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Abstract

A visual information feedback mechanism for group decision making (GDM) problems with triangular

fuzzy complementary preference relations (TFCPRs) is investigated. The concepts of similarity degree

(SD) between two experts as well as the proximity degree (PD) between an expert and the rest of

experts in the group are developed for TFCPRs. The consensus level (CL) is defined by combining

SD and PD, and a feedback mechanism is proposed to identify experts, alternatives and correspond-

ing preference values that contribute less to consensus. The novelty of this feedback mechanism is

that it will provide each expert with visual representations of his/her consensus status to easily ‘see’

his/her consensus position within the group as well as to identify the alternatives and preference values

that he/she should be reconsidered for changing in the subsequent consensus round. The feedback

mechanism also includes individualised recommendation to those identified experts on changing their

identified preference values and visual graphical simulation of future consensus status if the recom-

mended values were to be implemented. Based on the continuous ordered weighted average (COWA)

operator, the triangular fuzzy COWA (TF-COWA) operator is defined, and a novel attitudinal ex-

pected score function for TFCPRs is developed. The advantage of this function is that the alternatives

are ranked by taking into account the attitudinal character of the group of experts or its moderator if

applicable. Additionally, a ranking sensitivity analysis of the attitudinal expected score function with

respect to the attitudinal parameter is provided.

Keywords: Group decisions making, Visual information feedback mechanism, Triangular fuzzy

complementary preference relations, Consensus, Risk attitude

1. Introduction

Preference relations, also known as pairwise comparison matrices, are a popular and powerful

method to model experts’ preferences in group decision making (GDM) problems. The main advantage

of preference relations is that individuals can focus exclusively on two alternatives at a time, which
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facilitates the expression of their opinions [29] and then makes them more accurate than non-pairwise

methods [45].

In classical decision making systems, given an ordered pair of alternatives, the set of numerical

values {1, 0.5, 0}, or its equivalent {1, 0,−1} [21, 22], is used to represent the following three preference

states: (i) the first alternative is preferred to the second one; (ii) both alternatives are considered

equally preferred (indifference); and (iii) the second alternative is preferred to the first one, respectively.

This numeric discrimination model of preferences is the simplest possible and it proves insufficient in

decision making situations where the implementation of ‘intensity of preference’ between alternatives

is necessary [13].

The concept of fuzzy set when applied to a classical relation leads to the concept of a fuzzy relation,

which in turn allows the implementation of intensity of preferences [73]. In this approach, the numeric

scale used to evaluate intensity of preferences is the continuum set [0, 1] [2, 10, 12, 32, 36, 48, 56, 61, 64].

An alternative and isomorphic numeric scale [11], [1/9, 9], used when the valuations are measured by

a ratio scale, rather than a difference scale as in the previous case, is also possible and widely studied

in literature [4, 41, 47, 65]. Interval extensions of these two types of numeric preference relations have

also been developed [5, 19, 24, 39, 40, 52, 55, 57, 60].

Subjectivity, imprecision and vagueness in the articulation of opinions pervade real world decision

applications, and individuals usually find it difficult to evaluate their preference using exact numbers

[73]. Individuals might feel more comfortable using words by means of linguistic labels or terms to

articulate their preferences [74]. Furthermore, humans exhibit a remarkable capability to manipulate

perceptions and other characteristics of physical and mental objects, without any exact numerical

measurements and complex computations [17, 42, 43, 46, 58, 69, 75].

The main two methodologies to represent linguistic preference relations (LPRs) in decision making

are [27]: (i) the cardinal representation model based on the use of fuzzy sets and their associated

membership functions, which are mathematically processed using Zadeh’s extension principle [73]; and

(ii) the ordinal representation model by means of the 2-tuples methodology [28, 30, 66]. Although the

later representation is able to capture some of the linguistic information to model, it is in fact processed

using mathematical tools that are not appropriate for ordinal information but for information provided

using a difference or ratio scale. Evidence of this is that the ordinal linguistic model is mathematically

equivalent to the cardinal approach with fuzzy sets represented using a representative element of its

membership function, and example of which is the centroid. Therefore, the uncertainty nature of the

information is lost in the ordinal linguistic computational model. Furthermore, the linguistic cardinal

approach is richer than the ordinal linguistic approach, not only because it has the latter one as a

particular case, but also because it provides a more flexible tool for GDM with LPRs in which: (1) the

experts and/or moderator attitudinal character can be implemented in the decision making process;

and (2) different types of fuzzy sets are possible to be used depending on the type and intensity of
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the imprecision and vagueness contained in the linguistic information to model. In particular, the use

of triangular fuzzy sets to model linguistic information, which leads to the so-called triangular fuzzy

complementary preference relations (TFCPRs) [15, 49, 51, 53, 54, 63] are worth investigating because

they extend both numeric preference relations and interval-valued preference relations. This paper

focuses on the use of this type of linguistic preference relation to formulate a framework for GDM

problems.

GDM problems generally involve situations of conflict among its experts, and therefore it is prefer-

able that the set of experts reach consensus before applying a selection process to derive the decision

solution. There are two basic consensus models in GDM: the static consensus models [6, 23, 37, 70, 76]

and the interactive consensus models [3, 9, 33, 34, 62]. The former does not implement any type of

feedback mechanism to advice experts on how to change their preferences in order to achieve a higher

consensus level while the later does. Existing interactive consensus models methodology relies on the

imposition to decision makers (DM) of changes in their opinion when consensus is below a threshold

value. However, in practice, it is up to the decision maker to implement or not the recommenda-

tions given to him/her [18]. A more reasonable and suitable policy should rest on this premise and,

consequently, it would allow the DM to revisit his/her evaluations using appropriate and meaningful

consensus information representation. Therefore, the aim of this article is to propose a visual infor-

mation feedback mechanism for GDM to provide each expert with visual representations of his/her

consensus status to easily ‘see’ his/her consensus position within the group as well as to identify the

alternatives and preference values that he/she should be reconsidered for changing in the subsequent

consensus round. The feedback mechanism also includes individualised recommendation to those iden-

tified experts on changing their identified preference values and visual graphical simulation of future

consensus status if the recommended values were to be implemented. To achieve this, a first objec-

tive of this paper is to extend Hsu and Chen’s similarity degree (SD) [35] to the case of TFCPRs to

measure, in the unit interval, how close two individual experts are. The proximity of an expert with

respect to the whole group of experts is also measured, resulting in individual proximity degree (PDs).

Consensus level (CLs) is defined as a linear combination of SDs withPDs, and all will be defined at

the three different levels of a preference relation: the pairs of alternatives, the alternatives and the

whole set of alternatives.

An additional limitation of the above consensus models is that they do not take into account the

risk attitude of decision makers in the prioritisation process. Therefore, they are not rich enough to

capture all the information contained in TFCPRs. Therefore, a second objective of this paper is to

define a new prioritisation method for TFCPRs. In the case of interval-valued preference relations,

we can find proposals based on their transformation to numeric preference relations by the continuous

interval argument ordered weighted average (C-OWA) operator [67, 71, 72]. In [59], the interval-valued

intuitionistic fuzzy COWA (IVIF-COWA) operator, which is also used to derive numeric preference

3



relations, is investigated. The advantage of these methods is that ranking of the alternatives is obtained

by taking into account the expert’s attitudinal character. Recall that interval numbers are particular

case of triangular fuzzy numbers, and therefore this link allows us to motivate the definitions of the

triangular fuzzy COWA (TF-COWA) operator and its associated attitudinal expected score function.

