16 research outputs found

    Amplitude and phase analysis of the brain Evoked Potential about performing a task related to visual stimulus using Empirical mode decomposition

    Get PDF
    In this paper, amplitude and phase difference patterns for theta and alpha bands of the Evoked Potential(EP) in relation to perform a task at visual stimulus were analyzed using the Empirical mode decomposition(EMD). The EMD is applied to decompose EP signals with task-related sub-frequency band signals. Intrinsic mode function was implied in Hilbert transform and instantaneous amplitude and phase differences of theta and alpha were derived from Hilbert transformed EP. In a task status, large amplitude for both bands was observed at P2, N2, and P3 points as well as maximum phase difference was observed at N1 and P2. We confirmed that both bands are associated with a task at visual stimulus, and less associated with fixation. The proposed method enhances the time and frequency resolution in comparison with band-pass filter method which observed different phase results according to conditions.ope

    Singular Spectrum Analysis as a data-driven approach to the analysis of motor adaptation time series

    Get PDF
    Motor adaptation is a form of learning to re-establish desired movements in novel situations. To probe motor adaptation, one can replicate such conditions experimentally by imposing a sustained perturbation during movement. Exposure to such perturbations initially causes an abrupt change in relevant performance variables, followed by a gradual return to baseline behaviour. The resulting time series exhibit persistent properties related to structural changes in underlying motor control and transitory properties related to trial-to-trial variations. The global trend, signifying the structural change, is often assessed by averaging the time series in predefined bins or nonlinear model fitting. However, these methods to study motor adaptation require a priori decisions to produce accurate fits. Here, we test a data-driven approach called Singular Spectrum Analysis (SSA) to assess the global trend. In SSA, we first decompose the adaptation time series into components that represent either a global trend or additional variations, and secondly, select the component(s) corresponding to the global trend using spectral analysis. In this paper, we will use simulated data to compare the reconstruction performance of SSA with often applied filter and fitting methods in motor adaptation studies and apply SSA to real data obtained during split- belt adaptation. In the simulations, we show that SSA reconstructed the fast-initial component and entire global trends more accurately than the filtering and fitting methods. In addition, we show that SSA also successfully reconstructed global trends from real data. Therefore, the SSA might be useful in motor learning studies to decompose and assess adaptation time series

    Local properties of vigilance states: EMD analysis of EEG signals during sleep-waking states of freely moving rats

    Get PDF
    Understanding the inherent dynamics of the EEG associated to sleep-waking can provide insights into its basic neural regulation. By characterizing the local properties of the EEG using power spectrum, empirical mode decomposition (EMD) and Hilbert-spectral analysis, we can examine the dynamics over a range of time-scales. We analyzed rat EEG during wake, NREMS and REMS using these methods. The average instantaneous phase, power spectral density (PSD) of intrinsic mode functions (IMFs) and the energy content in various frequency bands show characteristic changes in each of the vigilance states. The 2nd and 7th IMFs show changes in PSD for wake and REMS, suggesting that those modes may carry wake- and REMS-associated cognitive, conscious and behavior-specific information of an individual even though the EEG may appear similar. The energy content in θ2 (6Hz-9Hz) band of the 1st IMF for REMS is larger than that of wake. The decrease in the phase function of IMFs from wake to REMS to NREMS indicates decrease of the mean frequency in these states, respectively. The rate of information processing in waking state is more in the time scale described by the first three IMFs than in REMS state. However, for IMF5-IMF7, the rate is more for REMS than that for wake. We obtained Hilbert-Huang spectral entropy, which is a suitable measure of information processing in each of these state-specific EEG. It is possible to evaluate the complex dynamics of the EEG in each of the vigilance states by applying measures based on EMD and Hilbert-transform. Our results suggest that the EMD based nonlinear measures of the EEG can provide useful estimates of the information possessed by various oscillations associated with the vigilance states. Further, the EMD-based spectral measures may have implications in understanding anatamo-physiological correlates of sleep-waking behavior and clinical diagnosis of sleep-pathology

    Research on High-Frequency Combination Coding-Based SSVEP-BCIs and Its Signal Processing Algorithms

    Get PDF

    Identifying Patients with Poststroke Mild Cognitive Impairment by Pattern Recognition of Working Memory Load-Related ERP

    Get PDF
    The early detection of subjects with probable cognitive deficits is crucial for effective appliance of treatment strategies. This paper explored a methodology used to discriminate between evoked related potential signals of stroke patients and their matched control subjects in a visual working memory paradigm. The proposed algorithm, which combined independent component analysis and orthogonal empirical mode decomposition, was applied to extract independent sources. Four types of target stimulus features including P300 peak latency, P300 peak amplitude, root mean square, and theta frequency band power were chosen. Evolutionary multiple kernel support vector machine (EMK-SVM) based on genetic programming was investigated to classify stroke patients and healthy controls. Based on 5-fold cross-validation runs, EMK-SVM provided better classification performance compared with other state-of-the-art algorithms. Comparing stroke patients with healthy controls using the proposed algorithm, we achieved the maximum classification accuracies of 91.76% and 82.23% for 0-back and 1-back tasks, respectively. Overall, the experimental results showed that the proposed method was effective. The approach in this study may eventually lead to a reliable tool for identifying suitable brain impairment candidates and assessing cognitive function

    Detecting and characterizing high-frequency oscillations in epilepsy: a case study of big data analysis

    Get PDF
    abstract: We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on–off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.The final version of this article, as published in Royal Society Open Science, can be viewed online at: http://rsos.royalsocietypublishing.org/content/4/1/16074

    Cerebral Synchrony Assessment Tutorial: A General Review on Cerebral Signals' Synchronization Estimation Concepts and Methods

    Get PDF
    The human brain is ultimately responsible for all thoughts and movements that the body produces. This allows humans to successfully interact with their environment. If the brain is not functioning properly many abilities of human can be damaged. The goal of cerebral signal analysis is to learn about brain function. The idea that distinct areas of the brain are responsible for specific tasks, the functional segregation, is a key aspect of brain function. Functional integration is an important feature of brain function, it is the concordance of multiple segregated brain areas to produce a unified response. There is an amplified feedback mechanism in the brain called reentry which requires specific timing relations. This specific timing requires neurons within an assembly to synchronize their firing rates. This has led to increased interest and use of phase variables, particularly their synchronization, to measure connectivity in cerebral signals. Herein, we propose a comprehensive review on concepts and methods previously presented for assessing cerebral synchrony, with focus on phase synchronization, as a tool for brain connectivity evaluation
    corecore