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Abstract

Magnetically levitated planar actuator with moving

magnets: Dynamics, commutation and control design

Mechanical systems with multiple degrees of freedom typically consist of several
one degree-of-freedom electromechanical actuators. Most of these electromechani-
cal actuators have a standard, often integrated, commutation (i.e. linearization and
decoupling) algorithm deriving the actuator inputs which result in convenient con-
trol properties and relatively simple actuator constraints. Instead of using several
one degree-of-freedom actuators, it is sometimes advantageous to combine multiple
degrees of freedom in one actuator to meet the ever more demanding performance
specifications. Due to the integration of the degrees of freedom, the resulting com-
mutation and control algorithms are more complex. Therefore, the involvement of
control engineering during an early stage of the design phase of this class of actu-
ators is of paramount importance. One of the main contributions of this thesis is
a novel commutation algorithm for multiple degree-of-freedom actuators and the
analysis of its design implications.

A magnetically levitated planar actuator is an example of a multiple degree of
freedom electromechanical actuator. This is an alternative to xy-drives, which are
constructed of stacked linear motors, in high-precision industrial applications. The
translator of these planar actuators is suspended above the stator with no support
other than magnetic fields. Because of the active magnetic bearing the translator
needs to be controlled in all six mechanical degrees of freedom. This thesis presents
the dynamics, commutation and control design of a contactless, magnetically lev-
itated, planar actuator with moving magnets. The planar actuator consists of a
stationary coil array, above which a translator consisting of an array of permanent
magnets is levitated. The main advantage of this actuator is that no cables from
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vi Abstract

the stator to the translator are required. Only coils below the surface of the magnet
array effectively contribute to its levitation and propulsion. Therefore, the set of
active coils is switched depending on the position of the translator in the xy-plane.
The switching in combination with the contactless translator, in principle, allows
for infinite stroke in the xy-plane.

A model-based commutation and control approach is used throughout this
thesis using a real-time analytical model of the ironless planar actuator. The real-
time model is based on the analytical solutions to the Lorentz force and torque
integrals. Due to the integration of propulsion in the xy-plane with an active mag-
netic bearing, standard decoupling schemes for synchronous machines cannot be
applied to the planar actuator to linearize and decouple the force and the torque
components. Therefore, a novel commutation algorithm has been derived which
inverts the fully analytical mapping of the force and torque exerted by the set of
active coils as a function of the coil currents and the position and orientation of the
translator. Additionally, the developed commutation algorithm presents an optimal
solution in the sense that it guarantees minimal dissipation of energy. Another im-
portant contribution of this thesis is the introduction of smooth position dependent
weighing functions in the commutation algorithm. These functions enable smooth
switching between different active coil sets, enabling, in principle, an unlimited
stroke in the xy-plane. The resulting current waveform through each individually
excited active coil is non-sinusoidal.

The model-based approach, in combination with the novel commutation al-
gorithm, resulted in a method to evaluate/design controllable topologies. Using
this method several stator coil topologies are discussed in this thesis. Due to the
changing amount of active coils when switching between active coil sets, the actu-
ator constraints (i.e. performance) depend on the xy-position of the translator. An
analysis of the achievable acceleration as a function of the position of the translator
and the current amplifier constraints is given. Moreover, the dynamical behavior of
the decoupled system is analyzed for small errors and a stabilizing control structure
has been derived.

One of the derived coil topologies called the Herringbone Pattern Planar Ac-
tuator (HPPA) has been analyzed into more detail and it has been manufactured.
The stator of the actuator consists of a total of 84 coils, of which between 15 and
24 coils are simultaneously used for the propulsion and levitation of the translator.
The real-time model, the dynamic behavior and the commutation algorithm have
been experimentally verified using this fully-operational actuator. The 6-DOF con-
tactless, magnetically levitated, planar actuator with moving magnets (HPPA) has
been designed and tested and is now operating successfully according to all initial
design and performance specifications.
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Chapter 1

Introduction

The field of control engineering is often only involved at the final stage of a project.
This can sometimes lead to problems when the design is not optimal with respect
to the control objectives which are necessary for obtaining the desired functionality.
The design of electromechanical machines is no exception to this observation since
they are often designed first and the control issues are dealt with later. To be able to
control the machine, often a non-linear decoupling called the dq0- or Park’s transfor-
mation [33, 34] is applied to linearize the machine properties which are necessary
for control. This commutation method works fine for most electrical machines be-
cause the non-linear mapping has very convenient properties like orthonormality
and power invariance. Moreover, most electromechanical machines only actuate
a single degree-of-freedom. However, when more mechanical degrees-of-freedom
(DOF) are combined in the electromechanical design of the actuator, the sequential
approach described above is not valid anymore. Due to the multiple degrees-of-
freedom, concepts like directionality, linearization by feedback, controllability, and
the resulting complex actuator constraints start to play a major role in the design
process. Moreover, in some cases even the traditional dq0-transformation cannot be
applied effectively. Consequently, the traditional assumptions about control which
are made during the design phase of the machine do not hold anymore, resulting
in the need for a larger involvement of control engineering aspects during the de-
sign process. This thesis focusses on the design aspects of planar actuators with
integrated magnetic bearing related to the controllability. Nevertheless, the theory
derived is not limited to this class of actuators. The planar actuators discussed in
this thesis consist of a translator with permanent magnets which is levitated above
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2 Chapter 1. Introduction

an array of coils. The translator has an, in principle, unlimited stroke in the hori-
zontal plane.

The main focus is on how to obtain a suitable commutation algorithm which
both exploits the possibilities of the actuator as well as obtaining an implementable
control solution. In order to achieve better understanding of the mechanisms in-
volved in creating a planar actuator and its controller, a model based approach is
used.

1.1 Background

Accurate positioning of objects in a plane is required in many industrial appara-
tus, e.g. semiconductor lithography scanners, pick-and-place machines and inspec-
tion systems. Usually, these multi-degree-of-freedom (DOF) positioning systems
are constructed of stacked long- and short-stroke single-degree-of-freedom linear
and rotary drives, which are supported by roller or air bearings. Instead of stacking
one-degree-of-freedom drives, multiple degrees-of-freedom can be combined in one
actuator. Consequently, the moving mass and, therefore, the necessary force levels
to obtain the required acceleration, can be reduced. An example of such a drive is
a planar actuator, which has a single translator that can be levitated and can move
in the xy-plane over the stator surface (figures 1.1 and 1.2).

In recent years, planar actuators became of interest to the semiconductor in-
dustry, which is constantly striving for smaller devices, which contain more func-
tionality for a lower price. A shorter wavelength of the light, which is used in the
lithographical steps, allows for smaller features on the chips. Currently, lithography
systems are developed and tested which have an extreme-ultraviolet light source. To
prevent contamination of optical elements and absorption of the extreme-ultraviolet
light by air, the wafers (silicon substrates) are exposed in a high-vacuum environ-
ment [27]. To accurately position the wafers in vacuum, magnetically levitated
planar drives have been studied [28, 4, 5, 15, 30, 6]. Because of the magnetic
bearing, the vacuum is not contaminated by lubricants and there is no mechanical
wear. The planar actuators have a planar coil array and a planar magnet array. As
any permanent-magnet machine, planar actuators can be constructed in two ways.
They have either moving coils and stationary magnets, or moving magnets and sta-
tionary coils. Figures 1.1 and 1.2 show artists impressions of these two respective
actuator types. Although only a two degree-of-freedom planar motion is desired,
these actuators need to be controlled in six degree-of-freedom to obtain a stable ac-
tive magnetic bearing (stabilizing the three rotations and the levitation). Contrary
to other magnetically levitated systems, such as active magnetic bearings for rotary
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Figure 1.1. Moving-coil planar actuator.

Figure 1.2. Moving-magnet planar actuator.

machine shafts and magnetically levitated trains, there is no physical decoupling of
the levitation and the propulsion functions. These functions are controlled by the
same coils and magnets, therefore, these planar actuators can be considered as a
special class of multi-phase synchronous permanent-magnet motors.

The main advantage of a moving-coil planar actuator over a moving-magnet
planar actuator is that less coils, and their amplifiers, are needed because the stroke
in the xy-plane can be simply increased by adding extra magnets to the magnet ar-
ray. Moreover, design constraints can be derived which allow for control of the
torque exerted on the translator using the dq0-transformation [4]. A clear disad-
vantage of the moving-coil planar actuator is that the coils need power and cooling
which require a cable slab to the translator.

A big advantage of the moving-magnet configuration is that there is no contact
between the translator and the fixed world because no cable to the moving part is
necessary, since the coils, which require power and cooling, are on the stationary
part of the actuator. This drastically reduces the amount of disturbances to the
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translator. A disadvantage of the moving-magnet planar actuator, however, is the
increased complexity of the torque decoupling as a function of position. Various
proposals to control the moving-magnet torque using the dq0-decomposition have
been made in patent literature [41, 40, 1, 2]. However, the resulting disturbance
torque remains significant. Moreover, in a moving-magnet planar actuator, only the
coils below and near the edges of the magnet array can exert force and torque on
the magnet array. Therefore, when long-stroke motion in the xy-plane is desired,
the set of active coils has to be switched. No literature on the design and control
aspects of switching the set of active coils, without influencing the force and torque
decoupling, has been found.

1.2 Research objectives

Using traditional synchronous electrical machine theory to design/control long-
stroke moving-magnet planar actuators with integrated magnetic bearing does not
lead to practical results (see section 1.1). However, this class of actuators has the
advantage of contactless levitation and propulsion, resulting in small translator dis-
turbances. Therefore, the need for new electromechanical design and control the-
ories arises to study and design this class of actuators. Consequently, research into
obtaining both an efficient as well as a real-time controllable electromechanical
design calls for the combination of the electromechanical design and control dis-
ciplines. The research into the control and electromechanical design aspects has,
therefore, been carried out in parallel by two PhD students and the results are de-
scribed in two theses. This thesis focusses on the commutation, the controllability
of planar actuator designs and the control of the realized planar actuator, whereas
the thesis of Jansen [17] focusses on the modeling and design of the planar actua-
tor. To validate the derived theory, and to assure that all critical design aspects are
covered, a proof-of-principle device has been created. The general project objec-
tives discussed in this thesis, therefore, can be summarized by the following three
sub-objectives:

• Research of model-based commutation algorithms which linearize and de-
couple the system. Due to the nature of long-stroke moving-magnet planar
actuators the classical machine theory which is used to derive a suitable
commutation algorithm cannot be applied effectively. The main reasons
creating this problem are the larger influence of the ”disturbance” torque
when using sinusoidal currents and the need to switch active coil sets when
long-stroke movement is applied. (chapters 2 and 3)

• Research the link between the commutation algorithm and the design pro-
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cess. Since the commutation algorithms need to be both fast and accurate,
the complexity of the (real-time) model and the commutation algorithm
needs to be low but still sufficiently accurate to represent the system be-
havior. Moreover, the desired motion-profiles, the influence of the loca-
tion of the mass-center-point and the noise-distribution over the degrees-
of-freedom also play an important role in both the electromechanical as
well as the control design. (chapters 3 and 4)

• Research the effectiveness of the derived theory by using a proof-of-principle
device. Because of the large amount of parameters in combination with the
non-linear behavior of the system, a proof-of-principle device is realized to
validate the models and the decoupling algorithm. (chapter 5)

1.3 Organization of the thesis

Although the work presented in this thesis heavily depends on the theory derived in
[17] it can be read independently. Consequently, there are some overlapping parts.

Chapter 2 focusses on the dq0- or Park’s transformation which is traditionally
used to decouple and control synchronous actuators. The transformation is adapted
to create basic planar forcer topologies (a stator-coil layout which can be used to
produce position independent forces). These forcer topologies are the building
blocks of the examples which are used throughout this thesis. A new direct wrench-
current decoupling algorithm is derived in chapter 3 (where the wrench is defined
as a vector which consists of both force and torque components). Using this new
algorithm it is possible to decouple the force and torque components of ironless
moving-magnet planar actuators with integrated magnetic bearing. Only coils be-
low the magnet array effectively contribute to the levitation and propulsion of the
translator. Therefore, the decoupling algorithm is adapted to include switching be-
tween active coil sets enabling the design and control of long-stroke actuators. Fur-
thermore, conditions are derived which have to be met for decoupling to function.
At the end of this chapter it is shown that, in the case of ironless planar actuators,
the dq0 transformation can be seen as a subclass of the new commutation strategy.
Chapter 4 focusses on how to design controllable topologies, using the derived com-
mutation algorithm of chapter 3. The theory discussed throughout both this thesis
as well as the thesis of Jansen [17] has been used to create a fully functioning pro-
totype called the Herringbone Pattern Planar Actuator (HPPA). Measurements on
the controlled HPPA are presented in chapter 5. Conclusions and recommendations
for future work are given in chapter 6.
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Chapter 2

Commutation of basic forcer

topologies using dq0

transformation

2.1 Introduction

Generally, an electromechanical actuator can be described using non-linear differ-
ential equations. There are, however, methods to simplify the dynamical system.
Figure 2.1 shows a simplification which is often used. The actuator model is simpli-

Figure 2.1. Basic control configuration.

fied by splitting it into two parts. The first non-linear part Γ

(

~q,~i
)

maps the current

vector ~i, containing the currents through each coil, and the position and/or orien-
tation vector of the translator/rotor ~q onto the wrench vector ~w (which is a vector
containing force and/or torque components). When hysteresis effects are neglected
the mapping can usually be considered memoryless. The second part contains the
LTI (Linear-Time-Invariant) dynamics of the actuator. The main challenge in con-
trolling these actuators lies in finding a suitable inverse mapping or commutation

7



8 Chapter 2. Commutation of basic forcer topologies using dq0 transformation

algorithm which linearizes and decouples the system by feedback. Classically, for
most rotating (and linear) actuators this inverse mapping is achieved using the dq0
or Park’s transformation which will be discussed in more detail in sections 2.2 and
2.3. Section 2.4 shows how (parts of) the dq0 transformation can be expanded
towards planar actuators. Moreover, section 2.4 also shows some basic coil config-
urations which can be used as building blocks for planar actuators.

2.2 Rotating machines

Classically the dq0 transformation was derived for rotating machines. However,
the theory is not restricted to this class of machines. In order to understand the
adapted versions of the dq0 transformation this section summarizes the classical
theory applied to permanent-magnet synchronous machines.