The novelty of this score function is that it can be used to derive a numeric preference relation

from a TFCPR, from which easily derive a final ranking of the alternatives. Furthermore, a ranking

sensitivity analysis of the attitudinal expected score function with respect to the attitudinal parameter

is provided.

Summarising, this paper aims to develop a novel visual information feedback mechanism and

attitudinal prioritisation method for GDM problems with TFCPRs. The rest of paper is set out as

follows: Section 2 focuses on the development of similarity and proximity degrees for TFCPRs. In

Section 3, the level of consensus for TFCPRs is proposed, and a visual information feedback mechanism

to increase the level of consensus is investigated. Section 4 presents the TF-COWA operator to

derive a fuzzy preference relation (FPR) from a TFCPR. It also presents a ranking method and

its corresponding sensitivity analysis with respect to the attitudinal parameter. An analysis of the

proposed GDM model highlighting the main differences with respect to existing GDM models in

literature is given in Section 5. Finally, conclusions are drawn in Section 6.

2. Similarity and proximity degrees of triangular fuzzy complementary preference rela-

tions

A fuzzy subset Ã of R is called a triangular fuzzy number (TFN) when its membership function

µ
Ã

(x) : R→ [0, 1] is [38]:

µ
Ã

(x) =



0, x < a

x−a
b−a , a < x ≤ b

c−x
c−b , b ≤ x < c

0, x > c

(1)

A TFN is shortly represented as Ã = (a, b, c), with a and c known as the lower and upper bounds,

respectively, while b is known as its modal value. When the TFN Ã is symmetrical, i.e. when

b = (a + c)/2, then b is also its centroid. Numeric preferences are usually mapped to values in the

domain [0, 1], therefore this is also the domain we will be using in the rest of the paper.

The Representation Theorem of fuzzy sets [73] provides an alternative and convenient way to define

fuzzy sets via their corresponding family of crisp α-cut sets. The α-cut set of a fuzzy set Ã is defined

as

Ãα = {x ∈ X|µ
Ã

(x) ≥ α}.
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The set of crisp sets {Ãα|0 < α ≤ 1} is said to be a representation of the fuzzy set A. Indeed, the

fuzzy set A can be represented as

Ã = ∪
0<α≤1

αÃα

with membership function

µ
Ã

(x) = ∨
α:x∈Ãα

α,

where ∨ is the maximum operator. For TFNs we have:

Ãα = [a+ α · (b− a), c− α · (c− b)],∀α ∈ [0, 1] (2)

Fuzzy sets arithmetic is carried out using Zadeh’s extension principle [74]. The extension principle

provides the methodology to extend real functions, i.e. functions whose inputs are real numbers,

f(x1, x2), into fuzzy functions, i.e. functions whose inputs are fuzzy sets, f(Ã1, Ã2). The extension

principle states that f(Ã1, Ã2) is a fuzzy set with membership function µ
f(Ã1,Ã2)

: [0, 1]→ [0, 1] :

µ
f(Ã1,Ã2)

(y) = sup
f(x1,x2)=y
x1,x2∈[0,1]

[
µ
Ã1

(x1) ∧ µ
Ã2

(x2)
]
,

where ∧ is the minimum operator. For TFNs, Ã1 = (a1, b1, c1) and Ã2 = (a2, b2, c2), we have [38]:

1) Ã1 ⊕ Ã2 = (a1, b1, c1)⊕ (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2).

2) Ã1 	 Ã2 = (a1, b1, c1)	 (a2, b2, c2) = (a1 − c2, b1 − b2, c1 − a2).

3) Ã1 ⊗ Ã2 = (a1, b1, c1)⊗ (a2, b2, c2) ≈ (a1 · a2, b1 · b2, c1 · c2).

4) Ã1/Ã2 = (a1, b1, c1)/(a2, b2, c2) ≈ (a1/c2, b1/b2, c1/a2).

5) 1/Ã = 1/(a, b, c) ≈ (1/c, 1/b, 1/a).

A preference relation on a set of alternatives X = {x1, x2, . . . , xn} with elements being TFNs,

P̃ = (p̃ij)n×n and p̃ij = (aij , bij , cij), is called a triangular fuzzy complementary preference relation

(TFCPR) if the following property holds [38]:

aij + cji = bij + bji = cij + aji = 1, ∀i, j = 1, 2, . . . n, (3)

2.1. Similarity degrees

In the following, we provide the formal definition of distance and similarity functions as given in

[16]:

Definition 1 (Distance). Let A be a set. A function d : A × A −→ R is called a distance (or

dissimilarity) on A if, for all x, y ∈ A, there hold

1. d(x, y) ≥ 0 (non-negativity)
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2. d(x, y) = d(y, x) (symmetry)

3. d(x, x) = 0 (reflexivity)

Definition 2 (Similarity). Let A be a set. A function s : A×A −→ R is called a similarity on A if

s is non-negative, symmetric, and if s(x, y) ≤ s(x, x) holds for all x, y ∈ A, with equality if and only

if x = y.

The main transforms between a distance d and a similarity s bounded by 1 are [16]:

d = 1− s; d =
1− s
s

; d =
√

1− s; d =
√

2 · (1− s2); d = arccos s; d = − ln s

In this paper, we use the first transform to go from a distance function to a similarity function.

Given two TFN, Ã1 = (a1, b1, c1) and Ã2 = (a2, b2, c2), their distance d(Ã1, Ã2) can be defined as

follows [77]:

d(Ã1, Ã2) =
|a1 − a2|+ |b1 − b2|+ |c1 − c2|

3
(4)

Therefore, the similarity between two TFNs, Ã1 = (a1, b1, c1) and Ã2 = (a2, b2, c2), will be

s(Ã1, Ã2) = 1− |a1 − a2|+ |b1 − b2|+ |c1 − c2|
3

(5)

In the following, the similarity degree between two experts using TFCPRs is introduced:

Definition 3. Let P h = (phik) and P l = (plik) be two TFCPRs on a set of alternatives X provided by

two experts Eh and El, respectively. Then, the similarity degree between experts Eh and El on the

pair of alternatives (xi, xk), SD
hl
ik , is :

SDhl
ik = SD(phik, p

l
ik) = 1− d(phik, p

l
ik) (6)

Denoting phik = (ahik, b
h
ik, c

h
ik) and plik = (alik, b

l
ik, c

l
ik), then:

SDhl
ik = 1−

|ahik − alik|+ |bhik − blik|+ |chik − clik|
3

(7)

Note that SDhl
ik = 1 implies |ahik−alik| = |bhik− blik| = |chik− clik| = 0 and therefore phik = plik. Therefore,

we have the following interpretation: the higher the value of SDhl
ik , the more similar phik and plik are.

