714 research outputs found

    Magnetically levitated planar actuator with moving magnets

    Get PDF
    Mechanical systems with multiple degrees of freedom typically consist of several one degree-of-freedom electromechanical actuators. Most of these electromechanical actuators have a standard, often integrated, commutation (i.e. linearization and decoupling) algorithm deriving the actuator inputs which result in convenient control properties and relatively simple actuator constraints. Instead of using several one degree-of-freedom actuators, it is sometimes advantageous to combine multiple degrees of freedom in one actuator to meet the ever more demanding performance specifications. Due to the integration of the degrees of freedom, the resulting commutation and control algorithms are more complex. Therefore, the involvement of control engineering during an early stage of the design phase of this class of actuators is of paramount importance. One of the main contributions of this thesis is a novel commutation algorithm for multiple degree-of-freedom actuators and the analysis of its design implications. A magnetically levitated planar actuator is an example of a multiple degree of freedom electromechanical actuator. This is an alternative to xy-drives, which are constructed of stacked linear motors, in high-precision industrial applications. The translator of these planar actuators is suspended above the stator with no support other than magnetic fields. Because of the active magnetic bearing the translator needs to be controlled in all six mechanical degrees of freedom. This thesis presents the dynamics, commutation and control design of a contactless, magnetically levitated, planar actuator with moving magnets. The planar actuator consists of a stationary coil array, above which a translator consisting of an array of permanent magnets is levitated. The main advantage of this actuator is that no cables from the stator to the translator are required. Only coils below the surface of the magnet array effectively contribute to its levitation and propulsion. Therefore, the set of active coils is switched depending on the position of the translator in the xy-plane. The switching in combination with the contactless translator, in principle, allows for infinite stroke in the xy-plane. A model-based commutation and control approach is used throughout this thesis using a real-time analytical model of the ironless planar actuator. The realtime model is based on the analytical solutions to the Lorentz force and torque integrals. Due to the integration of propulsion in the xy-plane with an active magnetic bearing, standard decoupling schemes for synchronous machines cannot be applied to the planar actuator to linearize and decouple the force and the torque components. Therefore, a novel commutation algorithm has been derived which inverts the fully analytical mapping of the force and torque exerted by the set of active coils as a function of the coil currents and the position and orientation of the translator. Additionally, the developed commutation algorithm presents an optimal solution in the sense that it guarantees minimal dissipation of energy. Another important contribution of this thesis is the introduction of smooth position dependent weighing functions in the commutation algorithm. These functions enable smooth switching between different active coil sets, enabling, in principle, an unlimited stroke in the xy-plane. The resulting current waveform through each individually excited active coil is non-sinusoidal. The model-based approach, in combination with the novel commutation algorithm, resulted in a method to evaluate/design controllable topologies. Using this method several stator coil topologies are discussed in this thesis. Due to the changing amount of active coils when switching between active coil sets, the actuator constraints (i.e. performance) depend on the xy-position of the translator. An analysis of the achievable acceleration as a function of the position of the translator and the current amplifier constraints is given. Moreover, the dynamical behavior of the decoupled system is analyzed for small errors and a stabilizing control structure has been derived. One of the derived coil topologies called the Herringbone Pattern Planar Actuator (HPPA) has been analyzed into more detail and it has been manufactured. The stator of the actuator consists of a total of 84 coils, of which between 15 and 24 coils are simultaneously used for the propulsion and levitation of the translator. The real-time model, the dynamic behavior and the commutation algorithm have been experimentally verified using this fully-operational actuator. The 6-DOF contactless, magnetically levitated, planar actuator with moving magnets (HPPA) has been designed and tested and is now operating successfully according to all initial design and performance specifications

