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This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The
new paradigm is High-Frequency Combination Coding-Based SSVEP (HFCC-SSVEP). The goal of this study is to increase the
number of targets using fewer stimulation frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive
epileptic seizures. This paper investigated the HFCC-SSVEP high-frequency response (beyond 25Hz) for 3 frequencies (25Hz,
33.33Hz, and 40Hz). HFCC-SSVEP produces 𝑛𝑛 with 𝑛 high stimulation frequencies through Time Series Combination Code.
Furthermore,The ImprovedHilbert-HuangTransform (IHHT) is adopted to extract time-frequency feature of the proposed SSVEP
response. Lastly, the differentiation combination (DC) method is proposed to select the combination coding sequence in order to
increase the recognition rate; as a result, IHHT algorithm and DCmethod for the proposed SSVEP paradigm in this study increase
recognition efficiency so as to improve ITR and increase the stability of the BCI system. Furthermore, SSVEPs evoked by high-
frequency stimuli (beyond 25Hz)minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic
seizures. This study tests five subjects in order to verify the feasibility of the proposed method.

1. Introduction

A brain computer interface (BCI) is a direct communication
pathway between a human or animal brain and an external
device. Nowadays, noninvasive scalp electroencephalogram
(EEG)measurements have become a popular solution in BCI
research. The most commonly used signals in EEG-based
BCI systems are event-related synchronization of mu and
beta bands, event-related potentials, and steady-state visual
evoked potential (SSVEP) [1–3].

The SSVEP is usually elicited by flickering stimulation
frequency higher than 6Hz, while the frequency for inducing
FVEP (Flash Visual Evoked Potential) should be lower than
2Hz [4]. The most common measure to assess the perfor-
mance of a BCI system is Shannon’s information transfer rate
(ITR) [5]. Steady-state visual evoked potential (SSVEP) has
been regarded as an efficient approach to design BCI with
high information transfer rate (ITR). SSVEP-based systems
lead to transfer rates of 100 bits/min and beyond [2, 6],
compared to about 10–25 bits/min of other BCI systems [5].
Furthermore, SSVEP-based BCI systems have the advantages

of short responding time, minimum training, and high ITR
[4, 7, 8].

The visual stimulator plays an important role in an
SSVEP BCI. Several visual stimulators have been used for
evoking SSVEP, such as a cathode ray tube (CRT) monitor
[9], liquid crystal display (LCD) monitor, and light-emitting
diode (LED) array [10]. Considering stimulation parameters
such as size, color, and position, LED arrays are not flexible
and increase the overall system cost; presenting flickers on
a computer monitor is more flexible than using stand-alone
lights/LEDs [9].

Current SSVEP-based BCI system utilizes single fre-
quency to encode each target. Hence, a large number of
targets require a large number of frequencies. Increasing the
number of targets then decreases the frequency resolution
which in turn makes classification more difficult. This is
especially problematic on computer screens. Recently, some
researchers began to study how to increase the number of
targets with fewer frequencies, such as stimuli flickered at the
same frequency and differed only in relative phase [11], right-
and-left field stimulationwith two frequencies [12], and using
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Figure 1: Block diagram of a TSCCBH-SSVEP for BCI.

dual frequency stimulation [4]. However, SSVEPs are usually
evoked by low-mid frequencies in the 7–30Hz, but the low-
mid frequency band has some disadvantages [8]. First, the
low frequency band covers the alpha band (8–13Hz) which
can cause a considerable amount of false positives. Second,
subjective evaluations showed that frequencies between 5 and
25Hz are more annoying than higher ones; visual fatigue
would easily occur. Third, flash and pattern reversal stimuli
can provoke epileptic seizures especially in the 15–25Hz
range [13]. All of these disadvantages can be avoided by using
the high frequency band [14–16].

