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The early detection of subjects with probable cognitive deficits is crucial for effective appliance of treatment strategies. This paper
explored a methodology used to discriminate between evoked related potential signals of stroke patients and their matched control
subjects in a visual working memory paradigm. The proposed algorithm, which combined independent component analysis and
orthogonal empirical mode decomposition, was applied to extract independent sources. Four types of target stimulus features
including P300 peak latency, P300 peak amplitude, root mean square, and theta frequency band power were chosen. Evolutionary
multiple kernel support vector machine (EMK-SVM) based on genetic programming was investigated to classify stroke patients
and healthy controls. Based on 5-fold cross-validation runs, EMK-SVM provided better classification performance compared with
other state-of-the-art algorithms. Comparing stroke patients with healthy controls using the proposed algorithm, we achieved the
maximum classification accuracies of 91.76% and 82.23% for 0-back and 1-back tasks, respectively. Overall, the experimental results
showed that the proposed method was effective. The approach in this study may eventually lead to a reliable tool for identifying
suitable brain impairment candidates and assessing cognitive function.

1. Introduction

Cognitive impairment after a stroke can affect the activities of
daily living. Specifically, stroke patients are often associated
with the working memory loss compared to age-matched
healthy controls.The working memory is used for temporary
storage and manipulation of the information and plays a key
role in long-termmemory, language, and execution function.
Mild cognitive impairment (MCI) is common in poststroke
patients [1], and it is widely considered to be the clinical tran-
sition stage between normal aging and dementia. Therefore,
early MCI detection is of crucial importance for preventing
poststroke dementia onset [2–6].

The accurate identification and assessment of cognitive
function present a major clinical challenge. At present,
the medical diagnosis of MCI is usually performed by
some extensive tests including neuropsychological tests such
as Mini-Mental State Examination (MMSE), neurological
examination, and electrophysiological signal detection such

as EEG [4, 7–9].Due to its temporal resolution in themillisec-
ond range as well as its noninvasiveness, wide availability, and
relatively low costs, EEG is a popularmeasurement technique
containing a lot of information about the human brain func-
tion and neurological disorders [10, 11]. It can also provide the
objectivity and quantity evidence for the medical diagnosis
[12, 13].

Prior EEG studies have concentrated on measuring scalp
P300 event related potential (ERP) and EEG frequency power
in cognitive impairment patients. The P300 component is
typically elicited approximately 300ms after each infrequent
target stimulus, with reflecting the context updating and the
categorization of relevant tasks [14–16]. Parameters extracted
from ERP signals are of clinical interest because they are
useful in differentiating the healthy controls from cognitive
impairment patients [8, 11, 17]. In the time domain, themajor-
ity of studies on P300 in cognitive impairment have reported
prolonged latencies and reduced amplitudes in visual or audi-
tory modality [15, 18]. In the frequency domain, the spectral
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Figure 1: The general diagram of the proposed methodology.

studies on the cognition have reported theta power changes
due to increased demands on cognitive processes, such as
the presentation of infrequent target stimulus in an oddball
paradigm. Therefore, it is possible that the reduction of EEG
theta power is a feature of cognitive impairment [2, 15, 19, 20].

Some studies have been motivated by the goal of using
EEG to identify cognitive impairment patients with effective
algorithms. Lehmann et al. explored the ability of a multitude
of linear and nonlinear classification algorithms (i.e., linear
discriminant analysis (LDA), neural network (NN), and sup-
port vector machine (SVM)) to discriminate between EEG
signals of patients with varying degrees of cognitive impair-
ment [9]. Dauwels et al. used LDA and quadratic discrim-
inant analysis (QDA) to classify cognitive impairment [4].
Akrofi et al. studied the classification of cognitive impairment
using Gaussian mixture model and selected features from
relative average power and the coherence between intrahemi-
spheric channel pairs [3]. Gallego-Jutglà et al. used theta band
power and LDA to achieve the best accuracy for diagnosing
cognitive impairment [21].

In those EEG-based classification algorithms, SVMbased
on structural risk minimization yields good performances in
many applications, especially for solving problems with high
dimension, nonlinearity, and small dataset. However, it is
often unclear what the most suitable kernel in SVM is, and so
the user may wish to combine several possible kernels. Mul-
tiple kernel learning SVM (MKL-SVM) is an efficient way of
optimizing kernel weights [22, 23]. Comparedwith one single
kernel SVM, MKL-SVM can enhance the interpretability of
the decision function and improve the performance [24, 25].

