379 research outputs found

    LSGDM Two Stage Consensus Reaching Process for Autocratic Decision Making using Group Recommendations

    Get PDF
    The decision making is a general and significant action in day-to-day life. In some cases, experts cannot express their preferences using precise value due to inherent unreliability. The utilization of linguistic labels creates expert judgement more informative and consistent for decision making. The group recommendation is considered as a significant factors of e-commerce domain due to their direct impact on profit. The personalized experiments improve the engagement and the count of purchases of the customer when the recommended products are matched to the current interest.In this paper, the Large-Scale Group Decision Making (LSGDM) two stage consensus reaching process is proposed by using three various Amazon real world dataset.This proposed method permits an autocratic decision maker to utilize a different group recommendation for a sequence of decisions at highest level of consensus. The performance of the model is estimated by applying parameters like Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Precision and Recall. The obtained result shows that proposed methodology provides better result while comparing various other methods

    Visual information feedback mechanism and attitudinal prioritisation method for group decision making with triangular fuzzy complementary preference relations

    Get PDF
    A visual information feedback mechanism for group decision making (GDM) problems with triangular fuzzy complementary preference relations (TFCPRs) is investigated. The concepts of similarity degree (SD) between two experts as well as the proximity degree (PD) between an expert and the rest of experts in the group are developed for TFCPRs. The consensus level (CL) is defined by combining SD and PD, and a feedback mechanism is proposed to identify experts, alternatives and corresponding preference values that contribute less to consensus. The novelty of this feedback mechanism is that it will provide each expert with visual representations of his/her consensus status to easily ‘see’ his/her consensus position within the group as well as to identify the alternatives and preference values that he/she should be reconsidered for changing in the subsequent consensus round. The feedback mechanism also includes individualised recommendation to those identified experts on changing their identified preference values and visual graphical simulation of future consensus status if the recommended values were to be implemented. Based on the continuous ordered weighted average (COWA) operator, the triangular fuzzy COWA (TF-COWA) operator is defined, and a novel attitudinal expected score function for TFCPRs is developed. The advantage of this function is that the alternatives are ranked by taking into account the attitudinal character of the group of experts or its moderator if applicable. Additionally, a ranking sensitivity analysis of the attitudinal expected score function with respect to the attitudinal parameter is provided

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Integrating experts’ weights generated dynamically into the consensus reaching process and its applications in managing non-cooperative behaviors

    Get PDF
    This work was supported in part by the NSF of China under grants 71171160 and 71571124, in part by the SSEM Key Research Center at Sichuan Province under grant xq15b01, in part by the FEDER funds under grant TIN2013-40658-P, and in part by Andalusian Excellence Project under grant TIC-5991.The consensus reaching process (CRP) is a dynamic and iterative process for improving the consensus level among experts in group decision making. A large number of non-cooperative behaviors exist in the CRP. For example, some experts will express their opinions dishonestly or refuse to change their opinions to further their own interests. In this study, we propose a novel consensus framework for managing non-cooperative behaviors. In the proposed framework, a self-management mechanism to generate experts' weights dynamically is presented and then integrated into the CRP. This self-management mechanism is based on multi-attribute mutual evaluation matrices (MMEMs). During the CRP, the experts can provide and update their MMEMs regarding the experts' performances (e.g., professional skill, cooperation, and fairness), and the experts' weights are dynamically derived from the MMEMs. Detailed simulation experiments and comparison analysis are presented to justify the validity of the proposed consensus framework in managing the non-cooperative behaviors.National Natural Science Foundation of China 71171160 71571124SSEM Key Research Center at Sichuan Province xq15b01European Union (EU) TIN2013-40658-PAndalusian Excellence Project TIC-599

    Exploring and evaluating success factors of social media marketing strategy: a multi-dimensional-multi-criteria framework