This study proposes High-Frequency Combination
Coding-Based flickers for evoking SSVEP (HFCC-SSVEP).
The HFCC-SSVEP is essentially based on frequency
modulation. Each flicker comprises different high flickering
frequencies through High-Frequency Combination Code.
The High-Frequency Combination Coding-Based SSVEP
(beyond 25Hz) is induced by CRT (Cathode Ray Tube) and
LED. This system uses only one Oz-A1 EEG channel for
SSVEP recording. The proposed new paradigm produces
𝑛
𝑛 with 𝑛 high stimulation frequencies through Time Series

Combination Code. Furthermore, conventional spectral
methods are not always suitable for detecting high-frequency
SSVEPs. In this paper, an improved HHT- (Hilbert-
Huang Transform-) based high-frequency-modulated
SSVEP feature extraction method is proposed to extract
time-frequency feature of the proposed SSVEP response.

Furthermore, SSVEPs evoked by high-frequency stimuli
(beyond 25Hz) minimally diminish subject’s fatigue and
prevent safety hazards linked to photo-induced epileptic
seizures.

2. Subject and Experimental Condition

Three healthy volunteers (three males randomly selected
from the students in the research institution), aged from 21
to 25 years old, participated in this study from Xi’an Jiaotong
University. They were seated in a comfortable armchair in
a dimly illuminated EEG signals testing lab, which is quiet
without any distractions. All participants were 50 cm away
from the stimulation unit (CRT display OR LED). EEG sig-
nals were measured from three EEG electrodes (g.USBamp,
g.tec Guger Technologies, Austria) placed at Oz-A1 (Oz-
unilateral earlobe) and Fpz (ground) in compliance with the
international EEG 10–20 system.The unilateral (left or right)
earlobe was used as the recording reference, and all electrode
impedances were kept below 5 kOhm.The experimental data
sampling frequency is 1200Hz.

3. Experiment Paradigm

Figure 1 shows the block diagram of a HFCC-SSVEP for BCI.
HFCC-SSVEPs were induced by 27 stimulus series; these
stimuli were displayed by cycle flickers at the center of CRT.
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Figure 2: SSVEP signals of LED.

The 27 stimulus series were generated from 3 fundamental
frequency elements through Time Series Combination Code.
The used fundamental frequency elements were only three
high frequencies, that is, 25, 33.33, and 40Hz; the three
frequencies were labeled as 1, 2, and 3. The selection of
fundamental frequency elements depended on the screen
refresh rate and sampling rate. Each fundamental frequency
element was generated from 20 pulses. The data lengths
of 27 stimulus series were variably between 1.5 s and 2.4 s.
The subjects gazed each stimulus sequence and the stimulus
sequence was displayed by cycle flickers at the center of CRT.

4. Data Processing and Result

Figure 2 shows EEG signals of SSVEP response presented
through LEDwith 25Hz, 30Hz, 40Hz, and 75Hz.The length
of EEGdata is 8 s.The frequency spectrumof EEG signals was
determined using the fast Fourier transform (FFT) technique
in MATLAB software. Figure 3 shows the FFT spectrum
of SSVEP EEG signals of LED. The spectrum frequency

detection is usually the appropriate for frequency analysis of
SSVEPs in BCI applications. Figure 4 shows FFT’s amplitude
of EEG signals for LED. Figure 3 shows that SSVEP response
of 25Hz, 30Hz, and 40Hz is sensitive, but the 75Hz spectral
line cannot be distinguished in the FFT spectrum from
Figure 3. Figure 4 shows the fitted curve of FFT spectrum
energy.

In this study, each Oz-A1 EEG signal was segmented
into ten segments. Figure 10 shows that SCCBH-SSVEP EEG
signals 6 of 27 selections. The length of EEG data is unequal
between 1.5 s and 2.4 s. The frequency spectrum of averaged
EEG signals was determined using the fast Fourier trans-
form (FFT) technique in MATLAB software. The spectrum
frequency detection is usually the appropriate for frequency
analysis of SSVEPs in BCI applications; but the FFT spectrum
cannot contain temporal information. The 27 selections
represented by three high frequencies elements cannot be
distinguished from each other in the FFT spectrum.