Recently, nonlinear methods that include independent
component analysis (ICA) and orthogonal empirical model
decomposition (OEMD) have been proposed to extract
parameters for the analysis and classification of EEG signals
[11, 16]. ICA is a kind of blind source separation technique that
extracts statistically independent sources called independent
components (ICs) from a set of recorded signals [26]. OEMD
is a self-adaptive signal processing and data driven method.
Compared with classical time-frequency analysis methods,
such as short time Fourier transform (STFT) and Wavelet
decomposition, it is based on the local characteristic time
scales of a signal and could decompose the signal into a set
of complete orthogonal components called intrinsic mode

functions (IMFs) which are determined by the signal itself
without prior knowledge about the signal [26, 27].OEMDcan
overcome the mode aliasing and avoid the occurrence of the
fault mode [28].

In this study, we first applied the algorithm combining
ICA and OEMD to the ERP data of stroke patients and
healthy controls and used four types of features including
P300 peak latency, P300 peak amplitude, root mean square
(RMS), and theta frequency band power to separate stroke
patients from healthy ones. Then the features and the evolu-
tionary multiple kernel SVM (EMK-SVM) based on genetic
programming (GP) were used to perform the recognition of
stroke patients and healthy controls based on working mem-
ory tasks. These tasks that may elicit a P300 ERP component
were 0-back and 1-back tasks.

2. Materials and Methods

We proposed a classification approach of stroke patients and
healthy controls, as illustrated in Figure 1. The presented
approach consisted of threemain parts. (1)The preprocessing
algorithm combining ICA and OEMD was used to extract
independent source components from the 18-channel ERP
signals. (2) Four types of features includingP300peak latency,
P300 peak amplitude, RMS, and theta frequency band power
were estimated, and they were differently chosen to compose
a feature vector for further classification. (3) EMK-SVM was
employed to perform theworkingmemory task classification,
and the classification accuracies were used to evaluate the
performance of the proposed algorithm.

2.1. ERP Recordings. Consecutive patients aged 50 years or
older with a first-ever acute ischemic stroke at Huadong
Hospital Affiliated to Fudan University between May 2012
and January 2013 were recruited. All patients underwent neu-
ropsychological and neuroimaging assessments, and those
who met the criteria for vascular MCI were included (𝑛 =
13) [29, 30]. 13 age- and sex-matched healthy controls were
enrolled in this cross-sectional study. All subjects were right
handed and had normal vision. This study was approved
by Huadong Hospital Affiliated to Fudan University Ethics
Board, and all subjects gave written, informed consents
before participation.
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Figure 2:𝑁-back task timeline and electrode positions. Here trial time sequences for 0-back and 1-back conditions. Black squares represent
each stimulus in the task.The symbol ∗ stands for the target number during each trial. Five brain regions: frontocentral (FCentral): FP1, FP2,
F7, F3, Fz, F4, and F8; left sensorimotor (LSM): C3 and P3; central: Cz and Pz; right sensorimotor (RSM): C4 and P4; and occipital: O1 and
O2.

As shown in Figure 2, the working memory was assessed
using a verbal 𝑁-back task [5, 31]. A pseudorandom set
of 4 digit numbers was displayed on a monitor, and the
subjects were instructed to determine whether specific digit
one appeared on the screen (0-back task); or the currently dis-
played number at any given time had been already displayed
in the previous presentation (1-back task). Stimuli consisted
in a 0.5 sec. Inter-stimulus interval (ISI) was 2.5 sec in all
conditions. Subjects had to distinguish between targets and
nontargets by pressing a keyboard. Continuous ERP signals
were acquired using an EEG/ERP amplifier system (NATION
Inc.). For all ERP recordings, 18 electrodes were placed
according to the 10–20 international system.The chosen elec-
trode positionswere EOG1, EOG2, Fp1, Fp2, F3, F4, F7, F8, Fz,
C3, Cz, C4, P3, Pz, P4, O1, Oz, and O2 (see Figure 2). The
data were sampled at 256Hz. Signals were recorded for 120 s
during each task. Each task was repeated for three sessions.
Each session contained 40 trials with a 1 : 1 target/nontarget
relation. Namely, the total number of targets was 60, the same
as that of nontargets. The hit rate and the reaction time were
measured, as shown in Figure 3.