Figure 2.2 shows a schematic representation of an idealized rotating three-
phase synchronous permanent-magnet machine. The flux-linkage vector abc~λ is

Figure 2.2. Schematic representation of an ideal two-pole three-phase synchronous

permanent-magnet machine.

given by
abc~λ = abcL (θe)

abc~i + abc~λpm (θe) , (2.1)

where abc~i =
[

ia ib ic
]T

is the current-vector and the superscript abc is used
to indicate that the vector contains the three stator phase quantities,

abc~λpm (θe) = λpm





cos (θe)
cos
(

θe − 2
3π
)

cos
(

θe + 2
3π
)



 , (2.2)



2.2. Rotating machines 9

is the permanent-magnet flux-linkage vector (the magnets are modeled as ideal flux
sources) and

abcL (θe) =





Laa (θe) Lab (θe) Lac (θe)
Lba (θe) Lbb (θe) Lbc (θe)
Lca (θe) Lcb (θe) Lcc (θe)



 , (2.3)

is the matrix containing the self and mutual inductances of the stator coils. Ideally,
the self and mutual inductances can be written as,

Laa = Lself + Lsalient cos (2θe) ,
Lbb = Lself + Lsalient cos

(

2θe + 2
3π
)

,
Lcc = Lself + Lsalient cos

(

2θe − 2
3π
)

,
Lab = Lba = Lmutual + Lsalient cos

(

2θe − 2
3π
)

,
Lbc = Lcb = Lmutual + Lsalient cos (2θe) ,
Lca = Lac = Lmutual + Lsalient cos

(

2θe + 2
3π
)

,

(2.4)

(resulting in diagonal, θe independent, inductances after applying the dq0-trans-
formation which will be explained later in this section) where Lself and Lmutual
are the constant parts of the self and mutual inductances, respectively, and Lsalient
is an inductance term which is caused by saliency of the rotor depending on the
electrical rotor angle θe

θe =
#poles

2
θ, (2.5)

(e.g. in figure 2.2 the #poles = 2). The voltage equations are

abc~u = R abc~i +
d abc~λ (θe)

dt
. (2.6)

A useful method to analyze these machines is to make use of the direct- and
quadrature-axis (dq0) theory. The theory uses the concept of resolving synchronous-
machine armature quantities into two rotating components: The first component is
called the direct-axis component, which is aligned with the direction of the rotor
magnetization (in the case of permanent-magnet machines). The second compo-
nent is called the quadrature component, which is in quadrature with (i.e. orthogo-
nal to) the direct axis. Both components are shown in figure 2.2. The original idea
behind this transformation (the Blondel two-reaction method) is derived from the
work of A.E. Blondel in France. The transformation was further developed by R.E.
Doherty and C.A. Nickle [8, 9, 10, 11] and by R.H. Park [33, 34]. The vector/matrix
notations of the dq0 transformation used in this section are in accordance with [13].
A few assumptions have been made for this method to be valid. The following is



10 Chapter 2. Commutation of basic forcer topologies using dq0 transformation

quoted from [33]: ”Attention is restricted to symmetrical three-phase machines
with field structure symmetrical about the axes of the field winding and interpo-
lar space, but salient poles and an arbitrary number of rotor circuits is considered.
Idealization is resorted to, to the extent that saturation and hysteresis in every
magnetic circuit and eddy currents in the armature iron are neglected, and in the
assumption that, as far as concerns effects depending on the position of the rotor,
each armature winding may be regarded as, in effect, sinusoidally distributed.” The
power-invariant transformation is given by





Sd
Sq
S0



 =
2

3





cos(θe) cos(θe − 2
3π) cos(θe + 2

3π)
− sin(θe) − sin(θe − 2

3π) − sin(θe + 2
3π)

1
2

1
2

1
2









Sa
Sb
Sc



 , (2.7)

where S represents an instantaneous stator quantity to be transformed (e.g. cur-
rent, voltage or flux), the subscripts a, b and c represent the three stator phases,
respectively, the subscripts d and q represent the direct and quadrature axes, respec-
tively, and θe is the electrical angle given by (2.5). The inverse dq0 transformation
is given by





Sa
Sb
Sc



 =





cos(θe) − sin(θe) 1
cos(θe − 2

3π) − sin(θe − 2
3π) 1

cos(θe + 2
3π) − sin(θe + 2

3π) 1









Sd
Sq
S0



 . (2.8)

The third component, indicated by subscript 0, is added to the d and q compo-
nents to create a unique transformation of the three stator phase components. For
notational simplicity (2.7) and (2.8) are written as

dq0~s = dq0T abc (θe)
abc~s, (2.9)

and
abc~s = abcT dq0 (θe)

dq0~s, (2.10)

respectively.
When applying the transformation to the flux linkages described by (2.1) the

following result is obtained

dq0~λ = dq0L dq0~i + dq0~λpm, (2.11)

where

dq0L = dq0T abc (θe)
abcL (θe)

abcT dq0 (θe) =





Ld 0 0
0 Lq 0
0 0 L0



 , (2.12)
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and

dq0~λpm = dq0T abc (θe)
abc~λpm (θe) =





λpm
0
0



 , (2.13)

are now independent of the electrical rotor angle θe. The direct-axis and quadrature-
axis synchronous inductances Ld and Lq, and the zero-sequence inductance L0 are
equal to

Ld = Lself − Lmutual +
3
2Lsalient,

Lq = Lself − Lmutual − 3
2Lsalient,

L0 = Lself + 2Lmutual.
(2.14)

Transformation of the voltage equations (2.6) results in

dq0~u = dq0T abc (θe)
(

R abcT dq0 (θe)
dq0~i +

d abcT dq0(θe)
dq0~λ

d t

)

= R dq0~i + dq0Ld dq0~i
d t + ∂θe

∂t





0 −1 0
1 0 0
0 0 0





dq0~λ,
(2.15)

where

dq0~usv =
∂θe
∂t





0 −1 0
1 0 0
0 0 0





dq0~λ, (2.16)

is the speed-voltage term. The instantaneous power ps then becomes

ps = abc~uT abc~i = dq0~uTabcT dq0 (θe)
T abcT dq0 (θe)

dq0~i

= 3
2

dq0~uT





1 0 0
0 1 0
0 0 2





dq0~i.
(2.17)

The electromagnetic torque, Tmech, is obtained by dividing the power output corre-
sponding to the speed-voltage term by the mechanical speed dθ

dt

Tmech = 3
2

(

dθ
dt

)−1 ∂θe
∂t

dq0~λ
T





0 1 0
−1 0 0
0 0 0





dq0~i

= 3
2

(

#poles
2

)

(λpmiq + (Ld − Lq) idiq) .

(2.18)

For three-phase two-pole synchronous permanent-magnet machines without saliency
(Ld = Lq and θe = θ) as in figure 2.2, equation 2.18 can be simplified to

Tmech = 3
2λpmiq . (2.19)
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2.3 Linear actuators

In this section the classical dq0 transformation (see section 2.2) is adapted towards
linear actuators. Figure 2.3 shows a schematic representation of an idealized linear
three-phase synchronous permanent-magnet actuator. The linear actuator can be
interpreted as an unrolled version of the rotating actuator shown in figure 2.2.
A pole-pitch τ is introduced which is the distance between the magnet poles as
indicated in figure 2.3. However, there are differences. Firstly, the coils have been

Figure 2.3. Schematic representation of an ideal linear three-phase synchronous

permanent-magnet actuator.

placed at a distance of 4τ
3 m instead of 2τ

3 m to prevent overlap of the coil-windings.
Secondly, the distance between the c and a stator coils is different from the distances
between the a and b, and the b and c coils which destroys the symmetry of the
mutual inductances between the coils. Although this constraint is removed later in
this section, the symmetry is restored first by deriving the force of one three-phase
group, while assuming a stator containing an infinite set of balanced three-phase
coil groups with the same ia, ib and ic currents and an infinitely large magnet array.
The flux linkage in stator phase quantities then becomes

abc~λl = abcLl (x, z) abc~i + abc~λpm,l (x, z) , (2.20)

where the translator position x = τ
π θ replaces the rotor angle, and the air-gap dis-

tance z is included as an additional degree-of-freedom. In chapter 3 the rotations
are also included in the analysis. However, in this section and section 2.4 the ro-
tations of the translator are neglected. The permanent-magnet flux now becomes
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[17]

abc~λpm,l (x, z) = λpm exp
(

−π
τ
z
)





cos
(

π
τ x
)

cos
(

π
τ x+ 2

3π
)

cos
(

π
τ x− 2

3π
)



 . (2.21)

Ideally, the self and mutual inductances of the three stator coils then become

Laa,l = Lself,l (z) + Lsalient,l (z) cos
(

2πτ x
)

,
Lbb,l = Lself,l (z) + Lsalient,l (z) cos

(

2πτ x− 2
3π
)

,
Lcc,l = Lself,l (z) + Lsalient,l (z) cos

(

2πτ x+ 2
3π
)

,
Lab,l = Lba,l = L∗

mutual,l (z) + Lsalient,l (z) cos
(

2πτ x+ 2
3π
)

,

Lbc,l = Lcb,l = L∗
mutual,l (z) + Lsalient,l (z) cos

(

2πτ x
)

,

Lca,l = Lac,l = L∗
mutual,l (z) + Lsalient,l (z) cos

(

2πτ x− 2
3π
)

,

(2.22)

where L∗
mutual,l (z) is the effective mutual inductance including the mutual induc-

tances of the neighboring balanced three-phase groups operating at the same cur-
rents (to maintain the same symmetry as with the rotating machine).

The following derivation is comparable to the work of Won-Jon Kim [29]. The
dq0 transformation dq0T abc,l (x) and its inverse transformation abcT dq0,l (x) have
been adapted to match the linear actuator as follows

dq0T abc,l (x) =
2

3





cos(πτ x) cos(πτ x+ 2
3π) cos(πτ x− 2

3π)
− sin(πτ x) − sin(πτ x+ 2

3π) − sin(πτ x− 2
3π)

1
2

1
2

1
2



 , (2.23)

abcT dq0,l (x) =





cos(πτ x) − sin(πτ x) 1
cos(πτ x+ 2

3π) − sin(πτ x+ 2
3π) 1

cos(πτ x− 2
3π) − sin(πτ x− 2

3π) 1



 . (2.24)

When applying the transformations given by (2.23) and (2.24) to the linear ac-
tuator, comparable results are obtained as with the rotating actuator described in
section 2.2. The main differences are that after transformation the inductance ma-
trix dq0Ll and the permanent magnet flux dq0~λpm,l have become z dependent, as
follows

Ld(z) = Lself,l(z) − L∗
mutual,l(z) + 3

2Lsalient,l(z),

Lq(z) = Lself,l(z) − L∗
mutual,l(z) − 3

2Lsalient,l(z),

L0(z) = Lself,l(z) + 2L∗
mutual,l(z),

(2.25)

dq0~λpm,l(z) = exp
(

−π
τ
z
)





λpm
0
0



 . (2.26)
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The z dependency results in an additional speed-voltage term. The speed-voltage
terms in dq0 coordinates are

dq0~usv,x =
π

τ

∂x

∂t





0 −1 0
1 0 0
0 0 0





dq0~λ(z), (2.27)

and

dq0~usv,z =
∂z

∂t

(

∂ dq0Ll(z)

∂z
dq0~il +

∂ dq0~λpm,l(z)

∂z

)

. (2.28)

The electromagnetic forces, Fx,l and Fz,l, are again obtained by dividing the power
output corresponding to the speed-voltage term by the mechanical speeds dx

dt and
dz
dt , respectively

Fx,l = 3
2
π
τ

dq0~λ
T

l (z)





0 1 0
−1 0 0
0 0 0





dq0~i

= 3
2
π
τ

(

λpm,l exp
(

−π
τ z
)

iq + (Ld(z) − Lq(z)) idiq
)

,

(2.29)

Fz,l = 3
2

(

dq0~i
T

l
∂ dq0LT

l (z)
∂z +

∂ dq0~λpm,l(z)
∂z

)





1 0 0
0 1 0
0 0 2





dq0~il

= 3
2

(

∂Ld(z)
∂z i2d +

∂Lq(z)
∂z i2q + 2∂L0(z)

∂z i20 − π
τ λpm,l exp

(

−π
τ z
)

id

)

.

(2.30)

Without saliency of the translator (Ld = Lq), the force in the x-direction Fx,l sim-
plifies to:

Fx,l =
3

2

π

τ
λpm,l exp

(

−π
τ
z
)

iq . (2.31)

When all materials are considered to have a relative permeability µr equal to one
(no reluctance forces) the force in the z-direction Fz,l simplifies to

Fz,l = −3

2

π

τ
λpm,l exp

(

−π
τ
z
)

id . (2.32)

Moreover, when assuming all materials to have µr = 1 and ideal current amplifiers,
it is not only possible to analyze the linear actuator as a Lorentz actuator (since
the force calculation through the flux linkage and the Lorentz force are equivalent
for a current loop in an external magnetic field [12]), but the need for symmetry
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is also removed. The dq0-transformation can still be effectively applied to linearize
and decouple the permanent-magnet flux linkage abc~λpm,l (x, z). When (2.20) is
applied to the voltage equations and (2.24) is applied to the permanent magnet
flux linkage abc~λpm,l (x, z) the following result is obtained

abc~ul = R abc~il + abcLl

d abc~il

dt
+ abc~usv,x + abc~usv,z, (2.33)

where abcLl is position independent and where abc~usv,x and abc~usv,z are given
by

abc~usv,x =
∂x

∂t

∂ abcT dq0,l (x)

∂x
dq0~λpm,l (z) , (2.34)

abc~usv,z =
∂z

∂t
abcT dq0,l (x)

∂ dq0~λpm,l (z)

∂z
. (2.35)

The electromagnetic forces, Fx,l and Fz,l, then become equal to (2.31) and (2.32),
respectively. It is then possible to linearize and decouple the forces by feedback
using the inverse mapping of (2.31) and (2.32)

dq0~ides,l =
2

3

τ

π

1

λpm,l
exp

(π

τ
z
)





0 −1
1 0
0 0





[

Fdesx,l
Fdesz,l

]

, (2.36)

or in the real abc stator frame currents

abc~ides,l =
2

3

τ

π

1

λpm,l
exp

(π

τ
z
)

abcT dq0,l (x)





0 −1
1 0
0 0





[

Fdesx,l
Fdesz,l

]

. (2.37)

The current on the zero axis i0 can have an arbitrary value since it does not con-
tribute to the force production. In (2.36), however, i0 is set to zero in order to
minimize the power dissipation (which can be seen from (2.17)).

The transformation described above is not limited to three-phase systems. Fig-
ure 2.4 shows a semi-four-phase actuator (a four-phase actuator of which only the
first and the second or fourth phase are used). The transformation matrices then
become

dqT ab,l (x) = abT dq,l (x) =

[

cos(πτ x) − sin(πτ x)
− sin(πτ x) − cos(πτ x)

]

, (2.38)

where there is no 0-axis anymore because the matrix is already uniquely defined.
The currents can then be derived equivalent to the derivation of (2.37), resulting in

ab~ides,l =
τ

π

1

λpm,l
exp

(π

τ
z
)

abT dq,l (x)

[

0 −1
1 0

] [

Fdesx,l
Fdesz,l

]

. (2.39)
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Figure 2.4. Schematic representation of an ideal linear ironless semi-four-phase syn-

chronous permanent-magnet actuator.

2.4 Basic forcer topologies for planar motion

In this section the dq0 transformation is extended to cope with ironless planar ac-
tuators without overlapping coils in the stator plane. A more extensive treatise of
various planar-machine topologies can be found in [17]. The first configuration
consists of four round or square coils distanced according to a semi-four-phase sys-
tem but in two orthogonal directions x and y (as shown in figure 2.5). The topology
is based on a patent of Hazelton [15] and the dq0 transformation for this topology,
derived in this thesis, is similar to [41, 40]. The basic principle is an expansion

Figure 2.5. Basic forcer using square coils.

of the semi-four-phase linear actuator explained in section 2.3. The magnet array
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shown in figure 2.5 is called a Halbach magnet array which is used to increase and
concentrate the magnetic flux density near the coils. The topology has two q-axes:
One axis belonging to the x-direction and one belonging to the y-direction, called
qx and qy, respectively. The dqxqy0 transformation matrices belonging to figure 2.5
are given by

dqxqy0T efgh = efghT dqxqy0 =








c
(

πx
τ

)

c
(

πy
τ

)

−s
(

πx
τ

)

c
(

πy
τ

)

−c
(

πx
τ

)

s
(

πy
τ

)

s
(

πx
τ

)

s
(

πy
τ

)

−s
(

πx
τ

)

c
(

πy
τ

)

−c
(

πx
τ

)

c
(

πy
τ

)

s
(

πx
τ

)

s
(

πy
τ

)

c
(

πx
τ

)

s
(

πy
τ

)

−c
(

πx
τ

)

s
(

πy
τ

)

s
(

πx
τ

)

s
(

πy
τ

)

−c
(

πx
τ

)

c
(

πy
τ

)

s
(

πx
τ

)

c
(

πy
τ

)

s
(

πx
τ

)

s
(

πy
τ

)

c
(

πx
τ

)

s
(

πy
τ

)

s
(

πx
τ

)

c
(

πy
τ

)

c
(

πx
τ

)

c
(

πy
τ

)









,
(2.40)

which are orthonormal matrices (where for notational simplicity sin and cos have
been replaced by s and c, respectively). The three speed-voltage terms then become

efgh~usv,x =
∂x

∂t

∂ efghT dqxqy0 (x, y)

∂x
dq0~λpm,pl (z) , (2.41)

efgh~usv,y =
∂y

∂t

∂ efghT dqxqy0 (x, y)

∂y
dq0~λpm,pl (z) , (2.42)

and

efgh~usv,z =
∂z

∂t
efghT dqxqy0 (x, y)

∂ dq0~λpm,pl (z)

∂z
, (2.43)

with their respective force components

Fx =
π

τ
λpm exp

(

−
√

2π

τ
z

)

iqx , (2.44)

Fy =
π

τ
λpm exp

(

−
√

2π

τ
z

)

iqy , (2.45)

Fz = −
√

2π

τ
λpm exp

(

−
√

2π

τ
z

)

id. (2.46)

(2.47)
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The currents which can be used to linearize and decouple the system then become

efgh~ides =
τ

π

1

λpm
exp

(√
2π

τ
z

)

efghT dqxqy0 (x, y)









0 0 −
√

2
2

1 0 0
0 1 0
0 0 0













Fdesx
Fdesy
Fdesz



 .