Spectrum analysis is usually used to extract the frequency
information in traditional evoked SSVEPs responses. The
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Figure 3: FFT of signals of LED.
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Figure 4: The fitted curve of FFT energy.

underlying idea is always the same: a blinking or moving
visual stimulus at a constant frequency (the stimulus fre-
quency) elicits a response in the brain at the same frequency
and its even harmonics (SSVEP frequency is equal to stimulus
frequency plus its even harmonics). Note that this behavior
denotes a nonlinearity of the visual system [5].

The evoked SSVEP response of High-Frequency Combi-
nation Coding-Based stimulus not only contains frequency
information but also contains temporal information. The
frequency information consists of three frequencies through
Time SeriesCombinationCode; the length of 𝑡 evoked SSVEP
response data varies between 1.5 s and 2.4 s (see Figure 2);
as a result, the evoked SSVEP responses are nonstationary
and nonlinear. The traditional spectrum detection method
is not suited for analyzing the time series combination
coding-based high-frequency evoked SSVEP response. More
sophisticated nonstationary and nonlinear signal processing
techniques have recently been used to analyze the evoked
SSVEP response [17–19].
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Hilbert-Huang transforms [20], consisting of empirical
mode decomposition (EMD) and Hilbert spectral analysis,
is a newly developed adaptive data analysis method. The
HHT is designed specifically for analyzing nonlinear and
nonstationary data.The key part of HHT is EMDwith which
any complicated data set can be decomposed into a finite and
often small number of intrinsic mode functions (IMFs). The
instantaneous frequency defined using the Hilbert transform
denotes the physical meaning of local phase change better
for IMFs than for any other non-IMF time series. As the
decomposition is based on the local characteristics of the
data, it has been proved quite versatile in a broad range
of applications for extracting signals from data generated
in noisy nonlinear and nonstationary processes [21]. It
has been widely used to analyze EEG signals [22–26]. In
order to extract the time-frequency characteristics of high-
frequency time series combination coding-based SSVEPs,
we proposed IHHT-based high-frequency time-modulated
SSVEP method.

Figure 9 shows the steps of HHT-based high-frequency
time-modulated SSVEP feature extraction, a local spectrum
extreme target identification algorithm and differentiation
combination method. The extraction method consists of
synchronous averaging, band pass filtering, EMD, selection
of IMF, instantaneous frequency, and Hilbert spectrum.
In order to ensure that the time-frequency characteristics
of high-frequency time series combination coding-based
SSVEPs are efficiently extracted, we must choose and opti-
mize the key algorithm. The specific method is as follows.
The end effect and stopping criterion are the core problems
of empirical mode decomposition (EMD); two methods are
selected and optimized in order to overcome the shortage of
end effect and stopping criterion of empirical mode decom-
position (EMD) in the processing of variable frequency EEG
data.

(i) Optimization Selection of the EMD Endpoint Prediction.
Upper and lower envelope averaging is one of the cores
of the EMD algorithm; the upper and lower envelopes are
attained through the extreme value point of the spline curve
fitting. The EMD end effect is how to find the proper fitting
curve between the last extreme value point and endpoint
in the curve fitting. The boundary prediction method and
traditional method are compared in order to optimize the
problem for the end effect in the high-frequency time-
modulated SSVEP feature extraction.

Figure 5 shows the boundary prediction method. The
boundary predictionmethod is to use the 1 order approximate
point as the endpoint. Through the theoretical and real data
analysis [27], it is not only to conform to the conditions of
the cubic spline curve fitting but also to ensure that the fitting
curve fluctuation is minimal. In Figure 6, E-Natural curve
is the upper envelope curve fitting based on cubic spline
curve through the boundary prediction method, Natural
curve is the upper envelope curve fitting based on cubic
spline curve through the traditional method. Figure 6 shows
that the fluctuation of the fitting curve based on boundary
prediction in the end isminimal. So the boundary predictions
are used to overcome the shortage of end effect of empirical

mode decomposition (EMD) in the processing of variable
frequency EEG data.