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose – Today, social media is counted as an integral part of marketing strategies, which has led to a paradigm change in this field. As reported, socialmedia marketing has been growing over the recent five years and is predicted to be exponentially growing in the future. However, despite the huge promise and intention to adopt social media marketing strategies by organisations, there remain challenges regarding the successful implementation of these new marketing programmes. Accordingly, marketing managers’ awareness of the success factors of social media marketing is essential to return investment in this area. Due to the little research been accomplished in this field, this paper aims to identify the success factors of social networks’ marketing and to rank the factors by using of interval best-worstmethod (BWM). Design/methodology/approach – To serve the research aims, an extant literature review is accomplished and a focus group approach is conducted to identify the main success factors and subfactors. To analyse the focus group discussions, a qualitative content analysis approach is applied. Interval BWMis used to calculate the weights of each identified factor. Findings – In the final framework, six main success criteria, including strategy, process, technology, content, performance evaluation and people are identified, for each sub-criteria are developed. The interval BWM results suggest the content criterion as the most important success factor in developing a socialmedia marketing strategy. Research limitations/implications – First, this research provides a comprehensive insight into the success factors and best practices of social media marketing. This is the first to draw on the critical factors affecting the success of social media marketing, considering people in the organisation such as top management, employees and customers, strategy, process and performance evaluation focussing on the change management requirements for applying social media marketing and technology as the technical factor of the adoption process, simultaneously. Identifying critical success factors of social media marketing will help marketing managers to avoid falling into the trap of developing social media strategies based on less important areas and ignoring the critical ones. Besides, owing to the limited resources of organisations in implementing social media marketing strategies, prioritising and weighing the success factors will lead to a focus on more important areas. Originality/value – Whilst the related studies have mostly concentrated on the capabilities and activities required to conduct social media marketing and the few research investigated the critical success factors most concentrated on the customer and the content-related factors, the finding of this research goes beyond that and suggests technical, process and human aspects simultaneously in the implementation process in a holistic view

    Sistema multiagente para modelar procesos de consenso en toma de decisión en grupo a gran escala usando técnicas de soft computing

    Get PDF
    [ES]La presente Tesis se centra en el campo de los Procesos de Alcance de Consenso en Toma de Decisión en Grupo. En la literatura se han propuesto diversos modelos y enfoques para dar soporte a dichos procesos en problemas de toma de decisión en grupo reales, los cuales normalmente se han centrado en pequeños grupos de expertos. Sin embargo, dichos modelos presentan algunas dificultades:::;. y limitaciones para la gestión de grandes grupos. Dado que los problemas de toma de decisión en grupo a gran escala, en los que participa un elevado número de expertos, están cobrando una relevancia cada vez mayor en múltiples entornos tecnológicos, en esta investigación se propone un Sistema Multiagente basado en técnicas de soft computing, capaz de dar soporte en procesos de negociación semisupervisados, para alcanzar el consenso en problemas reales en los que participa un elevado número de expertos.[EN]This thesis focuses on the field of Consensus Reaching Processes within Group Decision Making. Several models and approaches have been proposed in the literature to support such processes in reallife group decision making problems, which have normally focused on small groups of experts. However, such models present some difficulties and limitations for the management of large groups. Due to the fact that large-scale group decision making problems, in which a large number of experts participate, are attaining an increasing relevance in multiple technological environments, this research proposes a multiagent system based on soft computing techniques, capable of giving support to semi-supervised negotiation processes in order to reach consensus in real-life problems in which a large number of experts take partoTesis Univ. Jaén. Departamento de Informática, leída el 25 de febrero de 201

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc

    Fuzzy multicriteria analysis and its applications for decision making under uncertainty

    Get PDF
    Multicriteria decision making refers to selecting or ranking alternatives from available alternatives with respect to multiple, usually conflicting criteria involving either a single decision maker or multiple decision makers. It often takes place in an environment where the information available is uncertain, subjective and imprecise. To adequately solve this decision problem, the application of fuzzy sets theory for adequately modelling the uncertainty and imprecision in multicriteria decision making has proven to be effective. Much research has been done on the development of various fuzzy multicriteria analysis approaches for effectively solving the multicriteria decision making problem, and numerous applications have been reported in the literature. In general, existing approaches can be categorized into (a) multicriteria decision making with a single decision maker and (b) multicriteria group decision making. Existing approaches, however, are not totally satisfactory due to various shortcomings that they suffer from including (a) the inability to adequately model the uncertainty and imprecision of human decision making, (b) the failure to effectively handle the requirements of decision maker(s), (c) the tedious mathematical computation required, and (d) cognitively very demanding on the decision maker(s). This research has developed four novel approaches for effectively solving the multicriteria decision making problem under uncertainty. To effectively reduce the cognitive demand on the decision maker, a pairwise comparison based approach is developed in Chapter 4 for solving the multicriteria problem under uncertainty. To adequately meet the interest of various stakeholders in the multicriteria decision making process, a decision support system (DSS) based approach is introduced in Chapter 5. In Chapter 6, a consensus oriented approach is presented in multicriteria group decision making on which a DSS is proposed for facilitating consensus building in solving the multicriteria group decision making problem. In Chapter 7, a risk-oriented approach is developed for adequately modelling the inherent risk in multicriteria group decision making with the use of the concept of ideal solutions so that the complex and unreliable process of comparing fuzzy utilities usually required in fuzzy multicriteria analysis is avoided. Empirical studies of four real fuzzy multicriteria decision making problems are presented for illustrating the applicability of the approaches developed in solving the multicriteria decision making problem. A hospital location selection problem is discussed in Chapter 8. An international distribution centre location problem is illustrated in Chapter 9. A supplier selection problem is presented in Chapter 10. A hotel location problem is discussed in Chapter 11. These studies have shown the distinct advantages of the approaches developed respectively in this research from different perspectives in solving the multicriteria decision making problem