2.2. Preprocessing Algorithms. The difficulty in developing a
classification system based on EEG is to discriminate the
responses from the backgroundnoise reliably because the sig-
nals are relatively weak and interfered easily by the artifacts,
such as electromagnetic interference, powerline noise, EOG,
EMG, ECG, and subject movements. Some preprocessing
algorithms have been applied to the EEG data in order to
extract more informative features, which can be used as
inputs to a classifier to improve the classification accuracy
of task-related activity, such as ICA and OEMD [32, 33].
The EMD method may encounter the difficulty of mode
mixing, and it is mainly caused by noise, boundary effect,

and so forth. This type of mixing will lead to the presence of
several components of the signal of interest on the same IMF,
which can cause the difficulty in the physical discriminant of
each mode. To solve these problems, ICA and OEMD were
combined in this study. we first removed the artifacts from the
given ERP signals to extract statistically independent sources
by independent component analysis (ICA) and then decom-
posed them to extract real IMF components using OEMD
algorithm.

2.2.1. Independent Component Analysis. ICA was applied
on the entire collection of raw ERP signals 𝑦(𝑡) =

[𝑦
1
(𝑡), . . . , 𝑦

𝐿
(𝑡)]
𝑇, where 𝐿 indicated the number of channels

on the scalp.The goal of ICA is to find an unmixingmatrix𝑊
that initially produces the ERP signals 𝑦(𝑡) based on statisti-
cally independent sources 𝑠(𝑡) in the matrix form 𝑢 = 𝑊𝑦 →
𝑠. In contrast to correlation-based transformations such as
principal component analysis (PCA), ICA reduces the statis-
tical dependencies of the signals and attempts to make them
as independent as possible. This technique has shown great
promise for analyzing EEG recordings [16, 34–36]. There are
many ways for learning 𝑊. We used the extended Infomax
algorithm which minimizes the mutual information among
the data projections in order to achieve the independence.

The learning rule of the unmixing matrix𝑊 is [36]

𝑊 ∝ [𝐼 − 𝐾 tan ℎ (𝑢) 𝑢𝑇 − 𝑢𝑢𝑇]𝑊,

𝑊 (𝑚 + 1) = 𝑊 (𝑚) + 𝜇𝑊(𝑚) ,

𝑘
𝑖
= 1: super-Gaussian,

𝑘
𝑖
= −1: sub-Gaussian,

(1)
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Figure 3: Task behavior performances with hit rate and reaction time. Here HC represents healthy control and SP represents stroke patient.

where 𝑘
𝑖
are elements of the𝑁-dimensional diagonal matrix

𝐾,𝑚 is the iteration number, and𝜇 is the step size.The switch-
ing parameter 𝑘

𝑖
can be derived from the variation of the

kurtosis sign. 𝑘
𝑖
can be obtained as

𝑘
𝑖
= sign(

𝐸(𝑢
4

𝑖
) − 3(𝐸 (𝑢

2

𝑖
))

2

(𝐸 (𝑢
2

𝑖
))
2

)

= sign(
𝐸(𝑢
4

𝑖
)

(𝐸 (𝑢
2

𝑖
))
2
− 3) .

(2)

2.2.2. Orthogonal Empirical Model Decomposition. EMD is a
data-adapted interactive method, which can decompose any
complicated time series into additive components with mul-
tiscale features; that is,

𝑓 (𝑡) =

𝑀

∑

𝑗=1

𝑔
𝑜𝑗
(𝑡) + 𝑟

𝑀+1
(𝑡) . (3)

These components are denoted by IMFs, where𝑀 is the
number of IMFs, 𝑔

𝑜𝑗
(𝑡) is the𝑚th IMF, and 𝑟

𝑀+1
(𝑡) is the final

residue [37].
One of the major drawbacks of the original EMD algo-

rithm is that the IMFs are not strictly orthogonal to each other
[27], which can cause the energy leakage while decomposing.
Therefore, it is necessary to perform the orthogonal process-
ing for the IMFs from EMD in order to obtain the completely
orthogonal IMFs [38].