(ii) The Parameter Optimization of EMD Stopping Criterion.
The EMD algorithm is essentially a process of screening; the
screening mathematical formula is as follows:

𝑥 (𝑡) =

𝑛

∑

𝑗=1
𝑐
𝑗

= 𝑥 (𝑡) −

𝑘

∑

𝑗=1
𝑚
𝑗
+(

𝑘

∑

𝑗=1
𝑚
𝑗
−

𝑝

∑

𝑗=1
𝑚2𝑗)+ . . . .

(1)

In formula, 𝑥(𝑡) is the target signal, 𝑐
𝑗
is the IMF that is

decomposed through the EMD algorithm, 𝑛 is the number of
IMF, 𝑚

𝑗
, 𝑚2𝑗 is the average of the upper and lower envelope

curve in the process of screening, and 𝑘, 𝑝 is the number of
screening.

The core problem of EMD is how to choose the end con-
ditions in every process of screening, which is the problem of
the EMD stopping criterion.

The EMD algorithm is essentially binary half-band filter,
which is actually binary wavelet. In order to ensure the
screening results of IMF in the amplitude and that frequency
has enough physical meaning, which essentially is to ensure
that scale ratio of the adjacent two IMF values is close to 2,
the number of screening (𝑘, 𝑝) must be limited in the process
of screening.

The fixed sifting (iterating) 10 times are used to overcome
the shortage of stopping criterion of empirical mode decom-
position (EMD) in the processing of variable frequency EEG
data, That is 𝑘 = 𝑝 = 10, which can ensure that scale ratio
of the adjacent two IMF values is close to 2. The advantage of
this selection is as follows [28]:

(a) Ensure that the EMD algorithm is essentially binary
half-band filter bank.

(b) Ensure that the result has physical meaning.

(c) The decomposition results number is limited <=
log 2(𝑁).

(iii) The Optimization of Calculation Method for Instanta-
neous Frequency. In order to ensure that the instantaneous
frequency based on Hilbert Transform (HT) has physical
meaning, the conditions are as follows:

(a) The result must be IMF.

(b) The signal amplitude change is not too large (due to
the Bedrosian theoretical limitation).

(c) The phase of signal cannot be too complicated (due to
the Nuttall theoretical limitation).

The GZC (generalized zero-crossing) algorithm is pro-
posed to calculate the instantaneous frequency of variable
frequency EEG data, as shown in Figure 7 and formula (2).
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The computational formula of instantaneous frequency
𝑓gzc is as follows:

𝑓gzc =
4𝑓1 + 2 (𝑓21 + 𝑓22) + 𝑓41 + 𝑓42 + 𝑓43 + 𝑓44

12
,

𝑓1 =
1
4𝑇1
,
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𝑓2𝑖 =
1

2𝑇2𝑖
, 𝑖 = 1, 2,

𝑓4𝑖 =
1
𝑇4𝑖
, 𝑖 = 1, 2, 3, 4.

(2)

In the formula, (2)𝑇 is the time frame between zero and peak
time.

The GZC algorithm is based on the average concept in
nature, so the GZC algorithm has the advantage of high
stability and high precision of calculation.Therefore the GZC
algorithm is very suitable for the fact that the frequency
fluctuation of signal is not big.The variable frequency charac-
teristics of high-frequency time series combination coding-
based SSVEPs in this paper is segment-wise stationary; as
a result, the generalized zero-crossing (GZC) is used to
compute the instantaneous frequency of the proposed SSVEP
respondent signals.

(iv) Local Spectrum Extreme Target Identification Algorithm.
The relevant IMFs are evenly divided into 3 sections, then
to respectively calculate their spectrum extreme 𝑋. Then
according to the following rules,𝑋 is encoded.