    Interval type-2 Atanassov-intuitionistic fuzzy logic for uncertainty modelling

    Get PDF
    This thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark a shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzzy set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess this thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzz set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess the viability and efficacy of the developed framework, the possibilities of the optimisation of the parameters of this class of fuzzy systems are rigorously examined. First, the parameters of the developed model are optimised using one of the most popular fuzzy logic optimisation algorithms such as gradient descent (first-order derivative) algorithm and evaluated on publicly available benchmark datasets from diverse domains and characteristics. It is shown that the new interval type-2 Atanassov intuitionistic fuzzy logic system is able to handle uncertainty well through the minimisation of the error of the system compared with other approaches on the same problem instances and performance criteria. Secondly, the parameters of the proposed framework are optimised using a decoupledextended Kalman filter (second-order derivative) algorithm in order to address the shortcomings of the first-order gradient descent method. It is shown statistically that the performance of this new framework with fuzzy membership and non-membership functions is significantly better than the classical interval type-2 fuzzy logic systems which have only the fuzzy membership functions, and its type-1 counterpart which are specified by single membership and non-membership functions. The model is also assessed using a hybrid learning of decoupled extended Kalman filter and gradient descent methods. The proposed framework with hybrid learning algorithm is evaluated by comparing it with existing approaches reported in the literature on the same problem instances and performance metrics. The simulation results have demonstrated the potential benefits of using the proposed framework in uncertainty modelling. In the overall, the fusion of these two concepts (interval type-2 fuzzy logic system and Atanassov intuitionistic fuzzy logic system) provides a synergistic capability in dealing with imprecise and vague information

    Interval type-2 Atanassov-intuitionistic fuzzy logic for uncertainty modelling

    Get PDF
    This thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark a shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzzy set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess this thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzz set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess the viability and efficacy of the developed framework, the possibilities of the optimisation of the parameters of this class of fuzzy systems are rigorously examined. First, the parameters of the developed model are optimised using one of the most popular fuzzy logic optimisation algorithms such as gradient descent (first-order derivative) algorithm and evaluated on publicly available benchmark datasets from diverse domains and characteristics. It is shown that the new interval type-2 Atanassov intuitionistic fuzzy logic system is able to handle uncertainty well through the minimisation of the error of the system compared with other approaches on the same problem instances and performance criteria. Secondly, the parameters of the proposed framework are optimised using a decoupledextended Kalman filter (second-order derivative) algorithm in order to address the shortcomings of the first-order gradient descent method. It is shown statistically that the performance of this new framework with fuzzy membership and non-membership functions is significantly better than the classical interval type-2 fuzzy logic systems which have only the fuzzy membership functions, and its type-1 counterpart which are specified by single membership and non-membership functions. The model is also assessed using a hybrid learning of decoupled extended Kalman filter and gradient descent methods. The proposed framework with hybrid learning algorithm is evaluated by comparing it with existing approaches reported in the literature on the same problem instances and performance metrics. The simulation results have demonstrated the potential benefits of using the proposed framework in uncertainty modelling. In the overall, the fusion of these two concepts (interval type-2 fuzzy logic system and Atanassov intuitionistic fuzzy logic system) provides a synergistic capability in dealing with imprecise and vague information
    corecore