In particular, once the first IMF is derived, define 𝑔
1
(𝑡) =

𝑔
𝑜1
(𝑡), which is the smallest temporal scale in 𝑓(𝑡).

To determine the rest of the IMFs, generate the residue 𝑟
1
(𝑡) =

𝑓(𝑡)−𝑔
1
(𝑡). 𝑟
1
(𝑡) can be treated as the new signal and theEMD

decomposing is performed for the second IMF 𝑔
𝑜2
(𝑡). In

order to achieve the orthogonal component, 𝑔
1
(𝑡) has to be

subtracted from 𝑔
𝑜2
(𝑡); that is,

𝑔
2
(𝑡) = 𝑔

𝑜2
(𝑡) − 𝛽

21
𝑔
1
(𝑡) , (4)

where 𝑔
2
(𝑡) is the second orthogonal IMF and 𝛽

21
is the

orthogonal parameter between 𝑔
𝑜2
(𝑡) and 𝑔

1
(𝑡). With the

orthogonality between 𝑔
2
(𝑡) and 𝑔

1
(𝑡), 𝛽
21

can be obtained
as

∫

𝑇

0

𝑔
1
(𝑡) 𝑔
2
(𝑡) = ∫

𝑇

0

𝑔
1
(𝑡) 𝑔
𝑜2
(𝑡) − 𝛽

21
∫

𝑇

0

𝑔
2

1
(𝑡) = 0,

𝛽
21
=

∫

𝑇

0
𝑔
1
(𝑡) 𝑔
𝑜2
(𝑡)

∫

𝑇

0
𝑔
2

1
(𝑡)

.

(5)

The above process is repeated until the expected index
number of IMF is met [11, 38].

2.2.3. Ensemble ICA-OEMD. First, ICAbased on the extended
Infomax algorithm was applied to ERP signals, and the inde-
pendent components were extracted. Second, OEMD was
performed for each obtained source, and a set of orthogonal
IMFs was derived, in which only the IMF of interest based
on theta frequency band power and the peak between 200ms
and 450ms was selected. The combining decomposition is
adaptive to the time and frequency content of the data
themselves and can separate original ERP signals into orthog-
onal components with different time scales. Meanwhile,
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Step 1. Initialize control parameters and𝑊
0
;

Step 2. Center data;
Step 3. Compute SVD of the centered data matrix;
Step 4. Estimate the kurtosis, 𝑊 ∝ [𝐼 − 𝐾𝑡𝑎𝑛ℎ (𝑢 (𝑡)) 𝑢𝑇(𝑡) − 𝑢(𝑡)𝑢𝑇(𝑡)]W,

𝑊(𝑚 + 1) = 𝑊 (𝑚) + 𝜇𝑊(𝑚);
Step 5. Repeat Step 4 with smaller step size 𝜇 until the optimal demixing matrix𝑊 and the source

signals 𝑓 (𝑡) are achieved;
Step 6. Initialize the residual 𝑟

1
(𝑡) = 𝑓 (𝑡) (𝑓 (𝑡) is one IC) and the index number of IMF 𝑗 = 1;

Step 7. Extract the jth IMF:
(a) initialize ℎ

𝑗0
(𝑡) = 𝑟

𝑗
(𝑡), 𝑖 = 0;

(b) extract local minima and maxima of ℎ
𝑗𝑖
(𝑡);

(c) compute upper and lower envelope 𝑢
𝑗𝑖
(𝑡) and V

𝑗𝑖
(𝑡) by interpolating local maxima and

local minima of ℎ
𝑗𝑖
(𝑡), respectively;

(d) compute the median𝑚
𝑗𝑖
(𝑡) = (1/2) (𝑢

𝑗𝑖
(𝑡) + V

𝑗𝑖
(𝑡));

(e) update ℎ
𝑗𝑖+1
(𝑡) = ℎ

𝑗𝑖
(𝑡) − 𝑚

𝑗𝑖
(𝑡), 𝑖 = 𝑖 + 1;

(f) calculate the stopping criterion according to SD = |𝑢max + Vmin|/|𝑢max − Vmin| until SD < 𝜃1 for some
prescribed fraction (1 − 𝛼) of the total duration, while SD < 𝜃

2
for the remaining fraction

(𝛼 = 0.05, 𝜃
1
= 0.05, 𝜃

2
= 0.5);