(a) 20 < 𝑥 <= 29, 𝑥 is 1.
(b) 29 < 𝑥 <= 37, 𝑥 is 2.
(c) 37 < 𝑥 <= 45, 𝑥 is 3.

Finally, compare the coding result to the element in the
encoded library; if the coding result is in the library, it is
marked as nonzero; otherwise it is marked as zero. The 𝑛
of nonzero number is the correct identification number;
as a result, the recognition rate is quantitatively calculated
through the local spectrum extreme target identification
algorithm. The recognition accuracy 𝑝 of computational
formula is as follows:

𝑝 =

𝑛

𝑁

. (3)

(v) Differentiation Combination Method. In the experiment,
the used fundamental frequency elements were only three
high frequencies, that is, 25, 33.33, and 40Hz, which are
labeled as 1, 2, and 3. The data lengths of 27 stimulus series
were variably between 1.5 s and 2.4 s. The 27 stimulus series
are averaged by superposition of 1∼10 times. The recognition
accuracy 𝑝 of the different superposition time’s average
results is calculated through the local spectrum extreme
target identification algorithm. Figure 8 shows the statistical
result between the different superposition time’s average
results, 𝑛, and the recognition accuracy, 𝑝.

From statistics results in Figure 8, we can see that the
recognition accuracy𝑝 is only 77.78% through 10 times super-
position average.This is obviously not what we expected.The
statistical result between the different superposition time’s
average results 𝑛 and the recognition accuracy 𝑝 in Figure 8
shows that the recognition accuracy 𝑝 is different for all
of the combinations of three stimulation units. Different
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Figure 8: Statistical result between the different superposition times
average results 𝑛 and the recognition accuracy 𝑝.

combinations make a difference in recognition rate. Through
the comparison and analysis, the recognition accuracy 𝑝
is larger through differentiation combination method of
three stimulation units. The reason is that differentiation
combination method can break the adaptability of the vision
system [29], compared with single frequency, so the different
frequency encoding (differentiation combination method)
can improve the recognition rate. As a result, on the basis of
the fundamental frequency elements, that is, 25, 33.33, and
40Hz, which are labeled as 1, 2, and 3, the differentiation
combination encoding of 27 combination encoding mode is
123, 132, 213, 231, 312, and 321. Figure 10 shows SCCBH-SSVEP
EEG single response signals of differentiation combination
method. Figure 12 shows that the Hilbert spectra of the
selections signals are presented by using HHT-based high-
frequency time-modulated SSVEP method.

Each Oz-A1 EEG signal is firstly segmented into ten
segments for synchronous averaging, which are to decrease
the noise of EEG data. Next, the data in the frequency
range of 25–45Hz are chosen for EMD analysis, owing to
the frequency range of three selected fundamental frequency
elements, 25Hz, 33.33Hz, and 40Hz. According to EMD
results, the relevant IMF is selected empirically for analysis.
Then, the instantaneous frequency of the selected relevant
IMF is calculated by using generalized zero-crossing algo-
rithm [30]. At last, according to the calculated instantaneous
frequency, the Hilbert spectrum is presented. A local spec-
trum extreme target identification algorithm is proposed to
calculate recognition rate; the experimental result shows that
the recognition rate is not high for all combination coding
sequences. So the differentiation combination method is
proposed to select the combination coding sequence in order
to increase the recognition rate; as a result, 6 combination
coding sequences are selected; they are 123, 132, 213, 231,
312, and 321 (fundamental frequency: 25, 33.33, and 40Hz,
number resp.: 1, 2, and 3).

