discussed. Lastly, future recommendations have also been provided for researchers

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    corecore