(g) repeat steps (b)–(f) until the stopping criterion is met, 𝑔
𝑜𝑗
(𝑡) = ℎ

𝑗𝑖
(𝑡) (𝑔
1
(𝑡) = 𝑔

𝑜1
(𝑡)),

𝑔
𝑗
(𝑡) = 𝑔

𝑜𝑗
(𝑡) −

𝑗−1

∑

𝑙=1

𝛽
𝑗𝑙
𝑔
𝑙
(𝑡), 𝑗 = 2, 3, . . . , 𝑛,

∫

𝑇

0

𝑔
𝑗
(𝑡) 𝑔
𝑘
(𝑡) = ∫

𝑇

0

𝑔
𝑜𝑗
(𝑡) 𝑔
𝑘
(𝑡) −

𝑗−1

∑

𝑙=1

𝛽
𝑗𝑙
∫

𝑇

0

𝑔
𝑙
(𝑡) 𝑔
𝑘
(𝑡) = 0, 𝑘 ≤ (𝑗 − 1),

∫

𝑇

0

𝑔
𝑙
(𝑡) 𝑔
𝑘
(𝑡) = 0 𝑙 ̸= 𝑘,

𝛽
𝑗𝑙
=

∫

𝑇

0
𝑔
𝑜𝑗
(𝑡) 𝑔
𝑙
(𝑡)

∫

𝑇

0
𝑔
𝑙

2
(𝑡)

𝑙 = 𝑘,

define the 𝑗th IMF𝑔
𝑗
(𝑡);

Step 8. Update residual 𝑟
𝑗+1
(𝑡) = 𝑟

𝑗
(𝑡) − 𝑔

𝑗
(𝑡);

Step 9. Repeat Step 7-8 with 𝑗 = 𝑗 + 1 until the expected index number of IMF is met.

Algorithm 1: ICA-OEMD.

the orthogonality property implies that different IMFs do
not have similar frequency content [26]. The algorithm is
described in Algorithm 1.

2.3. Feature Extraction. The efficient feature extraction from
multichannel working memory task EEG signals is a major
component for the cognitive state classification. In this study,
four types of features including P300 peak latency, P300
peak amplitude, RMS, and theta frequency band power were
chosen.They are classical, quantitative ERPmeasures that are
commonly used in this field [14]. In particular, we extracted
theta frequency band data of working memory task EEG
signals through the wavelet packet transform (WPT) decom-
position (4 levels) with the wavelet basis db4 and then calcu-
lated the energy spectrum.

2.4. ClassificationAlgorithm. SVM is a powerful approach for
pattern recognition especially for high dimensional, nonlin-
ear problems. Recent developments on SVMhave shown that
it is necessary to consider multiple kernels [22].This provides
flexibility and reflects the fact that typical learning problems
often involvemultiple, heterogeneous data sources. Although
the MKL-SVM algorithm is shown to improve the classifica-
tion performance effectively, it relies more on the empirical

kernel functions (e.g., polynomial function and radial basis
function) and parameters (e.g., degree and Gaussian width),
which can affect its effectiveness because different functions
and parameters may result in different performances. A
potential solution is to use GP to evolve the kernels and
associated parameters automatically [39, 40].

GP is an evolutionary algorithm inspired by biological
evolution, where each individual is a computer program
represented as a tree structure.These computer programs that
solve a given problem are genetically bred. This breeding is
done by using the genetic operations fromDarwinian princi-
ple, such as selection, crossover, andmutation.The evolution-
ary process is repeated over many generations until the fittest
individual computer program is found [40].

In this study, we evolved more effective kernel function
using GP and kernel closure properties, where each tree
structure represented a multiple kernel function [41]. EMK-
SVM is described in Algorithm 2.

The algorithm was based on GP-kernel and SVM. First,
GP started with an initial population of randomly generated
computer programs which are composed of functions and
terminals, and their individuals were some nonlinear com-
bination trees of kernel functions. Second, the SVM learning
was performed for each individual tree. The following steps
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Step 1. Create initial random population with ramped half and half;
Step 2. Calculate the classification accuracy as the fitness f of each individual with SVM;
Step 3. Repeat the following Step 4 until max

𝑖,𝑗






𝑓
𝑔

𝑖
− 𝑓
𝑔

𝑗






is less than 0.01 or the maximum

generation number is met.
Step 4. Perform genetic operations:

(a) Reproduce;
(b) Cross;
(c) Mutate;
(d) Create new individuals;
(e) Calculate the fitness;

Algorithm 2: EMK-SVM.

were performed iteratively until the termination criterion has
been satisfied.