(2.48)
The second configuration discussed in this thesis uses rectangular coils and is shown
in figure 2.6. The rectangular coils are optimized [4, 17] in such a way that they
only produce force in either the xz-plane (light-grey coils) or the yz-plane (dark-
grey coils). Consequently, the dq0-decomposition derived for linear actuators in
section 2.3 can be almost directly applied to this planar topology. The only differ-
ence is that, since the magnet array is rotated π

4 rad, a new effective pole-pitch

τn =
τ√
2
, (2.49)

is introduced, which is also shown in figure 2.6. The inverse dxqx0 matrix belonging

Figure 2.6. Basic forcers using rectangular coils.

to the light-grey coils then becomes

abcT dxqx0,pl (x) =





cos( πτnx) − sin( πτnx) 1

cos( πτnx+ 2
3π) − sin( πτnx+ 2

3π) 1

cos( πτnx− 2
3π) − sin( πτnx− 2

3π) 1



 , (2.50)
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which results in the following currents for the light-grey coils

abc~ides,pl =
2

3

τn
π

1

λpm,l
exp

(

π

τn
z

)

abcT dxqx0,l (x)





0 −1
1 0
0 0





[

Fdesx,pl
Fdesz,pl

]

.

(2.51)
A similar solution can be obtained for the dark-grey coils (where x is substituted by
y).
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Chapter 3

Linearization and decoupling

of the wrench

3.1 Introduction

Contrary to chapter 2, where the dq0 transformation was used to derive a decou-
pling strategy of the force components, this chapter focusses on a six degree-of-
freedom approach towards solving the commutation algorithm. Classical dq0 trans-
formation can only be used directly to derive a commutation which decouples the
force components of linear/planar actuators. In moving-coil planar actuators such
as [5] it is possible to use design symmetries which reduce the complexity of the
torque equations, therefore, additional transformations can be derived which al-
low for decoupling of the torque [4]. Moving-magnet planar actuators with inte-
grated magnetic bearing have complex torque equations. The result of these com-
plex torque equations is that the classical dq0-transformation, which focusses on the
force components (when applied to planar actuators), is not practical to use since
it does not directly include torque decoupling. In literature, attempts have been
made to include decoupling of the torque by using additional transformations after
applying dq0-transformation [41, 40]. However, the resulting disturbance torque
remained significant. In patent literature some improvements to the algorithms
have been made by Binnard et al. [1, 2] resulting in a six DOF algorithm which
still does not include the full torque equations. Moreover, since only the coils un-
derneath or near the edges of the translator significantly produce force and torque,
the set of active coils which are used to control the translator needs to change as a
function of position. There are no explicit solutions given in [1, 2] which allow for
switching of active coil sets without disturbing the decoupling.

21
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The approach which is proposed in section 3.3 uses the six degree-of-freedom
model derived in section 3.2 to achieve a direct wrench-current decoupling which,
in contrast to the dq0 transformation, directly decouples the force and torque com-
ponents. Moreover, section 3.3.1 expands the algorithm to include switching of
active coil sets. The method presented in this thesis has also been published [44,
42, 43, 25]. The commutation algorithms and the real-time model derived in this
chapter are the results of common research work of project partner ir. J.W. Jansen
and the author of this thesis. As a result, these subjects are described in both theses.
This thesis summarizes the real-time modeling results. A more extensive treatise on
the electromechanical analysis and design, including more accurate models of the
system, can be found in [17]. The models discussed in both theses were also pub-
lished [24, 26, 22, 18, 23]. Section 3.4 uses the Schur complement to split the
direct wrench-current decoupling into several components. Under certain assump-
tions, one of these components can be made equivalent to the sum of multiple dq0
transformations which where presented in section 2.4 (also published in [45, 46]).

3.2 Real-time analytical six degree-of-freedom coil model

The dq0 decomposition explained in chapter 2 can only be used directly to decouple
forces (when applied to planar actuators). The reason for this is that the force
distribution of the planar actuator is not taken into account. However, to accurately
stabilize a platform in six degrees of freedom it is also necessary to control the
torque about the center of mass. To do so a real-time six degree-of-freedom single
coil model is derived in this section.

When assuming ideal magnets, quasi-static magnetic fields, negligible eddy
currents, a wire diameter smaller than the skin depth, rigid body dynamics of the
translator and no reluctance forces, the voltage equations can be simplified to

~u = R~i + L
d~i

d t
+ J~Λm

(~q)
d~q

d t
, (3.1)

where J~Λm
(~q) is the Jacobian of the flux of the permanent-magnet array linked by

the respective coils, ~q is the 6-DOF vector consisting of the three position and three
orientation components of the translator and R and L are the coils resistance and
inductance matrices, respectively. Moreover, when assuming ideal current ampli-
fiers, having an infinitely large internal resistance and bandwidth, and no cogging
forces, the wrench vector (containing all force and torque components) is then
given by

~wtot = J~Λm
(~q)~i. (3.2)
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Since the force calculation through the flux linkage and the Lorentz force are equiv-
alent for a current loop in an external magnetic field [12], the voltage equations
can be solved with the force and torque calculated using magnetostatic models (i.e.
using the Lorentz force and torque).

To obtain a fully analytical model, the coil is modeled by either four surfaces or
four filaments, where the assumption is made that all coil currents and their effects
can be represented as if the current was flowing through either four filaments or
through four sheets with constant current density. Figure 3.1 shows the two coil
models. Two coordinate systems are defined in the 3-D Euclidian space to model

Figure 3.1. Filament (left) and sheet surface (right) model of a single rectangular

coil: a) bottom view, b) cross section.
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the actuator. Figure 3.1 shows a partial planar actuator, i.e. a Halbach permanent-
magnet array and a single coil. A coordinate system is located at the stationary
part of the actuator. In this coordinate system the stator coils are defined. For that
reason it is denoted with the superscript c (of coils)

c~x =
[

cx cy cz
]T
. (3.3)

Another coordinate system is fixed to the mass center point of the total translator
(although figure 3.1 only shows the permanent magnets). In this coordinate system
the magnets are defined. This coordinate frame is denoted with the superscript m
(of magnets)

m~x =
[

mx my mz
]T
. (3.4)

The vector
c~p =

[

cpx
cpy

cpz
]T
, (3.5)

is the position of the magnet coordinate system m, i.e. the mass center point of the
translator, in the coil coordinate system c.

Coordinates are transformed from one system to the other with an orientation
transformation and afterwards a translation. The transformation matrix c

Tm for a
position from the magnet to the coil coordinate system is equal to [31]

c
Tm =

[

c
Rm

c~p
0 1

]

. (3.6)

For convenience, the orientation transformation matrix is defined as

c
Rm = Rot(cy, θ)Rot(cx, ψ)Rot(cz, φ), (3.7)

where

Rot(cy, θ) =





cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)



 , (3.8)

Rot(cx, ψ) =





1 0 0
0 cos (ψ) − sin (ψ)
0 sin (ψ) cos (ψ)



 , (3.9)

Rot(cz, φ) =





cos (φ) − sin (φ) 0
sin (φ) cos (φ) 0

0 0 1



 , (3.10)
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and where ψ, θ and φ are the (Euler) rotation angles about the cx- cy-, and cz-axes,
respectively. Thus, the position and orientation of the translator can be described
in six degrees-of-freedom. The transformation matrix m

Tc for a position from the
global to the local coordinate system is equal to

m
Tc = c

Tm
−1 =

[

c
Rm

T −c
Rm

Tc~p
0 1

]

=

[

m
Rc −m

Rc
c~p

0 1

]

,
(3.11)

because c
Tm is orthonormal.

Applying the appropriate transformation matrix, a position is transferred be-
tween the coordinate systems, according to

[

m~x
1

]

= m
Tc

[

c~x
1

]

, (3.12)

m~x = m
Rc (c~x− c~p) , (3.13)

and a free vector as defined in [31], e.g. the spatial current vector ~i (consisting of
the directional components of the current along the x, y and z directions), according
to

[

m~i
0

]

= m
Tc

[

c~i
0

]

, (3.14)

m~i = m
Rc

c~i. (3.15)

The analytical model, applied here, only takes the first harmonic of the mag-
netic flux density distribution of the permanent-magnet array into account. The
simplified magnetic flux density expression (assuming the coils are located under-
neath the permanent-magnet array) is given by

m ~B3 ( m~x) = − exp

(

π
√

2

τ
mz

)











Bxy cos
(

πmx
τ

)

sin
(

πmy
τ

)

Bxy sin
(

πmx
τ

)

cos
(

πmy
τ

)

Bz sin
(

πmx
τ

)

sin
(

πmy
τ

)











, (3.16)

where Bxy and Bz are derived from the amplitudes of the mean value of the first
harmonic of the magnetic flux density components over the cross section of the coil
at mz = 0. Transformation of this expression into the coordinate system of the coils

c ~B3 ( c~x, c~p) = c
Rm

m ~B3 (mRc ( c~x − c~p)) , (3.17)
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results for (φ = −π/4 rad and ψ = θ = 0 rad) in

c ~B3 ( c~x, c~p)
∣

∣

∣ψ=θ=0
ψ=−π/4

=











−Bxy√
2

exp
(

π
τn

(cz − cpz)
)

sin
(

π
τn

(cx− cpx)
)

Bxy√
2

exp
(

π
τn

(cz − cpz)
)

sin
(

π
τn

(cy − cpy)
)

1
2Bz exp

(

π
τn

(cz − cpz)
)(

cos
(

π
τn

(cx− cpx)
)

− cos
(

π
τn

(cy − cpx)
))











,

(3.18)
where a new pole pitch τn is introduced, which is indicated in figure 3.1

τn =
τ√
2
. (3.19)

The Lorentz force on the filaments is calculated by solving a line integral. The

force exerted on the translator c~F =
[

cFx
cFy

cFz
]T

, expressed in the coil

coordinate system, by one coil, which is located at c~x =
[

cx cy 0
]T

, is equal
to

c~F = −
∮

C
c~i × c ~B3dl =

−
∫
cx+w/2
cx−w/2 [i 0 0]

T × c ~B3

(

[cx′ cy − cl/2 0]
T
, c~p

)

dcx′

−
∫
cy+cl/2
cy−cl/2 [0 i 0]

T × c ~B3

(

[cx+ w/2 cy′ 0]
T
, c~p

)

dcy′

−
∫
cx+w/2
cx−w/2 [−i 0 0]

T × c ~B3

(

[cx′ cy + cl/2 0]
T
, c~p

)

dcx′

−
∫
cy+cl/2
cy−cl/2 [0 − i 0]

T × c ~B3

(

[cx− w/2 cy′ 0]
T
, c~p

)

dcy′,

(3.20)

where w and cl are the sizes of the filament coil along the cx- and cy-directions,
respectively, and i is the current through the coil in Ampere-turns.

The torque exerted on the translator c~T =
[

cTx
cTy

cTz
]T

, expressed
in the global coordinate system, by the same coil is equal to

c~T = −
∮

C ( c~x − c~p) ×
(

c~i × c ~B3

)

dl =

−
∫
cx+w/2
cx−w/2 (c~x − c~p)×

(

[i 0 0]
T× c ~B3

(

[cx′ cy − cl/2 0]
T
, c~p

))

dcx′

−
∫
cy+cl/2
cy−cl/2 (c~x − c~p)×

(

[0 i 0]
T× c ~B3

(

[cx+ w/2 cy′ 0]
T
, c~p

))

dcy′

−
∫
cx+w/2
cx−w/2 (c~x − c~p)×

(

[−i 0 0]
T× c ~B3

(

[cx′ cy + cl/2 0]
T
, c~p

))

dcx′

−
∫
cy+cl/2
cy−cl/2 (c~x − c~p)×

(

[0 −i 0]
T× c ~B3

(

[cx− w/2 cy′ 0]
T
, c~p

))

dcy′.

(3.21)
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The force and torque exerted on the translator (here expressed in coil coordinates
c) are modeled as the reaction force and torque of the force and torque exerted
on the coil. Hence, the minus signs in (3.21) and (3.20). If the length of the coil
cl = 2nτn, where n is an integer, and if φ = −π/4 rad and ψ = θ = 0 rad, the coil
only produces force in the cx- and cz-directions and the force is independent on the
cpy-position of the magnet array. The force and torque expressions for a coil with
w = τn and cl = 4τn are given by

cFx = −2
√

2Bziτ exp

(

− π

τn
cpz

)

sin

(

π

τn
(cpx − cx)

)

, (3.22)

cFy = 0, (3.23)

cFz = −4Bxyiτ exp

(

− π

τn
cpz

)

cos

(

π

τn
(cpx − cx)

)

, (3.24)

cTx = (cy − cpy)
cFz −Bxyiτ

2 exp

(

− π

τn
cpz

)

sin

(

π

τn
(cpy − cy)

)

, (3.25)

cTy = (cpx − cx) cFz − cpz
cFx, (3.26)

cTz = cFx (cpy − cy) . (3.27)

In [17] it is derived that
Bz =

√
2Bxy, (3.28)

which results in equal amplitudes of the cx- and cz-components of the force. The
torque component cTx cannot be expressed as an arm multiplied by a force. There-
fore, a single attaching point of the force in the cy-direction cannot be defined.
Hence, for accurate torque calculation, the distribution of the force over the coil
should be taken into account. Note that the cross-product with the arm, which is
added in the line integral of the torque equation of the filament coil model (3.21),
is inside the integral in order to include the force distribution over the coil. The
coil model with four filaments assumes that the force can be modeled to act on the
center of the conductor bundle. In reality, the distribution of the force over the
conductor bundle changes with the relative position of the coil with respect to the
magnet array. This can be shown by modeling the conductor bundle with a sheet or
surface current. The obtained force and torque expressions for a coil with w = τn,
cl = 4τn and a conductor bundle width cb = τn/2 and (φ = −π/4 rad and ψ = θ = 0
rad) are similar to the expressions for the coil modeled with four filaments, except
for the cTy term

cTy = (cpx − cx) cFz − cpz
cFx +c Fx

Bxy (π − 4) τ

4Bzπ
, (3.29)
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cTy contains an extra term proportional to cFx, which represents the torque caused
by the change of the attaching point of the force in the conductor bundle of the
coil. In further analyses in this thesis and in the controller of the realized planar
actuator, the model based on the sheet currents is used. The reason for this is the
higher accuracy of the torque model (as can be seen from the difference between
(3.26) and (3.29)).

For notational simplicity the force and torque components are combined in a

single wrench vector l ~wn =
[

cFx
cFy

cFz
cTx

cTy
cTz

]T
The wrench

vector l ~wn of a single coil n can then be described by

l ~wn = ~γn

(

l~q , l~rn

)

lin, (3.30)

where in is the current through the nth coil, ~γn is the vector mapping the current to

the wrench vector, l~q =
[

cpx
cpy

cpz ψ θ φ
]T

is the vector containing
the position and orientation of the mass center point of the translator with respect
to its reference frame in local coil coordinates (indicated by superscript l which is

properly defined in section 3.3.1) and l~rn =
[

cx cy φ
]T

is the location and
orientation of the nth coil in the xy-plane with respect to the origin of the local
coil coordinates (where from this point cz = 0). Since the model neglects the edge
effects of the magnet array it is only valid when the coil is underneath the translator.
Let Sn be the set of admissible coordinates l~q for the model of the nth coil to be
valid. Figure 3.2 shows a top-view of coil n (where both a square/round coil and
the rectangular coil is shown since both are used in this thesis) with the admissible
set of l~qn coordinates about a given coil location l~rn defined as Sn. The center
of set Sn is, therefore, depending on the l~rn location while the size of the set is
determined by the size of the magnet-array. When the edge effects of the magnet
array are included in the model, the size of this set can be increased.

When assuming rigid body behavior, superposition of coil currents can be ap-
plied to obtain the total wrench on the center of mass of the translator

l ~wtot =

m
∑

n=1

~γn

(

l~q , l~rn

)

lin, (3.31)

or in matrix form

l ~wtot =
[

~γ1

(

l~q , l~r1

)

· · · ~γm−1

(

l~q , l~rm−1

)

~γm

(

l~q , l~rm

) ]

l~i, (3.32)

where l~r1 · · · l~rm are the vectors containing the position and orientation infor-
mation of each of the coils and l~i is a vector consisting of all active coil currents
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Figure 3.2. Single coil n including its admissible set of l~q coordinates Sn.

i1 · · · im. Moreover, since the vectors l~r1 · · · l~rm are constant, (3.32) can be sim-
plified to

l ~wtot = ~Γ
(

l~q
)

l~i . (3.33)

The set Sadm of admissible coordinates l~q for the basic configuration of active coils
described by (3.33) then becomes Sadm =

⋂m
n=1 Sn. The previous implies that, be-

cause all individual coils n = 1 · · ·m should be in their respective admissible sets
Sn, the admissible set of a group of active coils Sadm becomes smaller when the
amount of active coils becomes larger. An example of a basic configuration of active
square coils is shown in figure 3.3 in grey. The figure also shows the individual
admissible sets Sn of each coil. Moreover, the union of all these individual admissi-
ble sets defined as Sadm, which can be seen as the set of coordinates for which all
individual coil models are valid, is indicated in grey.