    Controlling a contactless planar actuator with manipulator

    Get PDF
    An existing magnetically levitated planar actuator with manipulator has been studied and improved from a control point of view. This prototype consists of a magnetically levitated six-degree-of-freedom (6-DOF) planar actuator with moving magnets, with a 2-DOF manipulator on top of it. This system contains three different contactless technologies: contactless bearing and propulsion of the planar actuator, wireless powering of the manipulator, and wireless communication and control of the manipulator. The planar actuator (PA) consists of a Halbach magnet array, which is levitated and controlled in all six DOF’s above a stationary coil array. The PA is propelled in two horizontal translational DOF’s while the other four DOF’s are stabilized to accomplish a stiff bearing. Each active coil contributes to the production of forces and torques acting on the magnet array. Since the number of active coils is much larger than the number of DOF’s, the desired force production can be distributed over many coils. Therefore, a commutation algorithm has to be used to invert the mapping of the forces and torques exerted by the set of active coils as a function of the coil currents and the position and orientation of the translator. One method for linearization and decoupling of the forces and torques was developed in the past. The method is called direct wrench decoupling and guaranties minimal dissipation of energy. However, no constraints on the maximum current can be given. This study proposes two novel, norm-based commutation methods: l8-norm and clipped l2-norm based commutation. Both methods can put bounds on the maximum currents in the coils to prevent saturation of the current amplifiers. The first method focuses on minimization of the maximum current whereas the second method limits the peak current while it minimizes the power losses. Consequently, a higher acceleration of the translator can be achieved and/or less powerful (cheaper) current amplifiers can be utilized and/or fewer commutation errors arise. Only a long-stroke translational movement of the moving magnet planar actuators has been considered in the past. The possibility of a completely propelled and controlled rotation about the vertical axis instead of just stabilizing it for bearing has been analyzed in this thesis from a control point of view. Enhancing the planar actuator with a long-range rotation will increase its utility value and opens new application areas. Based on this investigation, a novel coil array with a triangular grid of rounded coils has been proposed for better controllability in any orientation of the PA. In addition, other coil and magnet topologies have been studied from a control point of view for their suitability for full rotation. The influence of different kinds of error-causes on the commutation precision has been studied. From this investigation, it has been found that the offsets of the measurement system have the highest influence on the precision of the commutation. Investigation of the convergence of the procedure for estimation and elimination of these offsets has been performed. Although it was not proven that the procedure could be applied on the whole workspace of the PA, the convergence has been shown at least for all the investigated points. From this investigation, convergence for any position in the workspace of the PA is expected. It was found that it is possible to use the procedure also with different topologies and with different commutations. A novel wireless link has been developed for the real-time control of a fast motion system. The wireless link communicates via infrared-light transceivers and the link has a delay and a packet-loss ratio almost indistinguishable from the wired connection for the bandwidth of the system up to several kilohertz. The clipped l2-norm based commutation method has been successfully tested on the experimental setup after improving the measurement system, the contactless energy transfer and the wireless communication. With a new, interferometer sensor system, a well-controlled PA with two long-stroke DOF’s has become available. Improved contactless energy transfer does not cause increased electromagnetic interference during switching between the primary coils any more and the wireless connection using the infrared link provides a reliable communication channel between the manipulator and the fixed world. Several control approaches have been tested on the experimental setup. Both, the classical PID control, Sliding-mode control and Iterative learning control have been implemented. Each controller brought better performance than the previous one. Also, a fourth-order trajectory and enhanced feedforward control helped to improve performance. Finally, the tracking errors, in comparison to the initial situation, were reduced by a factor 10 (and even more than by a factor 50 with deactivated contactless energy transfer) while the velocity and acceleration of the system were a factor 4 and 14, respectively, higher

    Positioning Control System for a Large Range 2D Platform with Submicrometre Accuracy for Metrological and Manufacturing Applications