(a) Execute each program in the population and assign
it a fitness value (classification accuracy) according to
how well it solves the classification with SVM.

(b) Create a new population by applying the genetic oper-
ations.

Third, the best kernel function that appeared in any gen-
eration was designated as the result.

Some settings of control parameters used in this study are
given in Table 1.

3. Results and Discussion

3.1. General Classification Performance. In this study, 16-
channel ERP signals were classified via a 5-fold cross-
validation. First, the ERP data were partitioned into 5 equally
sized folds. Second, 5 iterations of training and validation
were performed such that within each iteration a different
fold of the ERP data was held out for validation while the
remaining 4 folds were used for learning. Finally, the clas-
sification results from 5 folds were averaged to produce the
classification accuracy. Four types of features, including P300
peak latency, P300 peak amplitude, RMS, and theta frequency
band power, were extracted for the classification using the
EMK-SVM algorithm.

The results of the 𝐹-test and 𝑡-test are shown in Table 2.
For 0-back and 1-back tasks, the differences between stroke
patients and healthy controls were significant. There were
differences of P300 latency, P300 amplitude, RMS, and theta
band power in the stroke patients compared with healthy
ones. In particular, the differences of P300 amplitude and
RMS between stroke patients and healthy controls in 1-back
task were larger.

For 0-back and 1-back tasks, the multiple comparison
tests were also performed to determine which were signifi-
cantly different from other groups on the basis of Table 2.The
results of the multiple comparison tests with the Bonferroni
procedure are shown in the Table 3. For four types of features,
the differences between stroke patient group and healthy
control group were obvious, which were consistent with the
results in Table 2.These significant differences provide a basis
for the further classification.

Table 1: Parameters for evolutionary multiple kernel learning.

Parameter Setting
Function set FS = {+, ×, exp}

Terminal set

TS = {𝐾Poly, 𝐾RBF, 𝛼}

𝐾Pol = 𝑥𝑦 + 1

𝐾RBF = exp(−




𝑥 − 𝑦






2

/2)

𝛼 ∈ [−1, 1]

Population size pop size = 100
Maximum generation max gen = 100
Maximum depth max depth = 8
Reproduction probability 𝑃

𝑟
= 0.1

Crossover probability 𝑃
𝑐
= 0.85

Mutation probability 𝑃
𝑚
= 0.1

Table 4 shows the results achieved with four selected
features using the EMK-SVM classifier distinguishing stroke
patients versus healthy controls. The classification results
obtained in 0-back and 1-back tasks ranged from 75% to
91.67%. In 0-back task, the accuracy for RMS or theta band
powerwas the highest, 91.67%,while that for peak latencywas
the lowest, 78.4%. In 1-back task, the accuracy for theta band
powerwas the highest, 82.23%,while that for peak latencywas
the lowest, 75%. As mentioned above, the general classifica-
tion accuracy of 0-back task was higher than that of 1-back
task. It can be seen that theta band power is the best feature
used for the classification.

3.2. Classifier Results. Figures 4 and 5 show the classification
comparison results of 0-back and 1-back tasks between the
proposed algorithm and another two state-of-the-art algo-
rithms (QDA and LDA) with the same features. As has been
shown, the classification results based on EMK-SVM were
better than those based on QDA and LDA.

EMK-SVM based on the parameters listed in Table 1 is
performed for automatic classification of stroke patients and
healthy controls. An initial population of 100 kernel function
trees was created and then iteratively proceeded through 100
generations with the genetic operations. The initial gener-
ation consisted of highly unfit individuals. The intermedi-
ate generations contained a few somewhat fit individuals.
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Table 2: Statistical test results for 0-back and 1-back tasks with different features.