Definition 4. The similarity degree between experts Eh and El on the alternative xi, SD
hl
i , is:

SDhl
i = SD(phi , p

l
i) =

∑n
k=1 SD(phik,p

l
ik)

n
(8)

As above, when SDhl
i = 1, then both experts provide the same linguistic valuation for pairs of

alternatives involving xi. Thus, the higher the value of SDhl
i , the more similar the experts’ preferences

are on the alternative xi.
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Definition 5. The similarity degree between experts Eh and El on the whole set of alternatives X,

SDhl is:

SDhl = SD(P h, P l) =

∑n
i=1

∑n
k=1 SD(phik,p

l
ik)

n2
(9)

Clearly, SDhl = 1 means that both experts provide identical TFCPRs, and we can interpret this

similarity degree as follows: the higher the value SDhl, the closer both experts are in their preferences

on the set of alternatives.

We have the following result:

Proposition 1. Let {P 1, P 2, . . . , Pm} be a set of TFCPRs, then we have

1) Reflexivity: SDhh = 1 ∀h

2) Symmetry: SDhl = SDlh ∀h, l

3) Transitivity: SDhl = SDlt = 1⇒ SDht = 1

The similarity degrees of an expert with the rest of the group of experts at the three different

levels of a relation are defined next:

Level 1. Similarity degree on pairs of alternatives. The similarity degree of an expert eh on the pair

of alternatives (xi, xk) to the rest of experts in the group is calculated as:

SPAhik =

∑m
l=1, l 6=h SD

hl
ik

m− 1
(10)

Level 2. Similarity degree on alternatives. The similarity degree of an expert eh on alternative xi to

the rest of experts in the group is calculated as:

SAhi =

∑n
k=1 SPA

h
ik

n
(11)

Level 3. Similarity degree on the preference relation. The similarity degree of an expert eh on the

whole set of alternative X to the rest of experts in the group is calculated as:

SDh =

∑n
i=1 SA

h
i

n
(12)

Finally, each expert in the group decision making problem can be associated a relative (normalised)

importance degree based on the similarity degrees at level 3 computed above, which we obviously refer

to as the relative similarity degree of an expert :

RSDh =
SDh∑m
l=1 SD

l
(13)

Obviously, these relative importance degrees could be different to particular importance weights the

experts in the group are assigned before they provide their linguistic information on the set of alter-

natives. Our methodology is to implement both importance degrees in the computation of consensus
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to reflect the actual position of experts in the group as a collective. This will be developed in the

following subsection. Next we provide a simple GDM example to illustrate the computation of the

similarity degrees al the three levels of a relation and the final relative similarity degrees of the experts

in the group.

Example 1. Suppose four experts {e1, e2, e3, e4} with associated importance degrees ID =

(0.2, 0.1, 0.4, 0.3)T , are asked to provide their preference on a set of four alternatives {x1, x2, x3, x4},

being their linguistic preferences modelled via the following TFCPRs:

P1 =


− (0.3, 0.4, 0.5) (0.4, 0.5, 0.6) (0.5, 0.6, 0.7)

(0.5, 0.6, 0.7) − (0.4, 0.5, 0.6) (0.3, 0.4, 0.5)

(0.4, 0.5, 0.6) (0.4, 0.5, 0.6) − (0.5, 0.6, 0.7)

(0.3, 0.4, 0.5) (0.5, 0.6, 0.7) (0.3, 0.4, 0.5) −



P2 =


− (0.4, 0.5, 0.6) (0.2, 0.3, 0.4) (0.3, 0.4, 0.5)

(0.4, 0.5, 0.6) − (0.5, 0.6, 0.7) (0.5, 0.6, 0.7)

(0.6, 0.7, 0.8) (0.3, 0.4, 0.5) − (0.1, 0.2, 0.3)

(0.5, 0.6, 0.7) (0.3, 0.4, 0.5) (0.7, 0.8, 0.9) −



P3 =


− (0.5, 0.6, 0.7) (0.4, 0.5, 0.6) (0.6, 0.7, 0.8)

(0.3, 0.4, 0.5) − (0.5, 0.6, 0.7) (0.2, 0.3, 0.4)

(0.4, 0.5, 0.6) (0.3, 0.4, 0.5) − (0.4, 0.5, 0.6)

(0.2, 0.3, 0.4) (0.6, 0.7, 0.8) (0.4, 0.5, 0.6) −



P4 =


− (0.4, 0.5, 0.6) (0.5, 0.6, 0.7) (0.5, 0.6, 0.7)

(0.4, 0.5, 0.6) − (0.6, 0.7, 0.8) (0.2, 0.3, 0.4)

(0.3, 0.4, 0.5) (0.2, 0.3, 0.4) − (0.3, 0.4, 0.5)

(0.3, 0.4, 0.5) (0.6, 0.7, 0.8) (0.5, 0.6, 0.7) −


I) The similarity degree on pairs of alternatives for each expert are:

SPA1 =


1.000 0.867 0.900 0.900

0.867 1.000 0.867 0.867

0.900 0.867 1.000 0.767

0.900 0.867 0.767 1.000

 ; SPA2 =


1.000 0.933 0.767 0.767

0.933 1.000 0.933 0.733

0.767 0.933 1.000 0.700

0.767 0.733 0.700 1.000



SPA3 =


1.000 0.867 0.900 0.833

0.867 1.000 0.933 0.867

0.900 0.933 1.000 0.833

0.833 0.867 0.833 1.000

 ; SPA4 =


1.000 0.933 0.833 0.900

0.933 1.000 0.867 0.867

0.833 0.867 1.000 0.833

0.900 0.867 0.833 1.000


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II) The similarity degrees on alternatives for each expert are:

SA1 =
(

0.917, 0.900, 0.883, 0.883
)

; SA2 =
(

0.867, 0.900, 0.850, 0.800
)

SA3 =
(

0.900, 0.917, 0.917, 0.883
)

; SA4 =
(

0.917, 0.917, 0.883, 0.900
)

III) The similarity degrees on the set of alternatives for each expert are:

SD1 = 0.896 ; SD2 = 0.854 ; SD3 = 0.904 ; SD4 = 0.904.

IV) The relative group similarity degrees for each expert are:

RSD1 = 0.252 ; RSD2 = 0.240 ; RSD3 = 0.254 ; RSD4 = 0.254.

2.2. Proximity degrees

In a GDM problem, there are two possible scenarios: the importance degree of experts is known

beforehand or completely unknown. In the first scenario, the moderator (decision maker) assigns the

importance degree of experts according to their experience and reputation, etc. For example, in the

process of selecting a key supplier, the purchasing activity is usually carried out by group experts,

who may come from different departments: purchasing department, finance department, and quality

inspection department. In this case, the general manager usually assigns the highest importance

degree to the expert from the purchasing department because of his/her experience or responsibility.

In the second scenario, when no explicit importance degrees are provided or associated to the experts,

we make note that experts might not necessarily be perceived and treated as equally important.

This is specially true, for instance, once the experts have provided information on the particular

matter to solve, in which case this information can be used as a mean to discriminate them as not

equally important. In these cases, it may be reasonable to compute importance degree of experts by

defining indexes based on specific problem context criteria such as consensus or consistency as done

in [12, 60, 61].