3.3 Direct wrench-current decoupling

The model derived in section 3.2 can be used for commutation purposes (as de-
scribed in section 2.1) where the system is now structured according to figure 3.4.
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Figure 3.3. Basic configuration using square coils with its admissible set Sadm of lx
and ly coordinates (in grey). The individual admissible sets of each coil Sn are also

shown, where for illustrative purposes the individual set of the (bold) top left coil S1 is

indicated with the thick lines.

The mapping Γ
(

l~q
)

has become linear with respect to the current vector ~i.

Figure 3.4. Simplified basic control configuration.

A possible method to linearize and decouple the planar actuator is to use an
inverse mapping of (3.33). The following results (until equation (3.39)) are identi-
cal to [36] but have been derived independently and in parallel by us. Nevertheless,
the derivation presented below is slightly different from [36] which uses Lagrange
multipliers. As the set of equations described by (3.33) is under-determined (there
are less DOF’s than active coils) it is possible to impose extra constraints to the sys-
tem. An interesting additional constraint is to minimize the sum of the ohmic losses
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in the coils

min
Γ( l~q) l~i= l ~wdes

∥

∥

∥

l~i
∥

∥

∥

2

R
=
∥

∥Γ
− ( l~q

)

l ~wdes

∥

∥

2

R
∀ l~q ∈ Sadm, (3.34)

where the ohmic losses are described by
∥

∥

∥

l~i
∥

∥

∥

2

R
which is the squared weighted 2-

norm of the active current vector
(

l~i
T

R
l~i
)

where R is a diagonal weighting matrix

of which the elements correspond to the resistances of each active coil. The matrix
Γ
− ( l~q

)

is a reflexive generalized inverse of Γ
(

l~q
)

[37]. Specifically, we make use
of the following result

Lemma 3.1. Let ‖~x‖N :=
√

~xH
N~x, be a (weighted) norm on ~x where N ≻ 0 and let

A~x = ~y. Suppose A has full row rank. Then there exists a linear map A
− such that

min
A~x=~y

‖~x‖N =
∥

∥A
−~y
∥

∥

N
. (3.35)

This map is given by

A
− = N

−1
A

H
(

AN
−1

A
H
)−1

, (3.36)

and satisfies AA
− = I, AA

−
A = A, (A−

A)
H
N = NA

−
A and is called the

(weighted) minimum norm reflexive generalized inverse (or weak generalized inverse)

of A.

Proof. The proof is given in [37, section 3.1, theorem 3.1.3]�

The solution to minimization problem (3.34) can be found using lemma 3.1.
The dimensions of Γ are #DOF × #coils so the rank of matrix Γ should equal the
amount of DOF for the system of equations to be consistent. Furthermore, R is a
diagonal matrix so the condition R ≻ 0 holds since all coil resistances are larger
than zero. Therefore,

Γ
− ( l~q

)

= R
−1

Γ
T
(

l~q
)

(

Γ
(

l~q
)

R
−1

Γ
T
(

l~q
)

)−1

∀ l~q ∈ Sadm. (3.37)

When assuming all resistances to be equal to RL (and positive) (3.34) simplifies to

min
Γ( l~q) l~i= l ~wdes

RL

∥

∥

∥

l~i
∥

∥

∥

2

= RL
∥

∥Γ
− ( l~q

)

l ~wdes

∥

∥

2 ∀ l~q ∈ Sadm, (3.38)
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and (3.37) simplifies to

Γ
− ( l~q

)

= Γ
T
(

l~q
)

(

Γ
(

l~q
)

Γ
T
(

l~q
)

)−1

∀ l~q ∈ Sadm . (3.39)

where the solution is now independent of RL.

3.3.1 Switching

This section shows a method which enables (in theory) unlimited stroke in the
xy-plane. It is an expansion of the inverse mapping (3.39) solving minimization
problem (3.38) which is defined for all l~q ∈ Sadm. When the set of admissible
coordinates l~q ∈ Sadm is large enough to form a connected set in the xy-plane, the
basic configurations defined in section 3.2 can be repeated along the xy-plane to
obtain a larger/infinite planar stroke.

A repeated basic configuration using square coils is shown in figure 3.5, where
the dots represent the origin of local coordinate systems l which belong to each re-
peated basic topology (which is shown in figure 3.3). Each local coordinate system
(which belongs to a state indicated by vector ~α) has its own set of desired admis-
sible coordinates S~α which should be S~α ⊆ Sadm to be able to form a connected
set of coordinates in the xy-plane. However, when the desired stroke is larger than

Figure 3.5. Basic square coil configuration repeated in the xy-plane.

one of the admissible sets l~q ∈ S~α additional constraints are necessary to derive
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a commutation algorithm. To derive these additional constraints it is necessary to
introduce the voltage equations of the ironless moving-magnet planar actuator

g~u = g
R

g~i+ g
L

d g~i

d t
+

d g ~Λm ( g~q)

d t
= g

R
g~i+ g

L
d g~i

d t
+J g ~Λm

( g~q)
d g~q

d t
, (3.40)

where the superscript g denotes the global coordinate system, g~λpm is the vector
containing the flux linkage of the flux caused by the permanent magnets linked with
the stator coils, J g ~Λm

is the Jacobian of the flux linkage with respect to the position
and orientation of the permanent-magnet array in global coordinates. The global
coordinate frame g is introduced to keep track of the global position of the magnet
array with respect to the repeating coil structure in local coil coordinates (e.g. see
figure 3.5 which shows the global coordinates for the square coil topology and
the centers of the nine local coordinate systems which are indicated by the dots).
The second term of equation 3.40 depends on the time derivative of the currents.
Therefore, since the amplifiers which are used to control the currents through the
coils have a limited voltage range, the current waveforms must be continuous and
have a limited time derivative.

Smooth position dependent weighting functions ∆
(

l~q
)

can be added to min-
imization problem (3.38) to guarantee smooth currents when switching from one
state to another. An example of these weighting functions is given in figure 3.6
where the weighting functions are applied to the coils at the edges of the active set
of coils. In this example the diagonal weighting matrix ∆

(

l~q
)

has the following
structure

∆
(

l~q
)

= ∆x (qx)∆y (qy) , (3.41)

where

∆x (qx) = diag (δx,l (qx) , δx,l (qx) , δx,l (qx) , δx,l (qx) , δx,l (qx) , . . .
1, 1, 1, 1, 1, . . .
1, 1, 1, 1, 1, . . .
1, 1, 1, 1, 1, . . .
δx,r (qx) , δx,r (qx) , δx,r (qx) , δx,r (qx) , δx,r (qx)) ,

(3.42)

with

δx,l (x) = 1
2 − 1

2 sin
(

2
3
π
τ x
)

,
δx,r (x) = 1

2 + 1
2 sin

(

2
3
π
τ x
)

,
(3.43)



34 Chapter 3. Linearization and decoupling of the wrench

Figure 3.6. Square coil topology with smooth weighting functions.

and where

∆y (qy) = diag (δy,l (qy) , 1, 1, 1, δy,r (qy) , . . .
δy,l (qy) , 1, 1, 1, δy,r (qy) , . . .
δy,l (qy) , 1, 1, 1, δy,r (qy) , . . .
δy,l (qy) , 1, 1, 1, δy,r (qy) , . . .
δy,l (qy) , 1, 1, 1, δy,r (qy)) ,

(3.44)

with

δy,l (y) = 1
2 − 1

2 sin
(

2
3
π
τ y
)

,
δy,r (y) = 1

2 + 1
2 sin

(

2
3
π
τ y
)

.
(3.45)

Using these functions, the minimization of the squared weighted 2-norm
l~i

T

∆
−1
(

l~q
)

l~i, which is now penalized with the inverse of the weighting matrix1

1With slight abuse of notation ∆
−1 is defined as the limit of the inverse of its diagonal elements,

including the special case lim
δ↓0

1

δ
= ∞, where δ is a scalar on the diagonal of ∆ (see theorem 3.2).
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∆
(

l~q
)

, becomes

min
Γ( l~q) l~i= l ~wdes

RL

∥

∥

∥

l~i
∥

∥

∥

2

∆−1( l~q)

= RL
∥

∥Γ
− ( l~q

)

l ~wdes

∥

∥

2

∆−1( l~q)
∀ l~q ∈ S~α,

(3.46)

which is now suboptimal with respect to the ohmic losses. The diagonal matrix
has the following property ∆

(

l~q
)

� 0. Therefore, the inverse of the diagonal

weighting matrix ∆
(

l~q
)

is redefined as the inverse of its individual diagonal el-

ements. Elements of the diagonal inverse matrix ∆
−1
(

l~q
)

can, therefore, also
become infinitely large. Lemma 3.1 is only valid for positive definite weighting ma-
trices and, therefore, it cannot be used directly to derive a solution to minimization
problem (3.46) when one or more elements of ~δ

(

l~q
)

are zero. The problem areas
are illustrated by figure 3.7 which is an example using the square coil topology.
The white coils in figure 3.7 indicate the coils which correspond to the weighting

Figure 3.7. Switch areas of the square coil topology.

functions δ
(

l~q
)

= 0. The areas So,~α, Se1,~α, Se2,~α and Se3,~α correspond to the
xy-coordinates associated with the respective combination of weighting functions
δ
(

l~q
)

= 0. An additional set of constraints to the topology can be derived to assure
that the solution presented by lemma 3.1 is valid to minimization problem (3.46).
To arrive at a solution the admissible set of xy-coordinates S~α is split into several
subsets.

Theorem 3.2. Let ∆

(

~δ
(

l~q
)

)

= diag
(

~δ
(

l~q
)

)

� 0 be a diagonal matrix, where the
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real values δ
(

l~q
)

on the diagonal are, therefore, given by ~δ
(

l~q
)

≥ ~0. Let So,~α ⊂ S~α
be an open set of admissible coordinates such that ∆

(

~δ
(

l~q
)

)

≻ 0 (i.e. all weighting

functions δ
(

l~q
)

are larger than zero).

Furthermore, let S~α = (
⋃m
n=1 Sen,~α) ∪ So,~α, where m is the number of edge sets

Sen,~α and define an edge set as a connected set of admissible coordinates for which each

possible switching situation results in the same combination of zero weighting functions

δ
(

l~q
)

in ~δ
(

l~q
)

(an example of these edge sets is given in figure 3.7). Moreover, let

each edge set n have its own local reduced model Γen

(

l~q
)

, belonging to its smaller

set of active coil currents corresponding to all δ
(

l~q
)

which are non-zero, indicated by

vector l~ien
.

Then the solution to the following minimization problem of the squared weighted

2-norm l~i
T

∆
−1
(

l~q
)

l~i

min
Γ( l~q) l~i= l ~wdes

RL

∥

∥

∥

l~i
∥

∥

∥

2

∆−1

(

~δ
−1

( l~q)
)

= RL

∥

∥

∥
Γ
−
(

l~q , ~δ
(

l~q
)

)

l ~wdes

∥

∥

∥

2

∆−1

(

~δ
−1

( l~q)
) ∀ l~q ∈ S~α,

(3.47)

which is now suboptimal with respect to the ohmic losses, becomes

Γ
− ( l~q

)

= ∆
(

l~q
)

Γ
T
(

l~q
)

(

Γ
(

l~q
)

∆
(

l~q
)

Γ
T
(

l~q
)

)−1

∀ l~q ∈ S~α , (3.48)

provided that the rank of matrix Γ
(

l~q
)

equals the number of DOF for all l~q ∈ So,~α
and that the rank of each reduced model Γen

(

l~q
)

also equals the amount of DOF for

all l~q belonging to each corresponding l~q ∈ Sen,~α.

Proof. Using lemma 3.1 the solution to minimization problem (3.47), excluding the

edge sets, equals

Γ
− ( l~q

)

= ∆
(

l~q
)

Γ
T
(

l~q
)

(

Γ
(

l~q
)

∆
(

l~q
)

Γ
T
(

l~q
)

)−1

∀ l~q ∈ So,~α, (3.49)

provided that the rank of Γ
(

l~q
)

equals the number of DOF and ∆
−1
(

l~q
)

≻ 0 for all
l~q ∈ So,~α.

The minimization problems of the edge sets can be defined as

min
Γen ( l~q) l~ien= l ~wdes

RL

∥

∥

∥

l~ien

∥

∥

∥

2

∆
−1

en

(

~δ
−1

en
( l~q)

)

= RL
∥

∥Γen

− ( l~q
)

l ~wdes

∥

∥

2

∆
−1

en

(

~δ
−1

en
( l~q)

) ∀ l~q ∈ Sen,~α,
(3.50)
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where ∆
−1
en

(

~δ
−1

en

(

l~q
)

)

≻ 0 again is a diagonal weighting matrix where the elements

are given by ~δ
−1

en

(

l~q
)

which are all corresponding non-zero elements of ~δ
(

l~q
)

. Ac-

cording to lemma 3.1, the solutions of (3.50) are given by

Γ
−
en

(

l~q , ~δen

)

= ∆en

(

~δen

)

Γ
T

en

(

Γen
∆en

(

~δen

)

Γ
T

en

)−1

∀ l~q ∈ Sen,~α, (3.51)

provided that the rank of Γen
equals the amount of DOF for all l~q ∈ Sen,~α.

Let l~ien0 be the vector of coils that are infinitely penalized (in the example

shown in figure 3.7 this is indicated in red for each switching situation) and let ~δen0

be the vector containing the corresponding weighting functions δ
(

l~q
)

= 0. Let the

vector ~δ
(

~δen
, ~δen0

)

be constructed out of the elements of the vectors ~δen
and ~δen0.

When defining the inverse of a diagonal matrix as the inverse of its individual diagonal

elements δ and using lim
δ↓0

1
δ = ∞, the following assumption can be made

lim
~δen0( l~q)↓~0

Γ
−
(

l~q , ~δ
(

~δen
, ~δen0

))

= Γ
−
(

l~q , ~δ
(

~δen
, ~0
))

∀ l~q ∈ Sen,~α, (3.52)

meaning that the limit of the weighting functions of the edge sets going to zero (result-

ing in an infinite penalty on the edge currents l~ien0) should converge. Assuming that

(3.52) holds, the following should also be true

lim
~δen0( l~q)↓~0

∥

∥

∥Γ
−
(

l~q , ~δ
(

~δen
, ~δen0

))∥

∥

∥

2

∆−1

(

~δ
−1
(

~δ
−1

en
,~δ

−1

en0

)) =

∥

∥

∥
Γ
−
(

l~q , ~δ
(

~δen
, ~0
))∥

∥

∥

2

∆−1

(

~δ
−1
(

~δ
−1

en
, ~∞

)) ∀ l~q ∈ Sen,~α.
(3.53)

Assume that the conditions for (3.51) hold, then (3.52) holds, resulting in the follow-
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ing equations

min
Γen ( l~q) l~ien= l ~wdes

RL

∥

∥

∥

l~ien

∥

∥

∥

2

∆
−1

en

(

~δ
−1

en

) =

min
Γ( l~q) l~i= l ~wdes

l~ien0=~0

RL

∥

∥

∥

l~ien

∥

∥

∥

2

∆
−1

en

(

~δ
−1

en

) =

lim
~δen0( l~q)↓~0

min
Γ( l~q) l~i= l ~wdes

RL

∥

∥

∥

l~i
∥

∥

∥

2

∆−1

(

~δ
−1
(

~δ
−1

en
,~δ

−1

en0

)) =

lim
~δen0( l~q)↓~0

∥

∥

∥
Γ
−
(

l~q , ~δen0

)∥

∥

∥

2

∆−1

(

~δ
−1
(

~δ
−1

en
,~δ

−1

en0

)) =

∥

∥

∥Γ
−
(

l~q , ~0
)∥

∥

∥

2

∆−1

(

~δ
−1
(

~δ
−1

en
, ~∞

)) =

=
∥

∥

∥Γ
−
(

l~q , ~0
)∥

∥

∥

2

∆−1

(

~δ
−1
(

~δ
−1

e0n
, ~∞

)) ∀ l~q ∈ Sen,~α.