    Get PDF
    The importance of nanotechnology in the world of Science and Technology has rapidly increased over recent decades, demanding positioning systems capable of providing accurate positioning in large working ranges. In this line of research, a nanopositioning platform, the NanoPla, has been developed at the University of Zaragoza. The NanoPla has a large working range of 50 mm × 50 mm and submicrometre accuracy. The NanoPla actuators are four Halbach linear motors and it implements planar motion. In addition, a 2D plane mirror laser interferometer system works as positioning sensor. One of the targets of the NanoPla is to implement commercial devices when possible. Therefore, a commercial control hardware designed for generic three phase motors has been selected to control and drive the Halbach linear motors.This thesis develops 2D positioning control strategy for large range accurate positioning systems and implements it in the NanoPla. The developed control system coordinates the performance of the four Halbach linear motors and integrates the 2D laser system positioning feedback. In order to improve the positioning accuracy, a self calibration procedure for the characterisation of the geometrical errors of the 2D laser system is proposed. The contributors to the final NanoPla positioning errors are analysed and the final positioning uncertainty (k=2) of the 2D control system is calculated to be ±0.5 µm. The resultant uncertainty is much lower than the NanoPla required positioning accuracy, broadening its applicability scope.<br /

    Fault-Tolerant Control of a Three-Phase Permanent Magnet Synchronous Motor for Lightweight UAV Propellers via Central Point Drive

    Get PDF
    This paper deals with the development and the performance characterization of a novel Fault-Tolerant Control (FTC) aiming to the diagnosis and accommodation of electrical faults in a three-phase Permanent Magnet Synchronous Motor (PMSM) employed for the propulsion of a modern lightweight fixed-wing UAV. To implement the fault-tolerant capabilities, a four-leg inverter is used to drive the reference PMSM, so that a system reconfiguration can be applied in case of a motor phase fault or an inverter fault, by enabling the control of the central point of the three-phase connection. A crucial design point is to develop Fault-Detection and Isolation (FDI) algorithms capable of minimizing the system failure transients, which are typically characterized by high-amplitude high-frequency torque ripples. The proposed FTC is composed of two sections: in the first, a deterministic model-based FDI algorithm is used, based the evaluation of the current phasor trajectory in the Clarke’s plane; in the second, a novel technique for fault accommodation is implemented by applying a reference frame transformation to post-fault commands. The FTC effectiveness is assessed via detailed nonlinear simulation (including sensors errors, digital signal processing, mechanical transmission compliance, propeller loads and electrical faults model), by characterizing the FDI latency and the post-fault system performances when open circuit faults are injected. Compared with reports in the literature, the proposed FTC demonstrates relevant potentialities: the FDI section of the algorithm provides the smallest ratio between latency and monitoring samples per electrical period, while the accommodation section succeeds in both eliminating post-fault torque ripples and maintaining the mechanical power output with negligible efficiency degradation

    Multi-level contactless motion system

    Get PDF

    Health Monitoring and Fault Diagnostics of Wind Turbines

    Get PDF

    Current measurement in power electronic and motor drive applications - a comprehensive study

    Get PDF
    Current measurement has many applications in power electronics and motor drives. Current measurement is used for control, protection, monitoring, and power management purposes. Parameters such as low cost, accuracy, high current measurement, isolation needs, broad frequency bandwidth, linearity and stability with temperature variations, high immunity to dv/dt, low realization effort, fast response time, and compatibility with integration process are required to ensure high performance of current sensors. Various current sensing techniques based on different physical effects such as Faraday\u27s induction law, Ohm\u27s law, Lorentz force law, magneto-resistance effect, and magnetic saturation are studied in this thesis. Review and examination of these current measurement methods are presented. The most common current sensing method is to insert a sensing resistor in the path of an unknown current. This method incurs significant power loss in a sense resistor at high output currents. Alternatives for accurate and lossless current measurement are presented in this thesis. Various current sensing techniques with self-tuning and self-calibration for accurate and continuous current measurement are also discussed. Isolation and large bandwidth from dc to several kilo-hertz or mega-hertz are the most difficult, but also most crucial characteristics of current measurement. Electromagnetic-based current sensing techniques, which are used to achieve these characteristics, are analyzed. Many applications require average current information for control purposes. Different average current sensing methods of measuring average current are also reviewed. --Abstract, page iii
    • …
    corecore