The proximity degrees measure the similarity between individual experts’ opinions and the collec-

tive opinion for the group of experts. The aggregation of individual opinions will be weighted using a

weight vector whose elements are a linear combination of the importance degree of individuals before

the decision making process and the relative similarity degrees computed based on the information

they provided as per the previous subsection. This is elaborated next:

(1) Experts weighting vector

W = η · ID + (1− η) ·RSD (14)

If η > 0.5, then the group/moderator values higher the a priori importance degrees of the experts

than their a posteriori relative similarity degrees. Obviously, for homogeneous GDM problems the

value η = 0 applies.
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(2) The collective TFCPR, P = (pik)n×n, is computed as follows:

pik = w1 ⊗ p1
ik ⊕ w2 ⊗ p2

ik ⊕ · · · ⊕ wm ⊗ pmik (15)

Example 2. (Example 1 Continuation) Assuming a value of η = 0.5 we have the following

weighting vector

W = 0.5 ∗ ID + 0.5 ∗RSD = (0.22, 0.17, 0.33, 0.28)T

and the collective TFCPR is

P =


− (0.41, 0.51, 0.61) (0.39, 0.49, 0.59) (0.50, 0.60, 0.70)

(0.39, 0.49, 0.59) − (0.51, 0.61, 0.71) (0.27, 0.37, 0.47)

(0.41, 0.51, 0.61) (0.39, 0.49, 0.59) − (0.34, 0.44, 0.54)

(0.30, 0.40, 0.50) (0.53, 0.63, 0.73) (0.46, 0.56, 0.66) −



Once the collective TFCPR is obtained, we compute the proximity measures for each expert at

the three different levels of a relation:

Level 1. Proximity degree on pairs of alternatives. The proximity degree of an expert eh to the group

on the pair of alternatives (xi, xk) is

PPAhik = SD(phik, pik) (16)

Level 2. Proximity degree on alternatives. The proximity degree of an expert eh to the group on the

alternative xi is

PAhi =

∑n
k=1 PPA

h
ik

n
(17)

Level 3. Proximity degree on the preference relation. The proximity degree of an expert eh to the

group on the set of alternatives X is

PDh =

∑n
i=1 PA

h
i

n
(18)

Example 3. (Example 1 Continuation) Proximity degrees computation.

I) The proximity degree on pairs of alternatives for each expert are:

PPA1 =


1.000 0.889 0.994 0.999

0.889 1.000 0.894 0.973

0.994 0.894 1.000 0.843

0.999 0.973 0.843 1.000

 ; PPA2 =


1.000 0.989 0.806 0.801

0.989 1.000 0.994 0.773

0.806 0.994 1.000 0.757

0.801 0.773 0.757 1.000


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PPA3 =


1.000 0.911 0.994 0.899

0.911 1.000 0.994 0.927

0.994 0.994 1.000 0.943

0.899 0.927 0.943 1.000

 ; PPA4 =


1.000 0.989 0.894 0.999

0.989 1.000 0.906 0.927

0.894 0.906 1.000 0.957

0.999 0.927 0.957 1.000


II) The proximity degrees on alternatives for each expert are:

PA1 =
(

0.971, 0.939, 0.933, 0.954
)

; PA2 =
(

0.899, 0.939, 0.889, 0.833
)

PA3 =
(

0.951, 0.958, 0.983, 0.942
)

; PA4 =
(

0.971, 0.956, 0.940, 0.971
)

III) The proximity degrees on the relation for each expert are:

PD1 = 0.949 ; PD2 = 0.890 ; PD3 = 0.958 ; PD4 = 0.959.

3. Consensus model with visual information feedback mechanism for GDM with TFCPRs

In a GDM, it is desirable that the group of experts achieve a high consensus level among their

preferences. Consensus is defined as agreement among experts regarding the feasible alternatives,

and therefore its definition definition is based on the concept of similarity between their opinions

(preferences). Both similarity degree (SD) and the proximity degree (PD) convey the concept of

similarity between experts in a group: the first one between pairs of individual experts and the second

one between an individual expert and the rest of experts in the group. Thus, both degrees could/should

be used in measuring the level of consensus within a group of experts regarding the set of feasible

alternatives in GDM. The simplest of the combinations is the linear one, and it is here used to propose

the following definitions of the consensus level (CL) associated to each expert of the group at the three

different levels of a relation:

Level 1. Consensus level on the pairs of alternatives (CLPA). The consensus level of an expert eh on

the pair of alternatives (xi, xk) is

CLPAhik = ψ · SPAhik + (1− ψ) · PPAhik (19)

Level 2. Consensus level on the alternatives (CLA). The consensus level of an expert eh on the

alternative xi is

CLAhi = ψ · SAhi + (1− ψ) · PAhi (20)

Level 3. Consensus level on the relation (CL). The consensus level (CL) eh on the set of alternatives

X is

CLh = ψ · SDh + (1− ψ) · PDh (21)
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with ψ ∈ [0, 1] a parameter to control the weight of both similarity and proximity criteria. Unless

there are specific reasons to prefer one index to the other one, the value to assume for the weighting

parameter ψ should be 0.5, as it is assumed in the example below.

Example 4. (Example 1 Continuation) Consensus levels computation. Setting ψ at 0.5, the

following consensus levels on the relation are obtained:

CL1 = 0.922, CL2 = 0.872, CL3 = 0.932, CL4 = 0.932

The only expert with a consensus level below the threshold value is e2 and therefore he/she will

receive feedback advice on how to change his/her preferences to achieve a higher consensus level.

In practice, it is rare to achieve full and unanimous agreement of all the experts regarding all the

feasible alternatives. As a consequence, the consensus threshold value (γ) to achieve is usually set to

a value lower than 1. At the same time, the decision output should be acceptable for at least half

of the experts, which means that the parameter γ should be set to a value no lower than 0.5. If the

consensus level is not acceptable, that is, if it is lower than the specified threshold value, the experts are

normally invited to discuss their opinions further in an effort to make them closer. To help experts in

their discussion, a visual information feedback mechanism is here proposed to provide each expert with

visual representations of his/her consensus status to easily ‘see’ their relative consensus position within

the group as well as to identify the alternatives and preference values that he/she should reconsider

for changing in the subsequent consensus round. Additionally, the visual feedback mechanism also

includes individualised recommendation to those experts that are identified as contributing less to

consensus on how to change their identified preference values and a visual graphical simulation of

future consensus status if the recommended values were to be implemented. In the light of this visual

extra information, an expert can revisit his evaluations and make changes if considered appropriate to

achieve a higher consensus level. This consensus model with visual information feedback mechanism

process is illustrated in Figure 1.

In the following, a detailed description of the visual feedback methodology is provided. As it was

mentioned above, personalised advice to those experts with a consensus level below the acceptable

threshold value on how to change their preferences to increase their consensus level are also generated.

3.1. Visual Information Feedback Mechanism

The visual information feedback mechanism consists of three stages: firstly, the identification of

the triangular fuzzy preference values that should be subject to modification; secondly, the generation

of advice on the direction-value of the required change; and, thirdly, the automatic feedback process

simulation to show what would happen if experts are to accept the recommended preference values.