(3.54)

Given S~α = (
⋃m
n=1 Sen,~α) ∪ So,~α, where m is the amount of edge sets, this proofs that

(3.48) is the required generalized inverse �

The square coil topology can have an infinite stoke in the xy-plane using the
derived commutation algorithm. The algorithm smoothly forces the edge currents
to zero and the structure repeats itself in the xy-plane. This can also be shown by
looking at the hybrid automaton [3] shown in figure 3.8 with the guards (switching
conditions):

Gxp,yp =
{{

lqx,
lqy
}

∈ R
2
∣

∣
lqx >

3
4τ ∧ lqy >

3
4τ
}

,
Gxp =

{{

lqx,
lqy
}

∈ R
2
∣

∣
lqx >

3
4τ ∧ − 3

4τ <
lqy ≤ 3

4τ
}

,
Gxp,yn =

{{

lqx,
lqy
}

∈ R
2
∣

∣
lqx >

3
4τ ∧ lqy ≤ − 3

4τ
}

,
Gyn =

{{

lqx,
lqy
}

∈ R
2
∣

∣− 3
4τ <

lqx ≤ 3
4τ ∧ lqy ≤ − 3

4τ
}

,
Gxn,yn =

{{

lqx,
lqy
}

∈ R
2
∣

∣
lqx ≤ − 3

4τ ∧ lqy ≤ − 3
4τ
}

,
Gxn =

{{

lqx,
lqy
}

∈ R
2
∣

∣
lqx ≤ − 3

4τ ∧ − 3
4τ <

lqy ≤ 3
4τ
}

,
Gxn,yp =

{{

lqx,
lqy
}

∈ R
2
∣

∣
lqx ≤ 3

4τ ∧ lqy >
3
4τ
}

,
Gyp =

{{

lqx,
lqy
}

∈ R
2
∣

∣− 3
4τ <

lqx ≤ 3
4τ ∧ lqy >

3
4τ
}

,

(3.55)

and where the reset maps which update the parameters during a switch are given
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by

Rxp,yp =
{({

~α−} ,
{

~α+}) ,
({

l~q−
xy

}

,
{

l~q+
xy

})∣

∣ ~α−, ~α+ ∈ Z
2∧

l~q−
xy,

l~q+
xy ∈ R

2 ∧ ~α+ = ~α− +

[

1
1

]

∧ l~q+
xy = l~q−

xy −
[

3
2τ
3
2τ

]}

,

Rxp =
{({

~α−} ,
{

~α+}) ,
({

l~q−
xy

}

,
{

l~q+
xy

})∣

∣ ~α−, ~α+ ∈ Z
2∧

l~q−
xy,

l~q+
xy ∈ R

2 ∧ ~α+ = ~α− +

[

1
0

]

∧ l~q+
xy = l~q−

xy −
[

3
2τ
0

]}

,

Rxp,yn =
{({

~α−} ,
{

~α+}) ,
({

l~q−
xy

}

,
{

l~q+
xy

})∣

∣ ~α−, ~α+ ∈ Z
2∧

l~q−
xy,

l~q+
xy ∈ R

2 ∧ ~α+ = ~α− +

[

1
−1

]

∧ l~q+
xy = l~q−

xy −
[

3
2τ

− 3
2τ

]}

,

Ryn =
{({

~α−} ,
{

~α+}) ,
({

l~q−
xy

}

,
{

l~q+
xy

})∣

∣ ~α−, ~α+ ∈ Z
2∧

l~q−
xy,

l~q+
xy ∈ R

2 ∧ ~α+ = ~α− +

[

0
−1

]

∧ l~q+
xy = l~q−

xy −
[

0
− 3

2τ

]}

,

Rxn,yn =
{({

~α−} ,
{

~α+}) ,
({

l~q−
xy

}

,
{

l~q+
xy

})∣

∣ ~α−, ~α+ ∈ Z
2∧

l~q−
xy,

l~q+
xy ∈ R

2 ∧ ~α+ = ~α− +

[

−1
−1

]

∧ l~q+
xy = l~q−

xy −
[

− 3
2τ

− 3
2τ

]}

,

Rxn =
{({

~α−} ,
{

~α+}) ,
({

l~q−
xy

}

,
{

l~q+
xy

})∣

∣ ~α−, ~α+ ∈ Z
2∧

l~q−
xy,

l~q+
xy ∈ R

2 ∧ ~α+ = ~α− +

[

−1
0

]

∧ l~q+
xy = l~q−

xy −
[

− 3
2τ
0

]}

,

Rxn,yp =
{({

~α−} ,
{

~α+}) ,
({

l~q−
xy

}

,
{

l~q+
xy

})∣

∣ ~α−, ~α+ ∈ Z
2∧

l~q−
xy,

l~q+
xy ∈ R

2 ∧ ~α+ = ~α− +

[

−1
1

]

∧ l~q+
xy = l~q−

xy −
[

− 3
2τ

3
2τ

]}

,

Ryp =
{({

~α−} ,
{

~α+}) ,
({

l~q−
xy

}

,
{

l~q+
xy

})∣

∣ ~α−, ~α+ ∈ Z
2∧

l~q−
xy,

l~q+
xy ∈ R

2 ∧ ~α+ = ~α− +

[

0
1

]

∧ l~q+
xy = l~q−

xy −
[

0
3
2τ

]}

.

(3.56)
The (smooth) general coordinates can be reconstructed from the local coordinates
in the following way

g~qxy = 3
2τ ~α + l~qxy + q~qxy,0. (3.57)

Due to the fact that the hybrid automaton of the square coil topology shown in
figure 3.8 only needs one state to obtain repetition, the use of a hybrid automaton to
describe the system seems unnecessary. However, when a more complex topology is
used it is a very useful tool to check the well-posedness of the switching strategy. In
this case this means checking if all the switching situations can occur and prevent
situations in which the system switches infinitely. To illustrate this, a topology using
rectangular coils is introduced. Figure 3.9 shows the two basic configurations of ac-
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Figure 3.8. Automaton of the square coil topology.

tive rectangular coils (with their respective admissible sets of coordinates Sadm1 and
Sadm2) which, when combined, result in a repeatable topology. A repeated topol-
ogy comprising of 84 stator coils, hereafter called the HPPA (Herringbone Pattern
Planar Actuator), is shown in figure 3.10. The 84 stator coils shown in figure 3.10
result in 2x14 repeated local coil coordinate systems l of which the origins are in-
dicated by the dots. Each local coil coordinate system is corresponding to an active
coil set of 24 active stator coils (which are shown in figure 3.9). The xy-coordinates
of the desired sets of admissible coordinates necessary to obtain repetition Sodd and
Seven (i.e. the sets which can form a connected set of xy-coordinates as explained
at the beginning of this section) are indicated in figure 3.10, where Sodd ⊆ Sadm1

and Seven ⊆ Sadm2. Again smooth switching functions δ
(

l~q
)

are implemented to
the edge coils of both basic HPPA topologies. The switching functions are shown in
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Figure 3.9. Two basic configurations (at the bottom of the picture) using rectangular

coils with their admissible sets Sadm1 and Sadm2 of lqx and lqy coordinates (in grey)

which, when combined, form a repeatable coil topology in the xy-plane (at the top of

the picture). The individual admissible sets of each coil Sn are also shown for both

basic configurations.

figure 3.12. Figure 3.13 again shows the two basic topologies with their, respective,
edge configurations. There are now two optimization problems, corresponding to
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the two basic configurations

min
Γodd( l~q) l~i~αodd

= l ~wdes

RL

∥

∥

∥

l~i~αodd

∥

∥

∥

2

∆−1

(

~δ
−1

( l~q)
)

= RL

∥

∥

∥
Γ
−
odd

(

l~q , ~δ
(

l~q
)

)

l ~wdes

∥

∥

∥

2

∆−1

(

~δ
−1

( l~q)
) ∀ l~q ∈ S~αodd

,

min
Γeven( l~q) l~i~αeven= l ~wdes

RL

∥

∥

∥

l~i~αeven

∥

∥

∥

2

∆−1

(

~δ
−1

( l~q)
)

= RL

∥

∥

∥Γ
−
even

(

l~q , ~δ
(

l~q
)

)

l ~wdes

∥

∥

∥

2

∆−1

(

~δ
−1

( l~q)
) ∀ l~q ∈ S~αeven

,

(3.58)

which, according to (3.48), have the following two solutions

Figure 3.10. Herringbone Pattern Planar Actuator (HPPA) comprising of basic rect-

angular coil configurations (as shown in figure 3.9) repeated in the xy-plane.



3.3. Direct wrench-current decoupling 43

Γ
−
odd

(

l~q
)

=

∆
(

l~q
)

Γ
T

odd

(

l~q
)

(

Γodd

(

l~q
)

∆
(

l~q
)

Γ
T

odd

(

l~q
)

)−1

∀ l~q ∈ S~αodd
,

Γ
−
even

(

l~q
)

=

∆
(

l~q
)

Γ
T

even

(

l~q
)

(

Γeven

(

l~q
)

∆
(

l~q
)

Γ
T

even

(

l~q
)

)−1

∀ l~q ∈ S~αeven
.

(3.59)

The automaton corresponding to the HPPA (which contains two states) is given by
figure 3.11.

Figure 3.11. Automaton of the HPPA topology.
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Figure 3.12. HPPA topology with smooth weighting functions.

Figure 3.13. Switch areas of the HPPA topology.
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3.4 Force and torque decomposition

This section links the direct wrench-current decoupling to the traditional dq0 trans-
formation described in chapter 2. The reason for this is that the decomposition
which links the direct wrench-current decoupling to the dq0 transformation results
in useful design criteria with respect to performance as wel as controllability.

First, the solution to minimization problem (3.47) is recalled

Γ
− ( l~q

)

= ∆Γ
T

(

Γ∆Γ
T

)−1

∀ l~q ∈ S~α, (3.60)

where for notational simplicity the position dependency
(

l~q
)

has been neglected in
this section. When the wrench vector is split in the force and the torque components
the following equations can be defined

~w = Γ
l~i =

[

~F
~T

]

=

[

ΓF

ΓT

]

l~i, (3.61)

where (3.60) can be rewritten as

Γ
− ( l~q

)

= ∆
[

Γ
T

F Γ
T

T

]

[

ΓF∆Γ
T

F ΓF∆Γ
T

T

ΓT∆Γ
T

F ΓT∆Γ
T

T

]−1

∀ l~q ∈ S~α. (3.62)

Using the Schur complement (see appendix A) it is possible to calculate the inverse
of the partitioned matrix resulting in the following solution

l~i = Γ
−
T
~T des +

(

I − Γ
−
TΓT

)

Γ
−
F
~F des, (3.63)

with

Γ
−
F = ∆Γ

T

F

(

ΓF∆Γ
T

F

)−1

, (3.64)

Γ
−
T = Φ

−
Γ

T

T

(

ΓTΦ
−
Γ

T

T

)−1

, (3.65)

Φ
− =

(

I − Γ
−
FΓF

)

∆, (3.66)

provided that ΓF∆Γ
T

F and ΓTΦ
−
Γ

T

T are nonsingular. Moreover, equation (3.63)
can be seen as the solution of the following two minimization problems

min
ΓF

l~i= l~F des

RL

∥

∥

∥

l~i
∥

∥

∥

2

∆−1

= RL

∥

∥

∥
Γ
−
F

l~F des

∥

∥

∥

2

∆−1

∀ l~q ∈ S~α , (3.67)
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min
ΓT

l~i= l~T des

RL

∥

∥

∥

l~i
∥

∥

∥

2

Φ
= RL

∥

∥

∥
Γ
−
T

l~T des

∥

∥

∥

2

Φ
∀ l~q ∈ S~α , (3.68)

where the currents as a result of the reference force minimization are projected
onto the null-space of the torque solution. Solution (3.63) can be split into three
parts

• Firstly,
l~iF = Γ

−
F
~F des, (3.69)

describes the currents l~iF which cause a reference force ~F des. Equation
(3.69) provides a solution to minimization problem (3.67). Moreover, when
all currents are equally penalized (i.e. ∆ = I), the basic topology consists
of a group of basic forces (as described in section 2.4) and when the angles
are defined as φ = −π/4 or 0 (depending on the topology) and ψ = θ = 0
the solution given by (3.69) is equal to the sum of the basic forcer solutions
obtained when applying the dq0 transformation described in chapter 2. The
equality is obtained since in the special cases described in section 2.4 the
dq0 transformation can be seen as a constrained minimization of the ohmic
losses of a basic forcer. When the same constraints of the dq0 transformation
are met by (3.67) (e.g. equally penalized coils consisting of a group of basic
forcers with φ = −π/4 or 0 and ψ = θ = 0) the solution is equivalent.
An example of a group of four by four square coils, which is shown in
figure 3.14, is used to illustrate the equivalence. When assuming ψ = θ =

Figure 3.14. A basic topology consisting of four basic forcers (top view without trans-

lator).

φ = 0, ΓF can be scaled as follows

Γ
#
F

(

lqx,
lqy
)

= Λ
−1
(

lqz
)

ΓF, (3.70)
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where

Λ
−1
(

lqz
)

=
τ

π

1

λpm
exp

(√
2π

τ
lqz

)





1 0 0
0 1 0

0 0
√

2
2



 , (3.71)

is derived using (2.48). The solution to minimization problem (3.67) (using
∆ = I) then simplifies to

Γ
−
F = Γ

#−
F

(

lqx,
lqy
)

Λ
−1
(

lqz
)

= Γ
#T

F

(

lqx,
lqy
)

(

Γ
#
F

(

lqx,
lqy
)

Γ
#T

F

(

lqx,
lqy
)

)−1

Λ
−1
(

lqz
)

= Γ
#T

F

(

lqx,
lqy
)





1
4 0 0
0 1

4 0
0 0 1

4



Λ
−1
(

lqz
)

,

(3.72)

which can be explained by the fact that after normalization the matrix Γ
#
F

can be split into four identical orthonormal matrices (which have the prop-
erty that A

−1 = A
T) belonging to the four forcers. The factors 1

4 result
from the fact that each forcer delivers one fourth of the total force. More-
over, in this case (since the forcers are all equally distributed) the system
simplifies even further into

Γ
−
F = Γ

#T

F

(

lqx,
lqy
)





1
4 0 0
0 1

4 0
0 0 1

4



Λ
−1
(

lqz
)

=









1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1









· efghT dqxqy0

(

lqx − cx,
lqy − cy

)









0 0 − 1
4

1
4 0 0
0 1

4 0
0 0 0









Λ
−1
(

lqz
)

,

(3.73)

where efghT dqxqy0 is derived in section 2.4 and where cx and cy are con-
stant position offsets to match both coordinate systems.
In case of the two basic HPPA topologies (shown in figure 3.9), the result
can be derived in a similar way, where

Λ
−1
(

lqz
)

=
2

3

τn
π

1

λpm
exp

(

π

τn
lqz

)





1 0 0
0 1 0
0 0 1



 , (3.74)



48 Chapter 3. Linearization and decoupling of the wrench

can be derived using (2.51). The solution to minimization problem (3.67)
(using ∆ = I) then simplifies to

Γ
−
F = Γ

#−
F

(

lqx,
lqy
)

Λ
−1
(

lqz
)

= Γ
#T

F

(

lqx,
lqy
)

(

Γ
#
F

(

lqx,
lqy
)

Γ
#T

F

(

lqx,
lqy
)

)−1

Λ
−1
(

lqz
)

= Γ
#T

F

(

lqx,
lqy
)

Λ
−1
(

lqz
)





1
4 0 0
0 1

4 0
0 0 1

8



 .

(3.75)

which can be explained by looking at figure 3.9, where for each of the two
basic topologies there are four groups of forcers which can produce force
in the xz-plane, and four forcers which can produce force in the yz-plane,
respectively, resulting in the factors 1

4 in the x- and y-directions and a factor
1
8 in the z-direction.

• Secondly,

l~iT0F = −Γ
−
TΓTΓ

−
F
~F des , (3.76)

describes the currents l~iT0F which correct for the unwanted disturbance
torque, due to the force distribution over the translator, without produc-
ing any additional force components. Ideally, these currents should be zero
since this is an unwanted effect. However, in moving-magnet planar ac-
tuators this is not possible due to the variable torque arm. A good design
criteria is to keep this term as small as possible (especially with respect to a
pure lifting force). The 2-norm of this term is a good design criteria. The 2-
norm will increase, for acceleration forces in the xy-plane, when the height
(in the z direction) of the mass center point of the translator is increased.
Therefore, a good design criteria is to keep the 2-norm of this terms small
with respect to the 2-norm of the first term discussed above.

• Lastly,
l~iT = Γ

−
T
~T des, (3.77)

describes the currents l~iT which cause a desired reference torque ~T des and
no force.



Chapter 4

Design of controllable

topologies

4.1 Introduction

An interesting challenge in designing a moving-magnet planar actuator is the design
of the coil layout in the stator plane while keeping the controllability in mind. This
chapter makes use of the direct wrench-current decoupling of chapter 3 as well as
the dq0 transformation derived in chapter 2 to verify the controllability of a design.
Part of the design method and some of the resulting topologies have been patented
[21] and published [44, 42, 19, 45].

In section 4.2, the notion of (state) controllability is introduced and applied
to the planar actuator models. In section 4.3 the theory is expanded to get a better
idea of the quality of the derived design with respect to the error sensitivity of the
decoupling algorithm. Section 4.4 applies the theory derived in sections 4.2 and 4.3
to the square coil topology and the HPPA (Herringbone Pattern Planar Actuator).
Section 4.5 shows how to calculate the worst case (smallest) acceleration levels
which can be obtained in the xy-plane for a given design, decoupling and maximum
current specification.