Classification tasks Features 𝐹-test 𝑡-test
𝐹 𝑃 𝑡 𝑃

0-back (SP-HC)

Peak latency 4.91 <0.05 2.22 <0.05
Peak amplitude 4.88 <0.05 2.21 <0.05

RMS 4.00 <0.05 2.43 <0.05
Theta band power 3.65 <0.05 1.91 <0.05

1-back (SP-HC)

Peak latency 3.53 <0.05 1.88 <0.05
Peak amplitude 9.00 <0.01 2.99 <0.01

RMS 7.56 <0.01 2.75 <0.01
Theta band power 4.16 <0.05 2.53 <0.05

Table 3: Statistical test results for 0-back and 1-back tasks with the multiple comparison.

Four comparison groups Features 𝐹-test Significant difference
between groups

𝐹 𝑃

0-back (SP), 0-back (HC),
1-back (SP), 1-back (HC) Peak latency 5.21 <0.01 0-back (SP) and 0-back (HC),

1-back (SP) and 1-back (HC)
0-back (SP), 0-back (HC),
1-back (SP), 1-back (HC) Peak amplitude 2.86 <0.05 0-back (SP) and 0-back (HC),

1-back (SP) and 1-back (HC)

0-back (SP), 0-back (HC),
1-back (SP), 1-back (HC) RMS 8.14 <0.01

0-back (SP) and 0-back (HC),
1-back (SP) and 1-back (HC),
0-back (SP) and 1-back (SP)

0-back (SP), 0-back (HC),
1-back (SP), 1-back (HC) Theta band power 4.25 <0.01

0-back (SP) and 0-back (HC),
1-back (SP) and 1-back (HC),
0-back (SP) and 1-back (SP)

Table 4: Classification accuracies for 0-back and 1-back tasks with different features (%).

Classification tasks Features Classification accuracies (%)

0-back (SP-HC)

Peak latency 78.40
Peak amplitude 86.70

RMS 91.67
Theta band power 91.67

1-back (SP-HC)

Peak latency 75.00
Peak amplitude 81.25

RMS 79.25
Theta band power 82.23

The final generation of each run contained at least one indi-
vidual that was effective in solving the classification problem.
The optimal kernel functions are shown in Table 5. For exam-
ple, the optimal kernel function for 0-back task classification
with theta band power feature was exp(−1.68𝐾2Poly𝐾

2

RBF),
which occured in generation 79.

4. Conclusions

In this paper, we presented the EMK-SVM algorithm for
ERP-based signal classification for stroke patients and healthy
controls with four features (i.e., P300 peak latency, P300
peak amplitude, RMS, and theta frequency band power).The
proposed method had better performance than other typical

methods (i.e., QDA and LDA). It achieved above 78.4%
accuracy for 0-back task and above 75% for 1-back task. The
statistical test results showed that the differences of selected
features were significant. Therefore, it provides a powerful
tool to assess cognitive function.

In sum, it is an effective method to implement working
memory task-based BCI based on cognitive impairment.
We applied the preprocessing algorithm combining ICA and
OEMD to extract more informative features and also applied
the recognition algorithm combining SVM and GP to dis-
cover better kernels to improve the classification accuracy.
This study provides theoretical and experimental basis of the
quantity diagnosis for cognitive impairment. It is helpful for
the intelligent identification of cognitive function and appro-
priate rehabilitation training.
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Figure 4: Accuracy comparisons of 0-back task classification.
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Figure 5: Accuracy comparisons of 1-back task classification.

Table 5: The optimal kernel functions for the classification tasks.

Classification tasks Features Optimal kernel functions Generation number

0-back (SP-HC)

Peak latency 𝐾Poly + 𝐾RBF − 1.736 73
Peak amplitude 𝐾Poly + exp (−0.351𝐾RBF) + exp (𝐾

2

RBF) 62
RMS exp (0.866) (𝐾Poly +𝐾RBF) + 𝐾

2

Poly𝐾
2

RBF 69
Theta band power exp (−1.68𝐾2Poly𝐾

2

RBF) 79

1-back (SP-HC)

Peak latency exp (−0.628𝐾RBF exp (𝐾RBF)) 59
Peak amplitude exp (−0.923𝐾RBF (𝐾Poly +𝐾RBF) exp (𝐾RBF)) 79

RMS exp (−0.598𝐾RBF (𝐾Poly +𝐾RBF)) 81
Theta band power 0.74𝐾Poly (𝐾Poly +𝐾RBF) exp (−0.446 +𝐾RBF) 62
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