Figure 11 shows that the spectra of selected EEG signals,
the frequency spectra of the selected EEG signals, were
determined using the fast Fourier transform (FFT) technique
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Figure 11: The FFT of TSCCBH-SSVEP.

in MATLAB software. In the spectrum in Figure 11, the lime
lines represent 25Hz, the red lines represent 33.33Hz, and the
springs green lines represent 40Hz. The spectrum frequency
detection is usually the appropriate for frequency analysis of
SSVEPs in BCI applications; but the FFT spectrum cannot
contain temporal information. The 6 selections represented
by three high frequencies elements cannot be distinguished
from each other in the FFT spectrum. Figure 12 shows that
the Hilbert spectra of the selected signals are presented by
using HHT-based high-frequency time-modulated SSVEP
method. Obviously, the Hilbert spectrum presents the time-
frequency characteristics of flashing sequences based on
high-frequency time series combination code using three
high frequencies. Compared to FFT spectrum, it not only
provides the frequency information but also presents fre-
quency change with time, which extracts the features of Time
Series Combination Code of three high frequencies. Accord-
ing to the combination code time-frequency characteristics,

the Hilbert spectra (see Figure 12) obviously identify the
selections.

Finally, six stimulus targets are presented with three high
frequencies through HFCC-SSVEP; in contrast, three stimu-
lus targets are presented with three low frequencies through
traditional SSVEP; the above two kinds of different contrast
experiments in Figure 13 are applied to intelligent wheelchair
navigation control in order to verify the technical advantage
of the proposed method and ensure the HFCC-SSVEP-
based intelligent wheelchair navigation system efficiency and
undamaging. Figure 13(a) shows the experimental paradigm
of HFCC-SSVEP with 6 targets: 123, 132, 213, 231, 312, and 321
(fundamental frequency: 25, 33.33, and 40Hz, number resp.:
1, 2, and 3); they are presented on the screen. Figure 13(b)
shows the experimental paradigm of the traditional SSVEP;
the frequencies of 3 targets are, respectively, 12, 12.5, and
15Hz. Table 1 is the comparison of HFCC-SSVEP and tra-
ditional SSVEP; it is average experimental results of five
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Figure 14: Advantage of HFCC-SSVEP.

Table 1: Comparison of HFCC-SSVEP and traditional SSVEP.

Paradigm 𝑡/s 𝑝 df/h ITR (b/min)
CCH-SSVEP 1.9 92% 10 43
Traditional SSVEP 5.8 70% 2 13

subjects. In Table 1, 𝑡 is stimulation time, 𝑝 is the recognition
rate, df is the degree of fatigue (fatigue time), and ITR is the
information transmission rate of BCI system. Table 1 shows
that HFCC-SSVEP has the advantage of shorter time, higher
accuracy, not easy fatigue, and higher ITR, comparedwith the
traditional SSVEP (Figure 14).

5. Discussion and Conclusion

We studied SSVEP high frequency (beyond 25Hz) response
of SSVEP whose paradigm is on the LED. Figure 3 shows that
the 75Hz spectral line cannot be distinguished in the FFT
spectrum. The SNR (signal to noise ratio) of high frequency
(beyond 40Hz) response is very low, which has been unable
to be distinguished through the traditional analysis method.
So we must study the weak signal feature extraction method
for SSVEP high frequency (beyond 40) response.This part of
the research will be conducted in the future research work. As
a result, 25Hz, 33.33Hz, and 40Hz in the high frequency area
are selected as the fundamental frequency for HFCC-SSVEP
paradigm.

The proposed HFCC-SSVEP paradigm for a BCI system
not only can increase the number of targets through Time
Series Combination Code of fewer frequencies for stimula-
tion but also can shorten the recognition time. Furthermore,
it can diminish user’s fatigue and risk of photosensitive
epileptic seizures. This study specifies twenty-seven (33)

selections using only 3 frequencies with about 2 s EEG
data. However, the targets are not distinguished from each
other using traditional spectrum method. Consequently, in
this case, IHT-based high-frequency time-modulated SSVEP
feature extraction method, which is a nonlinear and non-
stationary signal processing method, is proposed to extract
the time-frequency characteristics of targets. As a result,
the HFCC-SSVEP targets can be obviously distinguished
from each other in the Hilbert spectrum. The proposed
method helps increase the recognition efficiency of SSVEP
for BCI systems. Results show that this High-Frequency
Combination Code paradigm is suitable for the SSVEP BCI
system.
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