4.2 State controllability conditions of a planar actuator

Throughout this chapter the notion of controllability is used. Therefore, first an in-
troduction about the notion of (state) controllability (supposing that you know/can
measure the states) is given

49
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Definition 4.1. State controllability. (S. Skogestad et al. [38, definition 4.1]) The

dynamical system ~̇x = A~x + B~u, or equivalently the pair (A,B), is said to be state

controllable if, for any initial state ~x (0) = ~x0, any time t1 > 0 and any final state ~x1,

there exists an input ~u (t) such that ~x (t1) = ~x1. Otherwise the system is said to be

uncontrollable.

The system (A,B) is state controllable if and only if the controllability matrix

C =
[

B AB A
2
B · · ·An−1

B
]

, (4.1)

has rank n (full row rank) where n is the number of states.

Definition 4.2. The planar actuators considered are a class of nonlinear systems which

can be defined as a combination of a linear system (A,B) with an additional input

mapping which is linear with respect to the current input vector l~i, but nonlinear with

respect to the position and orientation vector l~q

~̇x = A~x + B
l ~w, (4.2)

~x =
[

l~qT l~̇qT
]T

, (4.3)

l ~w = Γ
(

l~q
)

l~i, (4.4)

(4.5)

where l ~w =
[

l~F
T

l~T
T
]T

is the wrench vector consisting of the force and torque

components on the mass center point of the translator (which is considered to be a

rigid body). With the system matrices

A =

[

0 I

0 0

]

,

B =

[

0

M
−1

]

,

(4.6)

where M is a diagonal matrix consisting of the mass and inertias corresponding to

each degree of freedom.

To derive a notion of controllability of this system the following definitions are
introduced.

Definition 4.3. (H. Nijmeijer et al. [32, section 3.1]) Let a smooth affine nonlinear
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control system be given by

~̇x = ~f (~x) +
m
∑

j=1

~gj (~x)uj ,

~u =
[

u1 · · · um
]T ∈ U ⊂ R

m,

(4.7)

where ~x are local coordinates for a smooth manifold M (the state space manifold),

and ~f ,~g1,· · · ,~gm are smooth vector fields on M. ~f is called the drift vector field, and
~gj , the input vector fields.

Definition 4.4. Controllability (H. Nijmeijer et al. [32, definition 3.2]) The non-

linear system of definition 4.3 is called controllable if for any two points ~x1,~x2 in M
there exists a finite time tf and an admissible control function ~u : [t0, tf ] → U such

that ~x (tf , t0, ~x1, ~u) = ~x2

The simplest approach to study controllability of the nonlinear system of def-
inition 4.3 is to consider its linearization.

Proposition 4.5. (H. Nijmeijer et al. [32, proposition 3.3]) Consider the nonlinear

system of definition 4.3, and let ~x0 ∈ M satisfy ~f (~x0) = ~0. Furthermore, let U
contain a neighborhood V of ~u = ~0. Suppose that the linearization of the nonlinear

system of definition 4.3 in ~x0 and ~u = ~0

~̇z = J~f (~x) |~x=~x0
~z +

m
∑

j=1

~gj (~x0) vj ,

~z ∈ R
n, ~v ∈ R

m,
(4.8)

is a controllable linear system (where J~f (~x) is defined as the Jacobian of the drift

vectorfield with respect to the local coordinates ~x of the smooth manifold M). Then

for every tf > 0 and ǫ > 0 the set of points which can be reached from ~x0 in time tf
using admissible control functions u (·) : [0, tf ] → V , satisfying ‖~u (t)‖ < ǫ, contains

a neighborhood of ~x0.

This does not imply that if the linearized system is uncontrollable, the non-
linear system is uncontrollable. However, in the case of a planar actuator, it is de-
sirable for the system to be holonomic2, which in this case means that for every ad-
missible position it should always be possible to move in all six degrees of freedom

2An example of a non-holonomic system is a car, which cannot directly move laterally resulting in an
uncontrollable linearized system, although, (fortunately) it is controllable (the proof is given in [32]).
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directly. More formally it means that the kinematic constraints should only depend
on time and the generalized coordinates, and they should not depend on their gen-
eralized velocities (time derivatives of the generalized coordinates) [7]. Therefore,
in the case of a the planar actuator, proposition 4.5 is a useful test method.

This can be seen when applying proposition 4.5 to the planar actuator system
(definition 4.2) since

~f (~x0) = ~0, (4.9)

holds for all admissible coordinates because

~f (~x0) = A~x0 =

[

0 I

0 0

] [

l~q0

~0

]

= ~0. (4.10)

Moreover,
J~f (~x) |~x=~x0

= A, (4.11)

so ~z can be substituted by ~x (in (4.8)). Now (4.8) can be simplified into

~̇x = A~x + BΓ
(

l~q0

)

l~i, (4.12)

using definition 4.1 this results in the rank condition

rank
([

BΓ
(

l~q
)

ABΓ
(

l~q
)

A
2
BΓ

(

l~q
)

· · ·A(2#DOF−1)
BΓ

(

l~q
) ])

=

rank

([

0 M
−1

Γ
(

l~q
)

M
−1

Γ
(

l~q
)

0

])

= 2#DOF ∀ l~q ∈ S~α.
(4.13)

which simplifies into the following rank condition

rank
(

M
−1

Γ
(

l~q
))

= #DOF ∀ l~q ∈ S~α. (4.14)

So, for the planar actuator to be (state) controllable, the matrix should have full
row rank for all admissible coordinates l~q ∈ S~α. Since M

−1 is a diagonal matrix
with full rank, the condition can be simplified to

rank
(

Γ
(

l~q
))

= #DOF ∀ l~q ∈ S~α. (4.15)

The condition derived above is the same as stating that there exists a reflexive
generalized inverse which results in the following condition

Γ
(

l~q
)

Γ
− ( l~q

)

= I ∀ l~q ∈ S~α, (4.16)

which can be checked using the theory of chapter 3. Moreover, when switching is
necessary to increase the stroke in the xy-plane there should exist a reflexive gener-
alized inverse which also allows for smooth switching of the currents (as discussed
in section 3.3.1).
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4.3 Error sensitivity of weighted minimal norm inverses and
solutions

In the introduction of this chapter the concept of controllability is introduced. The
condition given by (4.16) shows a test to determine whether or not a planar ac-
tuator is controllable. However, this only provides a yes or no decision about the
controllability. To compare various designs it is desirable to have a design parame-
ter which is a measure of the controllability. A possibility is to look at how reliable
the diagonalization given by (4.16) will be under uncertainties. Without knowledge
of the structure of these uncertainties a qualitative indication of the decoupling can
be obtained by looking at the error sensitivity of the generalized inverse which is
used in the decoupling. For this reason the condition number is introduced

Definition 4.6. With slight abuse of notation the condition number for matrix inver-

sion with respect to the induced matrix 2-norm ‖·‖ is given by the quantity

κ2

(

A
−,A

)

≡
{

‖A−‖ ‖A‖ , if rank (A−) = n
∞, if rank (A−) < n

, (4.17)

where the induced matrix 2-norm ‖·‖ is defined as the maximum singular value of

the matrix. Matrix A
− is defined as a weighted minimum norm reflexive generalized

inverse of A (see lemma 3.1). Where A is defined as an n×m matrix where n ≤ m.

The abuse of notation is caused by the fact that if ‖A−‖ 6= 1
σmin(A) , where

σmax (A) and σmin (A) are the maximum and minimum singular values of A, the

condition number is defined differently compared to its usual notation which is

κ2 (A) ≡ σmax (A)

σmin (A)
, (4.18)

(which can be checked using singular value decomposition).

If κ2 (Γ−,Γ) is infinitely large, the condition given by (4.16) is not met, and
the system is therefore not state controllable. Moreover, the following theorem can
be used to derive an upper bound on the errors resulting from a matrix inverse.

Theorem 4.7. Let A be a matrix of size n×m with m > n and let A
− be a weighted

minimum norm reflexive generalized inverse of A (see lemma 3.1). Now suppose the

real system should have been

(A + E) ~̂x = ~b + ~e, (4.19)
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instead of

A~x = ~b, (4.20)

then for small errors ‖E‖ ≪ ‖A‖
κ2(A) an approximation of the upper bound on the

relative error is given by

‖~̂x−~x‖
‖~x‖ ≈

∥

∥

∥

(

(I+A−E)
−1

A−−A−
)

~b+(I+A−E)
−1

A−~e
∥

∥

∥

‖~x‖

< κ2 (A−,A)

(

‖E‖
‖A‖ + ‖~e‖

‖~b‖

)

.
(4.21)

Proof. The proof is given in appendix B �

It is not useful to apply the derived theorem directly to the matrix Γ. This is
caused by the fact that the vector ~w, which is transformed to the desired current set-
point by matrix Γ

−, consists of different quantities (force and torque components)
having different units (N and Nm). Therefore, scaling is very important. Especially
when comparing various actuator designs. To obtain a valid result, a scaling needs
to be introduced which ”normalizes” the wrench vector. The first step in scaling is
to use the Mass/Inertia matrix M

l~̈q = M
−1

Γ
(

l~q
)

l~i, (4.22)

resulting in the acceleration vector, which is here defined as the second time deriva-
tive of the position vector, indicated by l~̈q. This still results in different units ( m

s2 and
rad
s2 ). A possible solution is to use an effective arm in order to match the different

units. In this chapter the arms are chosen in such a way that the mechanical power
for each degree of freedom is equally penalized

Pm = lFxyz
lq̇xyz = lTψ

lq̇ψ = lTθ
lq̇θ = lTφ

lq̇φ, (4.23)

resulting in the following effective arms

lψ =
√

Iψ
M ,

lθ =
√

Iθ
M ,

lφ =
√

Iφ
M ,

(4.24)

where M is the mass of the translator and Iψ, Iθ and Iφ are the moments of inertia
about the mass center point of the translator in local coil coordinates l, respectively.
This results in a scaling matrix

N = diag (1, 1, 1, lψ, lθ, lφ) . (4.25)
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The normalized matrices Γ
∗ and Γ

∗− then become

Γ
∗ = NM

−1
Γ,

Γ
∗− = Γ

−
MN

−1.
(4.26)

An approximate upper bound on the relative error of the 2-norm of the active cur-
rent vector using the normalized decoupling can now be calculated by

κ2

(

Γ
∗−,Γ∗)





‖E∗‖
‖Γ∗‖ +

∥

∥~e∗∥
∥

∥

∥

∥

l~̈q
∗∥
∥

∥



 . (4.27)

The sensitivity of the error matrix E and error vector ~e to real design variables
is also important when comparing different designs. The sensitivity of the decou-
pling with respect to e.g. the position errors of the stator coil positions depends on
amongst others the pole pitch τ and the amount of active coils. The relative error
of the wrench also depends on the model error due to neglected higher harmonics
of the magnetic flux density of the magnet array in combination with the stator coil
topology itself. A fair (exact) comparison between different topologies using only
the condition number is, therefore, not possible. Moreover, when more details are
available about the desired trajectories and the noise distribution over the degrees
of freedom, it is also possible to use (setpoint dependent) scaling factors to deter-
mine the best scaling ratios. Nevertheless, in the next section it is shown that the
condition number is still a useful design parameter.

4.4 Controllable 6 DOF basic topologies

In this section the design of a basic topology is discussed which allows for the
translator to be (state) controllable in six degrees of freedom over the full range of
admissible coordinates.

In order to do so the example of the 4 × 4 square coil topology is used, which
was introduced in section 3.4 (the stator coils of the basic topology are again shown
in figure 4.1). It is shown that when only the force components and no switching
is considered the basic topology can be expressed as four basic forcers (as defined
in chapter 2). Since each of these basic forcers can produce a position independent
force vector, presumably with a different effective arm, it is safe to assume that
the torque components can also be controlled. Moreover, since the ohmic losses
of a single basic forcer are a factor two smaller when a force in the z-direction is
required compared to an equal force in the x- or y-directions it is safe to assume
that it will be effective with respect to producing a levitation force.
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In order to achieve long-stroke movement the switching strategy of chapter 3
can be used. Using theorem 3.2 it can be shown that in order for the system to be
controllable it is necessary that the reduced matrices (at the switching boundaries)
should also be properly conditioned. The basic 4×4 topology is again shown at the

Figure 4.1. All topologies which need to be controllable for long-stroke motion includ-

ing their necessary admissible sets (in black).

bottom left of figure 4.1. The other three situations show the reduced edge sets
with their respective switching areas. At the switching areas the system does not
consist of four basic forcers. The worst case situation (the top right situation of fig-
ure 4.1) is shown again in figure 4.2 where it is shown with two different magnet
arrays. The left situation shows an uncontrollable system and the right situation
shows a controllable situation. The difference between the systems is the magnet
orientation with respect to the coils. In the uncontrollable case only the middle coil
is located at a direct axis (capable of producing a lift force), the four corner coils
are located at a zero axis (not capable of producing any force), and the other coils
are located at either a qx or a qy quadrature axis (only capable of producing a force
along the x- or y-axis, respectively). Since only one coil can produce a lift force
the torque components cannot be controlled and, therefore, the nine coil topology
is uncontrollable at that position. The previous can also be checked using the con-
dition number defined by definition 4.6. When the condition number approaches
infinity the system becomes uncontrollable. The force components are controllable
which can be seen from the condition number plot shown in figure 4.3. The value of
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the condition number only looking at the force components of this topology without
switching is equal to

√
2 independent of position. Therefore, the condition number

with switching will be ≥
√

2 but it should have the same order of magnitude. From
figure 4.3 it can be seen that the decoupling is properly conditioned when only
force components are considered. When including the torque components the to-
tal system becomes uncontrollable which can be seen from the condition number
plot shown in figure 4.5 of which the condition number goes towards infinity at the
edges.

The other situation (on the right in figure 4.2) has four coils located at the
direct axis and four coils located at the quadrature axis and only the coil in the
middle is located at a zero axis. Since there are now four coils which can produce
lift, the torque components about the x- and y-axis can be controlled. The torque
about the z-axis can also be controlled using the four coils which can produce a force
in either the x- or y-direction. A similar analysis can be made of the other edge sets
(shown in figure 4.1), which are also controllable. The condition numbers of the
forces and the total system of this controllable version of the 4× 4 setup are shown
in figures 4.4 and 4.6, respectively.

Figure 4.2. Uncontrollable topology (left) and controllable topology (right) depending

on the relative magnet-plate position.

Another parameter which determines the degree of controllability is the weight-
ing matrix ∆

(

l~q
)

which is necessary for the switching. In section 3.4 it is shown
that part of the commutation of a 4 × 4 square coil topology can be written as four
basic square coil forcers (which where defined in section 2.4). However, one of the
conditions for this to hold is that there should be an equal weight applied to all in-
dividual coils. A possible method to relax this condition is to use an additional row
and column of coils which results in the 5×5 basic topology which is used as an ex-
ample throughout chapter 3. When the window functions (defined in section 3.3.1)
which are used to weigh the currents in the decoupling are chosen symmetrically,
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Figure 4.3. The condition number of the force decoupling applied to the square coil

topology shown in figure 4.1 with the orientation of the magnet array shown at the

left of figure 4.2.

Figure 4.4. The condition number of the force decoupling applied to the square coil

topology shown in figure 4.1 with the orientation of the magnet array shown at the

right of figure 4.2.
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Figure 4.5. The condition number of the 6-DOF decoupling applied to the square coil

topology shown in figure 4.1 with the orientation of the magnet array shown at the

left of figure 4.2.

Figure 4.6. The condition number of the 6-DOF decoupling applied to the square coil

topology shown in figure 4.1 with the orientation of the magnet array shown at the

right of figure 4.2.
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such that δl = δx,l = δy,l, δr = δx,r = δy,r and δl
(

l~q
)

+ δr
(

l~q
)

= 1, effectively the
resulting system will behave like the 4 × 4 basic topology, resulting in

Γ
−
F = Γ

#−
F

(

lqx,
lqy
)

Λ
−1
(

lqz
)

= Γ
#T

F

(

lqx,
lqy
)

(

Γ
#
F

(

lqx,
lqy
)

Γ
#T

F

(

lqx,
lqy
)

)−1

Λ
−1
(

lqz
)

= Γ
#T

F

(

lqx,
lqy
)





1
4 0 0
0 1

4 0
0 0 1

4



Λ
−1
(

lqz
)

.