These three stages are described in detail below:
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Figure 1: Consensus model with visual information feedback mechanism process

(1) Identification of the Triangular Fuzzy Preference Values: The set of triangular fuzzy preference

values that contribute less to reach an acceptable consensus level is identified and presented to

the experts using visual graphs as illustrated in Figure 2. Once consensus levels are computed,

at the relation level, all experts will receive a visual representation of their consensus status in

relation to the threshold value, which can be used to easily identify the experts furthest from the

group. Following with Example 4, and using a threshold value γ = 0.9, Figure 2(a) presents a

visual representation of all experts consensus level with respect to the threshold value from which

expert e2 is clearly identified as the only expert contributing less to group consensus. If necessary,

individual visual representations of consensus levels of alternatives and pair of alternatives are also

provided to each expert to help them identify those alternatives and their associated preference

values at the level of pairs of alternatives that contribute less to consensus and, consequently,

potential to be reconsidered for changing in the next round of consensus. In Example 4, this is

necessary to be done for expert e2 whom would receive visual representation at these levels as

illustrated in Figure 2(b) and Figure 2(c), respectively. Mathematically, these steps are modelled

as follows:

Step 1. The set of experts with consensus levels below the threshold value γ is identified:

ECH = {h |CLh < γ} (22)
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Step 2. For experts identified in step 1, those alternatives with a consensus level below γ are

identified:

ACH = {(h, i) | h ∈ ECH ∧ CLAhi = ψ · SAhi + (1− ψ) · PAhi < γ} (23)

Step 3. Finally, the triangular fuzzy preference values for the experts and alternatives identified

in steps 1 and 2 that need to be changed are identified:

PACH = {(h, i, k) | (h, i) ∈ ACH ∧ CLPAhik = ψ · SPAhik + (1− ψ) · PPAhik < γ} (24)

P

 

--------Before  Feedback

--------Threshold Value

 

CL
4

CL
1

CL

CL

2

3

 

4

P
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P

P
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2

P

CL

(a) Consensus levels on the relation: CLh

 
 CLA

CLA
2

CLA2

CLA

CLA

2

31

2

2

4

--------Threshold Value

--------Before  Feedback

(b) Consensus levels on the alternatives for

e2: CLA2
i

 
 CLPA

CLPA13
2
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2

12

2

14

--------Before  Feedback

CLPA

CLPA

(c) Consensus levels on the pairs of alter-

natives for A1 and e2: CLPA2
1j

Figure 2: Visual representation of consensus levels in relation to the consensus threshold value

Example 5. (Example 1 Continuation) The sets of 3-tuple identified as contributing less to

consensus are:

PACH = {(2, 1, 3), (2, 1, 4), (2, 2, 4), (2, 3, 1), (2, 3, 4), (2, 4, 1), (2, 4, 2), (2, 4, 3)}
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(2) Generation of Advice: The feedback mechanism also generates personalised recommendations

rules, which will not only tell the experts which preference values they should change, but also

provide them with the consensus advice to revisit their evaluation in the light of this extra infor-

mation.

For all (h, i, k) ∈ PACH, the following rule is feed backed to the corresponding experts:

“To increase your consensus level (CL), your preference value phik should be closer to p
h
ik.”

p
h
ik = ψ · phik + (1− ψ) · pik (25)

where phik = (
∑m

l=1, l 6=h p
l
ik)/(m − 1) and pik the collective preference value. The reciprocity

property that the TFCPRs verify implies that when the pair of alternatives (i, k) is identified for

change, the pair (k, i) has to be changed accordingly as well.

Example 6. (Example 1 continuation) The recommendations for expert e2 are:

• To increase your consensus level (CL), your preference value p2
13 should be closer to (0.4,0.5,0.6).

• To increase your consensus level (CL), your preference value p2
31 should be closer to (0.4,0.5,0.6).

• To increase your consensus level (CL), your preference value p2
14 should be closer to (0.5,0.6,0.7).

• To increase your consensus level (CL), your preference value p2
41 should be closer to (0.3,0.4,0.5).

• To increase your consensus level (CL), your preference value p2
24 should be closer to (0.4,0.5,0.6).

• To increase your consensus level (CL), your preference value p2
42 should be closer to (0.4,0.5,0.6).

• To increase your consensus level (CL), your preference value p2
34 should be closer to (0.4,0.5,0.6).

• To increase your consensus level (CL), your preference value p2
43 should be closer to (0.4,0.5,0.6).

(3) Automatic Feedback Process Simulation: A what-if scenario analysis could be run to generate

a visual graphical simulation of future consensus status if the recommended values were to be

implemented, as shown in Fig 3(a), Fig 3(b) and Fig 3(c). This will provide the decision makers

with a clear picture of their actual position within the group, which they can then use to decide

upon their actual position or subsequent action. If the advice is implemented, then the consensus

level increases as Example 7. Not implementing these advices can lead to the consensus level to

remain fixed or to increase at a very low rate, which would make the group consensus threshold

value difficult to achieve. To avoid these situation, a maximum number of iterations maxIter can

be incorporated in the visual information feedback mechanism following a similar approach of

consensus models proposed in [7, 31].

Example 7. (Example 1 continuation) After expert e2 revisits his/her evaluation and implements

the recommended TFNs, a new round of the consensus process is carried out, leading to the following

new TFCPRs:
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P1 =


− (0.3, 0.4, 0.5) (0.4, 0.5, 0.6) (0.5, 0.6, 0.7)

(0.5, 0.6, 0.7) − (0.4, 0.5, 0.6) (0.3, 0.4, 0.5)

(0.4, 0.5, 0.6) (0.4, 0.5, 0.6) − (0.5, 0.6, 0.7)

(0.3, 0.4, 0.5) (0.5, 0.6, 0.7) (0.3, 0.4, 0.5) −



P2 =


− (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) (0.5, 0.6, 0.7)

(0.4, 0.5, 0.6) − (0.5, 0.6, 0.7) (0.3, 0.4, 0.5)

(0.4, 0.5, 0.6) (0.3, 0.4, 0.5) − (0.4, 0.5, 0.6)

(0.3, 0.4, 0.5) (0.5, 0.6, 0.7) (0.4, 0.5, 0.6) −



P3 =


− (0.5, 0.6, 0.7) (0.4, 0.5, 0.6) (0.6, 0.7, 0.8)

(0.3, 0.4, 0.5) − (0.5, 0.6, 0.7) (0.2, 0.3, 0.4)

(0.4, 0.5, 0.6) (0.3, 0.4, 0.5) − (0.4, 0.5, 0.6)

(0.2, 0.3, 0.4) (0.6, 0.7, 0.8) (0.4, 0.5, 0.6) −



P4 =


− (0.4, 0.5, 0.6) (0.5, 0.6, 0.7) (0.5, 0.6, 0.7)

(0.4, 0.5, 0.6) − (0.6, 0.7, 0.8) (0.2, 0.3, 0.4)

(0.3, 0.4, 0.5) (0.2, 0.3, 0.4) − (0.3, 0.4, 0.5)

(0.3, 0.4, 0.5) (0.6, 0.7, 0.8) (0.5, 0.6, 0.7) −


The new consensus levels are now:

CL1 = 0.956, CL2 = 0.976, CL3 = 0.961, CL4 = 0.957

Because all experts are over the minimum consensus threshold value γ = 0.9, the consensual

collective TFCPR is computed from which the final solution of consensus will be selected:

P =


− (0.41, 0.51, 0.61) (0.43, 0.53, 0.63) (0.53, 0.63, 0.73)

(0.39, 0.49, 0.59) − (0.51, 0.61, 0.71) (0.24, 0.34, 0.44)

(0.37, 0.47, 0.57) (0.39, 0.49, 0.59) − (0.39, 0.49, 0.59)

(0.27, 0.37, 0.47) (0.56, 0.66, 0.76) (0.41, 0.51, 0.61) −



It is worth noting here that quality of the decision making process and quality of the outcome

of such decision making process are not necessarily related. Indeed, the visual information feedback

mechanism and the selection process here developed assure that the outcome, i.e. the selected al-

ternative, is a solution of consensus but it does not guarantee that is the right decision. Indeed, if

the group of experts provide information that is incorrect then the current decision making process

will not guarantee that the outcome is correct. It can happen that all but one expert in a group

provide similar incorrect information, in which case the consensus support system here developed will
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Figure 3: Simulation of consensus before and after recommended values are implemented by expert e2

advise the only correct expert to consider changing his/her preferences to make them closer to the

rest, although incorrect, experts. Consequently, here the concern is with the quality of the decision

making process rather than with the quality of the output. Although being the ultimate goal of any

decision making, the quality of the decision outcome is out of our control in that this issue, firstly,

resides in the intelligence phase during which the decision problem is detected and, secondly, in the

identification and analysis of potential alternative solutions [50]. It is also out of the control of our

study the gathering of information on the set of potential alternative solutions to the decision making

problem but not its appropriate formal representation in the presence of uncertainty, which was the

subject of the previous sections. Summarising, we agree with Marakas [44] in that ‘we really do not

know whether a decision is a good one until after it is made’, and that a post-decision evaluation
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might be necessary carried out to assess the quality of the decision making output.

4. Attitudinal prioritisation method for TFCPRs

Once the consensual final collective TFCFPR is computed, a selection process is activated to derive

the final solution of consensus to the GDM problem. This is usually done by defining a so-called score

function that associated a score or valuation to each one of the alternatives and that is used to

produce a final ranking of them. In the flowing, we will develop a score function that is based on

the implementation of the decision makers’ attitude via the application of the concept of attitudinal

character of a basic unit-monotonic (BUM) and the continuous ordered weighted average (COWA)

operator introduced in [71]. To do this, in the following we extend the continuous ordered weighted

average (COWA) operator to the case in which the argument is a TFN and develop the triangular

fuzzy COWA (TF-COWA) operator, which is fundamental in the definition of the TFN attitudinal

expected score function.

4.1. TF-COWA operator and attitudinal expected score function

Recall that a BUM function is defined as a mapping Q : [0, 1]→ [0, 1] such that Q(0) = 0, Q(1) = 1

and Q(x) ≥ Q(y) if x ≥ y. The attitudinal character of a BUM function and the continuous ordered

weighted average (COWA) operator were introduced in [71] as follows:

Definition 6 (BUM Attitudinal Character). The attitudinal character of a BUM function, Q,

is

A− C(Q) =

∫ 1

0
Q(y)dy. (26)

Definition 7 (COWA Operator of Yager). Let INT (R+) be the set of all closed subintervals of

R+. A continuous ordered weighted average (COWA) operator is a mapping FQ : INT (R+) → R+

which has an associated BUM function, Q, such that

FQ([a, b]) =

∫ 1

0

dQ(y)

dy
[b− y · (b− a)]dy. (27)

Denoting λ = A− C(Q) we have

FQ([a, b]) = (1− λ) · a+ λ · b (28)

where λ is the attitudinal character of the BUM function Q. Thus, FQ([a, b]) is the weighted average

of the end points of the closed interval with attitudinal character parameter, and it is known as the

attitudinal expected value of [a, b].

Yager [71] introduced the following desirable properties of the COWA operator:

• If a1 ≥ a2 and b1 ≥ b2, then for all Q we have: FQ([a1, b1]) ≥ FQ([a2, b2]).
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• If Q1 ≥ Q2, then FQ1([a, b]) ≥ FQ2([a, b]).

• For all Q, we have a ≤ FQ([a, b]) ≤ b.

In the following, we extend the application of the COWA operator to the case in which our

argument is a TFN and develop the triangular fuzzy COWA (TF-COWA) operator.

Definition 8 (TF-COWA Operator). Let Ã = (a, b, c) be a TFN and INT (Ã) = {Ãα = [a + α ·

(b−a), c−α · (c−b)]|0 < α ≤ 1} the set of all α-cut sets of Ã. A triangular fuzzy COWA (TF-COWA)

operator with associated BUM function Q is a mapping FQ : INT (Ã)→ R+ such that

FQ

(
Ãα
)

= (1− λ) · [a+ α · (b− a)] + λ · [c− α · (c− b)]

= a+ α · (b− a) + λ · (1− α) · (c− a) (29)

The following properties hold:

Proposition 2. Let Ã1 = (a1, b1, c1) and Ã2 = (a2, b2, c2) be two TFNs with α-cut Ãα1 and Ãα2 ,

respectively, then

FQ

((
Ã1 + Ã2

)α)
= FQ

(
Ãα1 + Ãα2

)
= FQ

(
Ãα1

)
+ FQ

(
Ãα2

)
. (30)

Proof. Interval arithmetics implies that
(
Ã1 + Ã2

)α
= Ãα1 + Ãα2 = [AL1 +AL2 , A

U
1 +AU2 ], and therefore

we have

FQ

(
Ãα1 + Ãα2

)
= (1− λ) · (AL1 +AL2 ) + λ · (AU1 +AU2 )

Because FQ

(
Ãα1

)
= (1− λ) ·ALi + λ ·AUi then it is FQ

(
Ãα1 + Ãα2

)
= FQ

(
Ãα1

)
+ FQ

(
Ãα2

)
.

Proposition 3. Let Ã1 = (a1, b1, c1) and Ã2 = (a2, b2, c2) be two TFNs with α-cut Ãα1 = [a1 +

α · (b1 − a1), c1 − α · (c1 − b1)] and Ãα2 = [a2 + α · (b2 − a2), c2 − α · (c2 − b2)], respectively. If

a1 + α · (b1 − a1) ≤ a2 + α · (b2 − a2) and c1 − α · (c1 − b1)] ≤ c2 − α · (c2 − b2)], then

FQ

(
Ãα1

)
≤ FQ

(
Ãα2

)
. (31)

Proof. Denoting ALi = ai + α · (bi − ai) and AUi = ci − α · (ci − bi), we have

FQ

(
Ãα2

)
− FQ

(
Ãα1

)
= (1− λ) · (AL2 −AL1 ) + λ · (AU2 −AU1 )

If AL1 ≤ AL2 and AU1 ≤ AU2 then it is FQ

(
Ãα2

)
− FQ

(
Ãα1

)
≥ 0.