(4.28)

The only property which is lost is the power invariance of the dq0 transformation
(because Γ

#T

F

(

lqx,
lqy
)

cannot be split into orthonormal matrices anymore) but the
additional transformations which are necessary to decouple the torque components
are also power variant so the property is also lost in the total 4 × 4 basic topol-
ogy. Splitting the commutation algorithm into forces and torques only resembles
to the dq0 transformation when the rotational angles are not taken into account.
When the angles are also included in the decoupling it is not very interesting to
implement the commutation by splitting it into a force vector and torque vector
since the generalized inverse of the force matrix does not result in a constant diag-
onal matrix anymore. Actuators which only stabilize the rotations (e.g. assuming a
perfect magnetic bearing) can benefit, with respect to the computational demands,
from the fact that after splitting the decoupling into force and torque vectors most
matrices which need to be inverted have become diagonal and position invariant.
Since the amount of active coils of the 5 × 5 square coil topology and the HPPA
topology are almost equal (25 for the square coil topology against 24 for the HPPA
topology), respectively, it is interesting to compare the condition numbers of both
topologies. The condition numbers of the square coils and the HPPA topology are
shown in figures 4.7 and 4.8, respectively. It can be concluded from the figures
that both topologies are equally well conditioned. Nevertheless, the HPPA design
has less model disturbances due to smaller unmodeled higher harmonics in the flux
density distribution [17] and is, therefore, more suitable for model based commu-
tation. Moreover, when switching is ignored, the square coil topology effectively
has 1

4 of its coils located at a 0-axis (which means that these coils cannot be used to
produce any force) and 1

4 of its coils located at a d-axis. Therefore, the dissipation
of the HPPA topology, which does not have its coils located at a zero axis and 1

2
of its coils located at a d-axis, is lower when a pure lift force is desired, because
effectively half of the coils can be used to produce lift.

The decoupling algorithm has to be implemented on a DSP. Therefore, it will
have to be calculated at discrete events. In order to maintain accuracy of the decou-
pling at high speed the spacial derivatives of the currents must be small enough not
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Figure 4.7. The condition number of the 6-DOF decoupling applied to the 5×5 square

coil topology.

Figure 4.8. The condition number of the 6-DOF decoupling applied to the HPPA topol-

ogy.

to create large decoupling errors due to sampling. Unfortunately, due to the com-
plex torque compensation, the 6-DOF decoupling has become too complex to find
an analytical solution of the inverse. Therefore, it is hard to find a simple bound of
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the maximum error, although a low condition number of the decoupling will result
in smaller errors due to sampling. For the HPPA prototype the sample frequency
is set as large as possible. Moreover, half-order-hold is used to minimize the error.
Half-order-hold makes use of the reference speed to calculate the effective position
halfway the sample time (assuming a constant speed during one sample). Using
this effective position, the decoupling error due to sampling can be reduced. When
a sample frequency of 4KHz is used and a maximum speed of 1m/s the maximum
position steps due to sampling are 250µm, resulting in a maximum error of the
position used in the decoupling of 125µm when using half-order-hold, which is the
same order of magnitude as the design accuracy of the stator and translator.

4.5 Worst-case force components

Due to the constant levitation force and the non-linear decoupling it is hard to
find the maximum acceleration specifications due to actuator constraints. This sec-
tion focusses on the worst-case (smallest) acceleration specification which can be
achieved in the xy-plane when using the direct wrench-current decoupling of chap-
ter 3.

When the actuator is considered in its working point, which in the HPPA case
means a clearance of qz = 1 mm, and the following orientations φ = −π/4 rad and
ψ = θ = 0 rad, it is possible to determine the large signal bounds on the force in

the xy-plane l~F xy =
[

lFx
lFy

]T
by the following minimization problem

l~F xy,wc = arg
l~F xy

min
Γ
− l ~w = ~i

l ~w =

[

l~F
T

xy Mg l~T
T

]

T

∥

∥

∥

l~i
∥

∥

∥

∞
= imax

∥

∥

∥

l~F xy

∥

∥

∥

2
∀
{

lqx,
lqy
}

⊂ S~α. (4.29)

The minimization searches for the worst-case (minimal) amplitude of the force vec-
tor in the xy-plane (using the direct wrench-current decoupling) for which the infin-
ity norm of the current vector equals the maximum current imax (meaning that one
or more of the coil currents will clip), while maintaining a constant levitation force
in the z-direction lFz = Mg (where M is the total mass of the translator and g is the
gravitational constant). The resulting vector l~F xy,wc is the worst-case (smallest)
acceleration force in the xy-plane at a given position, illustrated by figure 4.9. The
worst-case acceleration in the xy-plane l~̈qxy can be derived from the worst-case
forces by dividing them by the total mass of the translator. The amplitude of the
worst-case acceleration and the angle of the vector in the xy-plane with respect to
the lx axis are shown for the HPPA topology in figures 4.10 and 4.11, respectively,
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Figure 4.9. Illustration which indicates how the worst-case (smallest) acceleration

vector (where one or more of the stator coil currents will clip) can be found at a given

position and orientation l~q when using the direct wrench-current decoupling Γ
− (l~q

)

.

using a mass of 8.2 kg and an air-gap (clearance) of 1 mm. Figures 4.12 and 4.13
show the same simulation using the maximum clearance of the HPPA of 2 mm.

Figure 4.10. Worst-case amplitude of the acceleration vector in the xy-plane ‖l~̈qxy‖
at a clearance of 1 mm.

From these pictures it can be seen that it is possible to obtain an acceleration of at
least 12 m

s2 in all directions of the xy-plane. When the same minimization problem
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Figure 4.11. Worst-case direction of the acceleration vector in the xy-plane

angle
(

l~̈qxy

)

with respect to the lx-axis at a clearance of 1 mm.

Figure 4.12. Worst-case amplitude of the acceleration vector in the xy-plane ‖l~̈qxy‖
at a clearance of 2 mm.
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Figure 4.13. Worst-case direction of the acceleration vector in the xy-plane

angle
(

l~̈qxy

)

with respect to the lx-axis at a clearance of 2 mm.

is applied to the same settings using a clearance of qz = 2 mm the smallest worst-
case acceleration becomes 10 m

s2 (as can be seen from figure 4.12). The smallest
worst-case acceleration and its direction can be explained by looking at the worst-
case switching topologies of the HPPA shown in figure 4.14. The darker columns
of stator coils shown in figure 4.14 are the only coils which can generate a force in
the smallest worst case acceleration direction. Therefore, since the amount of coils
which can generate a force in the worst case direction is smallest it is obvious that
the current through one of these coils will be the highest.
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Figure 4.14. The two active topologies corresponding to the directions of the worst-

case acceleration vector in the xy-plane, where only the dark-gray coils can be used for

the acceleration in the worst-case direction.



Chapter 5

Experiments

5.1 Introduction

The theory derived in [17] and the previous chapters of this thesis have been used
to create a 6-DOF prototype called the HPPA (Herringbone Pattern Planar Actua-
tor). The experimental setup and some of the experiments which were done using
this setup are discussed in this chapter. The experimental setup is discussed in sec-
tion 5.2. Closed-loop measurements have been performed on the HPPA which are
discussed in section 5.4. To explain these measurements, first the control structure
is discussed in section 5.3.

5.2 Experimental setup

In this section the experimental setup will be discussed. Section 5.2.1 supplies the
details of the HPPA (Herringbone Pattern Planar Actuator) which has been realized.
In section 5.2.2 the measurement system is described in detail.

5.2.1 HPPA prototype

A prototype of the herringbone pattern planar actuator (HPPA) which was discussed
throughout this thesis has been realized. A more detailed description of the elec-
tromechanical analysis and design of the HPPA prototype is given in [17]. Figure 5.1
shows the stator of the realized prototype containing 84 coils. The orthocyclically
wound coils have been manufactured by Tecnotion. Each coil is connected to a
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single-phase current amplifier which have been supplied by Prodrive (with permis-
sion of ASML). Figure 5.2 shows the translator of the HPPA which consists of a stiff
aluminum carrier (on the left), which was designed and manufactured by the work-
shop of the Eindhoven University of Technology, Gemeenschappelijke Technische
Dienst (GTD). To the aluminum carrier of the translator 385 magnets have been
glued by Vacuumschmelze (shown on the right side of figure 5.2). Table 5.1 shows
some of the dimensions and properties of the HPPA, where the coil pitch is defined
as the relative displacement of the centers of the stator coils along the gqx and gqy
direction in the stator plane.

Figure 5.1. Stator of the HPPA with 84 stator coils. The white cables are connected to

84 single-phase currents amplifiers. The hoses are used to cool the stator using water

and glycol.

5.2.2 Test bench

The measurements on the HPPA are carried out on a test bench, which is con-
structed on top of the base frame of an Assembléon H-drive [35, 39] (figures 5.3
and 5.4). A schematic top-view of the H-drive is given in figure 5.4. This gantry
consists of three linear motors. Two motors are positioned in parallel ( ency1 and
ency2). Between the translators of these motors a third linear motor is mounted
which can move in the encx-direction. By displacing the y1- and y2-motors with
respect to each other, the x-beam can rotate about the z-axis ( gφh ± 5 mrad). An
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Figure 5.2. The stiff aluminum carrier to which the magnets are glued to form the

translator (on the left). Translator of the HPPA containing 385 magnets arranged in

a Halbach pattern (on the right).

overview of the test-bench is shown in figure 5.3. Figure 5.3 also shows the control
hardware. A dSPACE DS1005MP modular DSP system is used with two processor
boards. One board is used for IO interfacing and H-drive control, while the other
processor board is used for the real-time commutation of the prototype. The IO
turned out to be a huge computational load on the DSP because of the 28 RS485
serial interface connections which are providing the 84 amplifier channels of the
HPPA stator coils with the current set-points. The sample frequency is set to its
maximum possible value of 4kHz (as discussed at the end of section 4.4).

The test bench can operate in two modes.

Force and torque measurement

The translator of the HPPA can be mounted via a 6-DOF load cell (JR3 45E15A4-
I63-S 100N10) to the translator of the x-motor of the H-drive. The H-drive can be
used to position the translator with the magnet array above the stator coils and the
force and torque components can be measured with the load cell. With this configu-
ration, the force and torque acting on the translator of the HPPA itself are measured.
However, also disturbances from the H-drive are measured because the bandwidth
of the load cell (150 Hz) is much larger than the bandwidth of the controllers of
the H-drive (30 Hz). The force and torque are measured statically (stand-still) or
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Table 5.1. Dimensions and properties of the HPPA

Parameter Value Unit

maximum number of active coils (xy) 24 (4x6) -

total number of coils (xy) 84 (7x12) -

magnetic poles (xy) 121 (11x11) -

translator size (xy) 300x300 mm

stroke (xy) 232x233 mm

clearance (z-direction) 1 - 2 mm

max. velocity (xy-plane) 1.0 m/s

worst-case max. acceleration (xy-plane) 10 m/s2

max. jerk (xy-plane) 1000 m/s3

pole pitch magnet array, τ 25.0 mm

pole pitch magnet array, τn 17.7 mm

coil pitch (gqx-direction), τcx 58 mm

coil pitch (gqy-direction), τcy 33.3 mm

total mass translator, m 8.2 kg

inertia translator about COG, Ixy 0.062 kg m2

Iz 0.122 kg m2

mass carrier without magnets, mc 4.28 kg

permanent-magnet material VACODYM 655HR

power amplifiers PADC3AX52/6

cooling medium water/glycol

quasi-statically at low speed (0.02 m/s). The quasi-statically measured data is fil-
tered off-line with a fourth-order anti-causal low-pass filter with a cut-off frequency
of 25 Hz. This filter does not introduce a phase shift in the measurement data.
Because of the low measurement speed, the frequency of the measured force and
torque signals is low (first harmonic: 0.57 Hz at 0.02 m/s) and, therefore, the
higher harmonics of the force and torque are not suppressed by the filter.



5.2. Experimental setup 71

Figure 5.3. Planar actuator test bench.

Figure 5.4. H-drive coordinates.

Position measurement with safety bounds

The position on the µm and sub-µm scale can be measured with several techniques,
e.g. optical encoders, laser triangulators, laser interferometers, inductive sensors
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and capacitive sensors.
These types of sensor differ mainly in accuracy, range and cost. For the mea-

surement system of the HPPA cost was an important issue. Because the H-drive
itself is equipped with 1 µm resolution optical encoders, it was decided to measure
the position of the translator of the HPPA with respect to the H-drive with inductive
sensors (0.16 µm rms-resolution) and to use the encoders of the H-drive for the
long-stroke position measurement. As the range of the inductive sensors is limited
to 2 mm, the H-drive should move simultaneously with the translator of the HPPA.

To reconstruct the position and orientation of the mass-center-point of the
translator a measurement frame consisting of eight Lion Inductive ECL100-U8B
sensors is attached to the H-drive. Four of them measure the distance between
the measurement frame and the translator of the HPPA in the z-direction, two in
the x-direction and two in the y-direction. The measurement targets are located
at the corners (z-direction) and the centers of the edges of the translator (x- and
y-directions). A detail of the measurement frame with the inductive sensors is
shown in Figure 5.5. To obtain the desired measurement range, the H-drive and,
therefore, the measurement frame, follow the same trajectory in the xy-plane as the
translator. Using this strategy it is possible to reconstruct the six degrees-of-freedom
by combining the information of the eight inductive sensors with the three optical
linear encoders of the H-drive. The non-linear mapping which transforms the eight

Figure 5.5. Translator and measurement frame.

inductive sensor outputs ind~d =
[

ds1 ds2 ds3 ds4 ds5 ds6 ds7 ds8
]T

m
(as shown by the arrows in figure 5.6) and the three linear encoder outputs of

the H-drive enc~q =
[

encx ency1
ency2

]T
(as defined in figure 5.4) to the six

degrees-of-freedom of the platform can be obtained in two steps.
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Figure 5.6. Schematic overview of the HPPA translator with respect to the sensors and

sensor frame coordinates s a) top-view of the translator. b) side-view of the translator.

The actual origin of the sensor frame is closer to the mass-center-point (max. 0.55 mm

offset) but it has been increased to show the vectors more clearly.

Firstly, the 6-DOF position s~p of the translator of the HPPA with respect to the
sensor frame is determined

s~p ≈ s~poffset + s
Tind

ind~d, (5.1)

where (5.1) is an approximation which can be made for small translator angles.
The offset vector s~poffset (as shown in figure 5.6), which describes the small
offset of the mass-center-point of the translator with respect to the desired origin of
the sensor frame coordinate system (indicated by superscript s), is given by

s~poffset =
[

0 0 −scz
]T
, (5.2)

and the transformation matrix which reconstructs the position of the HPPA transla-
tor in sensor frame coordinates is given by

s
Tind =

1

4 scl





0 −scz −2 scl
scz 0 scz 2 scl −scz

2 scl −scz 0 −scz −2 scl
scz 0 scz

0 −scl 0 −scl 0 −scl 0 −scl



 ,

(5.3)
where scl and scz are defined in figure 5.6. The sensors that are opposite to
each other in the xy-plane (s3 and s7 for the x-direction and s1 and s5 for the y-
direction) also measure in opposite directions with respect to each other. In this
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way the common noise that is picked up by the sensors is removed in the x- and
y-directions because the difference of both sensor pairs is used to reconstruct the x-
and y-positions (which can also be seen from the signs in the matrix s

Tind (5.3)).
Moreover, this sensor placement allows for the measurement surfaces to be placed
in such a way that their mass distribution does not affect the mass-center-point
of the translator in the xy-plane (it remains in the center of the translator in the
xy-plane). Unfortunately, the same sensor layout cannot be used for the z-direction
because this axis can only be measured contactless in one direction using this setup.
However, there are four sensors to reconstruct this direction.

The first-order Taylor expansion of the Euler angles of the translator about its
working point with respect to the sensor frame is used. This results in the following
approximation of the translator angles (where sψ, sθ and sφ are the rotations about
the sx-, sy- and sz-axis, respectively)





sψ
sθ
sφ



 ≈ 1

4 scl





0 −1 0 −1 0 1 0 1
0 1 0 −1 0 −1 0 1
1 0 1 0 1 0 1 0





ind~d. (5.4)

The maximum angles of the translator about the x- and y-axes are small due to
the limited levitation height and the maximum angle about the z-axis is also kept
small because of the limited sensor range and because the analytical model which
is used in the decoupling algorithm does not hold for large rotations about this axis.
Moreover, they are kept even smaller (maximum of 6 mrad) because of safety issues
(see the end of this section). Therefore, using a first-order Taylor approximation
does not result in large errors (maximum position errors in the micrometer range
when using the maximum admissible angles).