In the following we introduce the attitudinal expected score function of an TFN:

Definition 9 (TFN Attitudinal Expected Score Function). Given a BMU function Q with at-

titudinal character value λ, the attitudinal expected score degree of a TFN Ã = (a, b, c) is

AESλ

(
Ã
)

= 2 ·
∫ 1

0
FQ

(
Ãα
)
αdα =

(1− λ)a+ 2b+ λc

3
. (32)
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The following properties hold:

Proposition 4 (Additivity Property). Let Ã1 = (a1, b1, c1) and Ã2 = (a2, b2, c2) be two TFNs then

AESλ

(
Ã1 + Ã2

)
= AESλ

(
Ã1

)
+AESλ

(
Ã2

)
.

Proof. Proof of Proposition4 is a consequence of Proposition 2.

Proposition 5 (Monotonocity). Let Ã1 = (a1, b1, c1) and Ã2 = (a2, b2, c2) be two TFNs with α-cut

Ãα1 and Ã2, respectively. If FQ

(
Ãα1

)
≤ FQ

(
Ãα2

)
∀α, then AESλ

(
Ã1

)
≤ AESλ

(
Ã2

)
Proof. Proof is trivial and therefore it is omitted.

The attitudinal expected score function can be used to define an ordering relation on a given set

of TFNs. However, this ordering is much dependent on the BUM function reflecting the attitude of

moderator. Indeed, a change on the value of λ could result in a different ordering of two ITFNs, as

the following example illustrates.

Example 8. The following two TFNs Ã1 = (0.5, 0.7, 0.9) and Ã2 = (0.6, 0.7, 0.8) have the fol-

lowing attitudinal expected score values, AESλ

(
Ã1

)
=

1.9 + 0.4λ

3
and AESλ

(
Ã2

)
=

2.0 + 0.2λ

3
,

respectively. Their ranking depends on the moderator’s attitudinal character as follows:

1. AESλ

(
Ã1

)
< AESλ

(
Ã2

)
if and only if λ > 0.5

2. AESλ

(
Ã1

)
= AESλ

(
Ã2

)
if and only if λ = 0.5

3. AESλ

(
Ã1

)
> AESλ

(
Ã2

)
if and only if λ < 0.5

Xu [67] introduced a sensitivity analysis for interval fuzzy preference relation by the COWA oper-

ator. In the following we will provide a sensitivity analysis of the attitudinal expected score function

with respect to the attitudinal character λ. In addition, we will also provide the conditions under

which the ordering of two TFNs is not affected by a change in the attitudinal parameter.

Let λ be the attitudinal parameter associated to the BUM function Q under which it has been

established that AESλ

(
Ãi

)
< AESλ

(
Ãj

)
. Assume that the attitudinal parameter is perturbed by

a quantity ∆λ to become λ + ∆λ. Let us denote by AESλ+∆λ

(
Ãi

)
and AESλ+∆λ

(
Ãj

)
the new

attitudinal expected score degrees. Then, one question is presented as: what are the conditions ∆λ

needs to verify so that AESλ+∆λ

(
Ãi

)
≤ AESλ+∆λ

(
Ãj

)
, i.e. the ranking of TFNs does not change?

The following theorem provides the answer to this question.

Theorem 1. Let Ãi and Ãj be two TFNs with expected score degrees such that AESλ

(
Ãi

)
<

AESλ

(
Ãj

)
. Let ∆λ be a perturbation of the attitudinal character λ with 0 ≤ λ + ∆λ ≤ 1.Then
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we have AESλ+∆λ

(
Ãi

)
< AESλ+∆λ

(
Ãj

)
if and only if

max

{
− λ,

3 ·
[
AESλ

(
Ãj

)
−AESλ

(
Ãi

)]
βi − βj

}
≤ ∆λ ≤ 1− λ, βi < βj

−λ ≤ ∆λ ≤ 1− λ, βi = βj

−λ ≤ ∆λ ≤ min

{
1− λ,

3 ·
[
AESλ

(
Ãj

)
−AESλ

(
Ãi

)]
βi − βj

}
, βi > βj

(33)

where βi = ci − ai and βj = cj − aj.

Proof. Firstly, we note that ∆λ is subject to the following constraint: −λ ≤ ∆λ ≤ 1 − λ. We have

the following relation between AESλ

(
Ãi

)
and AESλ+∆λ

(
Ãi

)
:

AESλ+∆λ

(
Ãi

)
= AESλ

(
Ãi

)
+

∆λ · βi
3

where βi = ci − ai. The following equivalence holds:

AESλ+∆λ

(
Ãi

)
< AESλ+∆λ

(
Ãj

)
⇔ ∆λ · (βi − βj) < 3 ·

[
AESλ

(
Ãj

)
−AESλ

(
Ãi

)]
(34)

Three scenarios are possible:

• βi = βj . Because AESλ

(
Ãj

)
− AESλ

(
Ãi

)
> 0 then (34) is true for any value of ∆λ subject

to −λ ≤ ∆λ ≤ 1− λ.

• βi > βj ⇔ ∆λ <
3 ·
[
AESλ

(
Ãj

)
−AESλ

(
Ãi

)]
βi − βj

, and therefore:

−λ ≤ ∆λ ≤ min

{
1− λ,

3 ·
[
AESλ

(
Ãj

)
−AESλ

(
Ãi

)]
βi − βj

}
.

• βi < βj ⇔ ∆λ >
3 ·
[
AESλ

(
Ãj

)
−AESλ

(
Ãi

)]
βi − βj

, and therefore:

max

{
− λ,

3 ·
[
AESλ

(
Ãj

)
−AESλ

(
Ãi

)]
βi − βj

}
≤ ∆λ ≤ 1− λ.

4.2. Attitudinal prioritisation and ranking sensitivity analysis of TFCPRs

The application of the attitudinal expected score function to each one of the TFNs of a TFCPR

allows us to derive a numerical fuzzy preference relation (FPR) that we call the attitudinal score FPR

(AS-FPR):
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Definition 10. (Attitudinal Score FPR (AS-FPR)) Let P̃ = (p̃ik)n×n be a TFCPR and λ an atti-

tudinal parameter value, then we call SP λ = (spλik)n×n the attitudinal score FPR corresponding to

P̃ ,where

spik = AESλ

(
p̃λik

)
, spki = 1−AESλ

(
p̃λik

)
∀i < k. (35)

Using expression (32) we have:

spλik = ((1− λ)aik + 2bik + λcik)/3, spλki = 1− spik ∀i < k. (36)

Using the AS-FPR SP λ associated to a given TFCPR P̃ , we can define the attitudinal expected

preference degree of an alternative xi over the rest alternatives as follows:

spλi =
1

n

n∑
k=1

spλik =

∑n
k=1

[
(1− λ)aik + 2bik + λcik

]
3n

(37)

The attitudinal expected preference degrees can be used to produce a final ranking of the alternatives

and the fore to facilitate the selection of the final solution of consensus to the GDM problem with

TFCPRs, as the following example illustrates.

Example 9. (Example 1 continuation) For the collective TFCPR P̂ , suppose that the following

BUM function Q(y) = y3 represents the moderator’s attitudinal character. The attitudinal character

λ would be

λ =

∫ 1

0
Q(y)dy =

∫ 1

0
y3dy =

1

4
.

The AS-FPR associated to the collective TFCPR P̂ is

SP 0.25 =


− 0.493 0.513 0.613

0.507 − 0.593 0.323

0.487 0.407 − 0.473

0.387 0.677 0.527 −

 .

The attitudinal expected preference degrees associated to each alternative would be:

p0.25
1 = 0.530, p0.25

2 = 0.481, p0.25
3 = 0.467, p0.25

4 = 0.523,

which results in the following final ordering

x1 � x4 � x2 � x3.

Again, the ordering of alternatives depends on the attitudinal BUM function. To obtain the

conditions under which the ordering of two alternatives is affected by a change in the attitude of

moderator, we will present a sensitivity analysis with respect to the attitudinal character λ.
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Theorem 2. Let P̃ = (p̃ij) be an TFCPR and SP λ = (spλij) be its associated AS-FPR such that

spλi < spλj . Let ∆λ be perturbation of the attitudinal character λ with 0 ≤ λ+ ∆λ ≤ 1. Then we have

spλ+∆λ
i < spλ+∆λ

j ⇔



max

{
− λ,

3n · (spλj − spλi )

δi − δj

}
≤ ∆λ ≤ 1− λ, if δi < δj

−λ ≤ ∆λ ≤ 1− λ, if δi = δj

−λ ≤ ∆λ ≤ min

{
1− λ,

3n · (spλj − spλi )

δi − δj

}
, if δi > δi

where δi =
∑n

k=1

(
cik − aik) and δj =

∑n
k=1

(
cjk − ajk).

Proof. On the one hand, we have that ∆λ is subject to the following constraint: −λ ≤ ∆λ ≤ 1− λ.

On the other hand, we have

psλ+∆λ
i = spλi +

∆λ · δi
3n

where δi =
∑n

k=1

(
cik − aik). The following equivalence holds:

spλ+∆λ
i < spλ+∆λ

j ⇔ ∆λ · (δi − δj) < 3n · (spλj − spλi ) (38)

• If δi = δj , then because spλi < spλj we have that expression (38) is always true, and therefore

−λ ≤ ∆λ ≤ 1− λ.

• If δi > δj then ∆λ ≤
3n · (spλj − spλi )

δi − δj
, and therefore

−λ ≤ ∆λ ≤ min

{
1− λ,

3n · (spλj − spλi )

δi − δj

}
.

• If δi < δj then ∆λ ≥
3n · (spλj − spλi )

δi − δj
, and therefore:

max

{
− λ,

3n · (spλj − spλi )

δi − δj

}
≤ ∆λ ≤ 1− λ.

The following example provides an analysis of the ordering of the alternatives of the previous

example based on the value of the attitudinal parameter λ.

Example 10. (Finishing Example 1) Applying expression (37), the attitudinal expected prefer-

ence degrees associated to each alternative would be

spλ1 =
47 + 6 · λ

120
, spλ2 =

42 + 2 · λ
120

, spλ3 =
41− 2 · λ

120
, spλ4 =

49− 6λ

120
.
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It is easy to get that

spλ1 > spλ2 if and only if 0 ≤ λ ≤ 1,

spλ1 > spλ4 if and only if 0.175 < λ ≤ 1,

spλ2 > spλ3 if and only if 0 ≤ λ ≤ 1,

spλ2 > spλ4 if and only if 0.875 < λ ≤ 1,

spλ4 > spλ3 if and only if 0 ≤ λ ≤ 1,

Then, we obtain the following ranking scenarios based on the value of the attitudinal parameter λ:

x4 � x1 � x2 � x3 if 0 ≤ λ < 0.175

x4 ∼ x1 � x2 � x3 if λ = 0.175

x1 � x4 � x2 � x3 if 0.175 ≤ λ < 0.875

x1 � x4 ∼ x2 ∼ x3 if λ = 0.875

x1 � x2 � x4 � x3 if 0.875 < λ ≤ 1

Obviously, the ordering of the alternatives is susceptible to a change in a value of λ. Additionally,

an optimistic moderator will tend to select alternative x1, while a pessimistic one will choose alternative

x4. Hence, our approach is able to rank the alternatives by taking into account attitudinal character

of the group of experts or its moderator if applicable.

5. Analysis of the GDM model

This proposed methods for GDM problems with TFCPRs presents the following main advantages

with respect to other consensus models proposed in the literature:

1. It includes a visual information feedback mechanism following a top to bottom methodology

to find the discordant opinion, provide recommendations to those experts that are furthest

from the group, and automatically simulate future consensus status if experts are to follow

recommendations in clear pictures. Therefore, the advantage of our proposed model is that it

dose not force decision makers (DMs) to change their opinions, but provide more information to

help DMs to revisit their decision.

2. It allows the presence of TFCPRs, which captures uncertainty more appropriately than numeric

preference relations or ordinal linguistic preference relations. It is important to remark that

the proposed model is one of the first efforts in introducing TFCPRs into the field of consensus

GDM.

3. It investigates a COWA operator based prioritisation method for TFCPRs. The novelty of this

method is that it can rank the alternatives according to the attitudinal character of moderator.

4. It presents a sensitivity analysis for the final ranking order of the alternatives with respect to the

attitudinal parameter, providing flexibility in its adaptation to different scenarios both in terms

24



of uncertainty modelling and pessimistic or optimistic approach to solve the decision making

problem.

Also, the proposed GDM method still exhibits some limitations to be addressed in future research.

1. In most cases, group consensus facilitates the acceptance of the decision outcome. However, it

is meaningless when most experts of the group provide incorrect information. Therefore, how

to determine the presence of incorrect information is an interesting problem that has not been

successfully addressed and/or implemented by any previous consensus GDM models.

2. Although this paper investigates a COWA operator based prioritisation method by taking into

account the attitudinal character, including a sensitivity analysis for the moderator, it may be

difficult to determine his/her attitude directly in real decision cases. We plan to carry out future

research to develop a linguistic sentiment scale and apply sentiment analysis to determine the

attitudinal character of the moderator.

6. Conclusion

In this paper, a novel visual information feedback mechanism for GDM problems with TFCPRs

has been presented. To achieve this, the concepts of similarity degree (SD) between two experts as well

as the proximity degree (PD) between an experts and the rest of experts in the group are developed

for TFCPRs. These degrees are used to compute both the aggregation weighting vector as well as the

consensus level of the group of experts. The visual information feedback mechanism is investigated to

identify experts, alternatives and corresponding preference values that contribute less to consensus.

Recommendations to help experts the direction of the change required to increase their consensus

are produced and an automatic visual feedback process simulation to show the experts what would

happen if they were to follow recommendations by pictures is developed. Finally, a new prioritisation

method of alternatives for a TFCFPR based on the implementation of the attitudinal character is

presented. Furthermore, a ranking sensitivity analysis of the attitudinal expected score function with

respect to the attitudinal parameter is addressed and solved. Summarising, the presented consensus

model supports the aggregation of TFCPRs in GDM to achieve solutions with high degree of consensus

that reflect in a correct way the attitudinal character desired to be implemented, and consequently

provides further flexibility to decision making under uncertainty in inconsistent environments.
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