However, when calculating the second transformation which transforms the
sensor frame coordinates to the global coordinates using the three linear encoders
of the H-drive, the transformation is not linearized with respect to the H-drive angle
because the rotation about the z-axis of the H-drive (gφh as defined in figure 5.4)
would result in unacceptable position errors in the xy-plane when using a first-
order Taylor expansion due to the large distance between the point of rotation of
the H-drive and the center of mass of the translator of the HPPA (a distance in the
order of 0.5 m in the working point of the HPPA). Therefore, the transformation
of the position of the translator with respect to the sensor frame (in sensor frame
coordinates s) to the position with respect to the global coordinate system (in global
coordinates g) is given by

g~p = g~ps ( enc~q) + g
Rs ( enc~q) s~p, (5.5)
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where the rotation matrix is given by

g
Rs =





cos (gφh) − sin (gφh) 0
sin (gφh) cos (gφh) 0

0 0 1



 , (5.6)

and the measurement frame position in global coordinates is given by

g~ps ( enc~q) =





ch2 − encx cos(gφh)
ency1 − encx sin(gφh)

ch3



 , (5.7)

where encx and ency1 (which are elements of the vector enc~q) are defined in fig-
ure 5.4. The sine and cosine of gφh can be reconstructed (for −π

2 < gφh < −π
2 )

by

cos (gφh) = 1
√

1+
(

ency1−ency2
ch1

)

2
,

sin (gφh) =
ency1−ency2

ch1

√

1+
(

ency1−ency2
ch1

)

2
,

(5.8)

which results in an exact solution of the translator position in global coordinates
when all angle components are zero and an approximation for small angles which
can be calculated using the eleven sensors. The angle components of the translator
with respect to the global coordinates can be reconstructed as follows





gψ
gθ
gφ



 =





sψ
sθ

sφ+ gφh



 . (5.9)

Because of the position measurement system, the H-drive is always moving
together with the translator of the planar actuator. To prevent damage caused by
contact between the stator and the translator of the HPPA due to, for example,
unstable controllers or power failure, the stroke of the translator of the HPPA with
respect to the measurement frame is limited by four pins (diameter 4.9 mm) which
are captured by over-sized holes (diameter 6 mm) in the translator of the HPPA.
Two of these pins are indicated in Figure 5.5. The disadvantage of these pins is
that the rotation angles of the translator of the HPPA are limited to 6 mrad and the
relative translation (between the translator and the measurement frame) is limited
to 1.1 mm. Once the HPPA is in control, there is no contact between its translator
and the measurement frame.
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Additionally, the maximum reference force and torque components of the
HPPA are limited to prevent further damage to the system (max. force gFx, gFy
and gFz of 100N and max. torque gTx and gTy of 8Nm and gTz of 10Nm).

5.3 Control structure

After linearization and decoupling of the system the HPPA needs to be stabilized.
Because the system has been decoupled six SISO controllers have been used. Es-
sentially the decoupled mechanical system can be described as if each degree of
freedom (here indicated by q) consists of a double integrator

q

q̈des
=

1

s2
. (5.10)

The structure of these six SISO controllers can, therefore, be the same for each
degree of freedom.

After applying the decoupling algorithm the system is theoretically meta-stable.
This indicates that infinitely small model pertubations caused by erroneous decou-
pling can cause instability of at least one of the degrees of freedom and oscillations
in the other degrees of freedom. A small signal approximation of the system and
the decoupling (for one DOF) by linearization about a fixed position and orienta-
tion can be used to illustrate this as shown in figure 5.7. In the figure the (for
simplicity one DOF) non-linear mapping Γ1dof (q) of the HPPA model is split into
a current gain vector Ki and a position gain Kp. The inverse mapping Γ

−
1dof (q)

can be rewritten as a function of an inverse mapping of the current gain vector K
−
i

and the position gain Kp. The figure shows the resulting simplified system when
an error is made in the position gain (indicated by K

∗
p) resulting in either an un-

stable or an oscillating system depending on the sign of the difference of Kp −K
∗
p.

The errors in the K
−
i term similarly result in an unstable or oscillating system with

additive disturbance terms. Fortunately, errors in the decoupling will not result in
additional zeros which would complicate the stabilization of the plant or, in the
case of right-half plane zeros, limit the obtainable bandwidth. The errors in the
decoupling can, therefore, be modeled as small perturbations of the poles over the
real or imaginary axis (symmetric w.r.t. the origin) and gains.

There are three different discrete modes which have been implemented to
control the HPPA:

• start-up/lift-off mode
• operational/tracking mode
• shut-down/landing mode
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Figure 5.7. Linearized HPPA model with decoupling (simplified to one degree of free-

dom).

Each mode has its own set of SISO controllers which need to be switched. Moreover,
each mode transition needs to be bumpless.

Start-up / lift-off mode

The first mode takes place when the HPPA is switched on. At start-up the translator
of the HPPA is touching the safety pins of the measurement frame (as explained
at the end of section 5.2). Therefore, the start-up controllers do not contain an
integrator which could cause damage to the stator coils when the lift-off reference
trajectory is slightly outside the admissible set of possible coordinates (which would
cause wind-up because the integrative action would increase the coil currents).
The six SISO start-up controllers consist of a lead-lag filter to create phase-lead for
stability and a roll-off low-pass filter to create a strictly-proper controller

q̈fb
q

= Cpd (s) = gbw
(s+ zll)

(s+ pll)

1

(s+ plpf )
, (5.11)

where gbw is the gain, zll and pll are the zero and pole of the lead-lag filter, respec-
tively, and plpf is the pole of the low-pass filter. Given a certain desired bandwidth
cbw rad (defined as the frequency of the 0dB point of the amplitude of the open-loop
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transfer function) the control parameters can be derived as follows

gbw = cz,ll

√

1+c2
p,ll

1+c2
z,ll

cbw
√

1 + c2p,lpfc
2
bw,

zll = cbw
cz,ll

,

pll = cbwcp,ll,
plpf = cbwcp,lpf ,

(5.12)

where the new parameters are normalized with respect to the desired bandwidth.
Assuming an ideal plant (double integrator), the resulting system can now be loop
shaped using cz,ll, cp,ll and cp,lpf and scaled to the desired bandwidth using cbw.
Where cz,ll and cp,ll can be used to create phase-lead at the desired bandwidth by
influencing the zero and pole location of the lead-lag filter, respectively, scaled with
the desired bandwidth, to create robust stability. Furthermore, cp,lpf influences the
pole location of the low-pass filter, scaled with the desired frequency, to create a
strictly-proper controller (with cp,lpf >= cp,ll so the phase-lead is not influenced
too much by the low-pass filter). Moreover, acceleration feed-forward is used to
improve the tracking error resulting in

q̈des = q̈ref + q̈fb. (5.13)

The start-up controller of the HPPA setup using the following parameters
cz,ll=5, cp,ll=4, cp,lpf=4 and cbw=60 rad/s results in the root locus and Bode plot
of the open-loop system shown in figures 5.8 and 5.9, respectively.

Operational / tracking mode

After lift-off, the system checks if the position and orientation error of the platform
stays within specified bounds with respect to its desired operating point (absolute
value of each position error < 1mm and of each rotation < 2 mrad) in 6 DOF for 1
second. When this is the case the system switches to the tracking mode which has
its own set of six SISO tracking controllers which have the same parameters and
structure as the start-up controllers with an added gain gbw,i and accompanying
pole zero pair pi and zi

Cpid (s) = gbw,i
s+ zi
s+ pi

Cpd (s) , (5.14)
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Figure 5.8. Root locus using the strictly-proper pd controller with cz,ll=5, cp,ll=4,

cp,lpf=4 and cbw=60 rad/s. (the closed-loop poles are indicated by squares and the

open-loop poles and zeros are indicated by circles and crosses, respectively)

Figure 5.9. Bode plot of the open-loop system using the strictly-proper pd controller

with cz,ll=5, cp,ll=4, cp,lpf=4 and cbw=60 rad/s.
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where the additional gain, pole and zero are defined as

gbw,i = cz,i

√

1+c2p,i
1+c2z,i

,

zi = cbw/cz,i,
pi = cbwcp,i,

(5.15)

where zi and pi are again normalized with respect to cbw, resulting in cz,i and cp,i,
respectively, which can be used to create integrative action in the controller. The
additional gain gbw,i is introduced to keep the 0dB point of the open-loop system at
the desired frequency of cbw. Moreover, the initial states of the tracking controller
are identical to the states of the start-up controller during switching and the initial
state of the added pole zero pair is set to zero and the normalized pole and zero pa-
rameters are set to cp,i = 1

cz,i
. This effectively results in the same control structure

during switching (because the pole and zero of the controller cancel each other)
which, therefore, guarantees smooth bumpless switching between the controllers.
After switching, the added pole pi is slowly (quasi-statically) moved towards zero
by smoothly decreasing cp,i to zero, creating an integrative action in the tracking
controller, in order to remove steady-state tracking errors. Moreover, after creating
the integrative action, the parameter defining the bandwidth cbw is slowly (quasi-
statically) increased over a time-span of one second to 330 rad/s. When assuming
an ideal plant ( 1

s2 ), increasing the bandwidth cbw only results in scaling of the root-
locus plots and the closed-loop poles without changing their relative positions, due
to the normalized gain, pole and zero locations of the controller. The root-locus and
Bode plot of the open-loop system are shown in figures 5.10 and 5.11, respectively,
for a bandwidth of 60 rad/s (before increasing the bandwidth to 330 rad/s).

Shut-down / landing mode

The third mode is the landing mode which has the same set of SISO controllers
as the tracking mode. This mode assures smooth landing of the translator before
it is switched off. The landing phase smoothly removes the integrative action by
increasing cp,i back to 1

cz,i
after which it smoothly decreases the bandwidth cbw

to 30 rad/s. After this step, the levitation height reference trajectory gqz,ref is
smoothly decreased to zero (which is below the allowed position in the z-direction)
and, simultaneously, the gravity force feed-forward signal (of 80.7N in the gFz
direction) is smoothly decreased by 5 N. Consequently, the translator of the HPPA
will start to land. After touching the safety pins the desired force in the gqz direction
gFz,des will decrease due to the reference trajectory in the z-direction gzref which
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Figure 5.10. Root locus using the strictly-proper pid controller with cz,ll=5, cp,ll=4,

cp,lpf=4, cz,i=5, cp,i=0 and cbw=60 rad/s. (the closed-loop poles are indicated by

squares and the open-loop poles and zeros are indicated by circles and crosses, respec-

tively)

Figure 5.11. Bode plot of the open-loop system using the strictly-proper pid controller

with cz,ll=5, cp,ll=4, cp,lpf=4, cz,i=5, cp,i=0 and cbw=60 rad/s.
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continues to decrease. When the force output value of the controller in the z-
direction gFz,des is below a threshold value of 75 N the currents are set to zero and
the system is switched off. The switch in the current set-points before switching off
is dealt with by the amplifiers.

5.4 Measurement results

This section discusses the dynamic measurements which were performed on the sys-
tem. Two different experiments are discussed in this section. The first experiment
focusses on closed-loop dynamical identification of the linearized and decoupled
system using noise identification. The second experiment focusses on the tracking
errors of three specially selected trajectories.

5.4.1 Closed-loop identification

To carry out the dynamical identification of the decoupled system the system needs
to be controlled first. The identification controller which was used to carry out
these experiments has the following controller parameters (which were defined in
section 5.3): cz,ll=3, cp,ll=3, cp,lpf=50, cz,i=5, cp,i=0 and cbw=60 rad/s. The
resulting SISO controllers (during the tracking mode) then become

Cpid (s) = 3.18 · 107 (s+ 12) (s+ 20)

s (s+ 180) (s+ 3000)
. (5.16)

Using these controllers Gaussian white noise can be inserted in the loop to identify
the system using a Siglab identification device. The maximum identification stroke
of the translator is limited by the safety pins because the H-drive is not excited, to
prevent unwanted crosstalk of the dynamical systems. This limits the rms value of
the noise that can be used in order to get a valid identification. The resolution of
the measurement system is also limited because the optical linear encoders have
a resolution of 1µm. This limits the maximum frequency which can be properly
identified. The maximum frequency is limited by the expected double integrator of
the plant because the behavior of the plant at higher frequencies needs an increas-
ing amount of input power to be visible at the sensor outputs. The input power
is limited because of the thermal limits of the active stator coils (the system is al-
ready dissipating because of the magnetic bearing in addition to the dissipation
needed to perform the identification). When using the controller given by (5.16)
in combination with a maximum rms (gaussian) position noise of 0.2mm the max-
imum frequency which can be properly identified (here defined as the frequency



5.4. Measurement results 83

for which the predicted closed-loop frequency response multiplied by the rms value
of the maximum noise reaches the quantization levels of the position encoders) is
predicted at approximately 0.2kHz. The same controller is used to identify the ro-
tation where the maximum rms orientation noise is limited to 0.7mrad (which is
again limited due to the safety pins). The position noise is shaped by the control
sensitivity which results in an integrative action for very low frequencies which re-
moves DC errors. Moreover, it reduces the amplitudes for the low frequencies which
are of less interest (and which would cause the translator to hit its safety margins)
and it boosts the higher frequencies which are of interest (the desired cross-over
frequencies). The frequency response of the sensitivity

S (jω) = (I + P (jω)C (jω))
−1
, (5.17)

of the total system with controller is identified by correlating the inserted position
noise which is inserted in the loop with the measured position and orientation er-
rors. The frequency response of the plant can now be reconstructed as follows

P (jω) =
(

S
−1 (jω) − I

)

C
−1 (jω) , (5.18)

where S (jω) is a matrix constructed out of all thirty six frequency responses of
the system and where C (jω) is a diagonal matrix containing the six SISO tracking
controllers for each degree of freedom. Furthermore, the plant P (jω) can be scaled
using the normalization matrix N which is defined in section 4.3 resulting in

P
∗ (jω) = NP (jω)N−1, (5.19)

which now has the same units for each degree-of-freedom allowing for comparison
of the cross-terms of P

∗ (jω) with the diagonal terms.
Point d shown in figure 5.12 shows the point in the xy-plane where the iden-

tification is performed. The levitation setpoint during identification has been set to
1.2mm and the rotation setpoints (with respect to the general coordinate system g)
have been set to zero. Figures 5.13-5.18 show the Bode plots of the diagonal terms
of the transfer functions of the normalized plant and the approximate amplitudes of
the cross-terms of the same input to the other outputs. The problem with identifying
the cross-terms is that for higher frequencies it is not possible to insert enough noise
power to identify them properly (below position sensor resolution). The coherence
of the cross-terms of the identified sensitivity (where averaging of four independent
noise measurements is used) for the frequency components which can be excited
is very low (below 0.5). Only in the frequency band between approximately 10Hz
and 20Hz the coherence is above 0.7 for the cross-terms which are above the noise
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Figure 5.12. Trajectories d, e− e′ and f − f ′ on which the position and angle errors

of the controlled HPPA have been measured. d also indicates the position at which the

dynamics of the HPPA have been identified.

limit. This indicates that the cross-coupling could be non-linear or that the signal
to noise ratio could be too low. The reconstructed cross-terms, therefore, are not
reliable. The additional phase shift is caused by the anti-aliasing filters, and the
communication delay to the amplifiers. The additional phase shift limits the closed-
loop bandwidth which can be obtained by the system. The gain and phase margins
of the real system using the tracking controller with a bandwidth of 330 rad/s as
described in section 5.3 are reduced to as low as 15 and 3 dB, respectively. Even
with these low margins the system remains working properly. Although in pre-
vious chapters the decoupling algorithm has been defined in its most general form
as

l~i~α = Γ
− ( l~q

)

l ~wdes, (5.20)

where the 6-DOF decoupling matrix Γ
− ( l~q

)

depends on the 6-DOF position and
orientation vector l~q , at first the 6-DOF decoupling matrix was implemented de-
pending only on the 3-DOF position. At normal operation, when the angles can be
assumed to be zero, the resulting decoupling will be equivalent. When stiff mag-
netic bearing controllers are used, this results in a good decoupling of the system
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Figure 5.13. Normalized Bode plot of g q̈x → gqx including the amplitudes of the

cross-terms.

Figure 5.14. Normalized Bode plot of g q̈y → gqy including the amplitudes of the

cross-terms.

because the angle errors are small. However, during identification of the system
the angles are excited over a larger range. Therefore, an approximation for small
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Figure 5.15. Normalized Bode plot of g q̈z → gqz including the amplitudes of the

cross-terms.

Figure 5.16. Normalized Bode plot of g q̈∗ψ → gq∗ψ including the amplitudes of the

cross-terms.

angles about the x- and y-axis has been included in the decoupling using an effec-
tive local distance in the z-direction between the translator and each individual coil
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Figure 5.17. Normalized Bode plot of g q̈∗θ → gq∗θ including the amplitudes of the

cross-terms.

Figure 5.18. Normalized Bode plot of g q̈∗φ → gq∗φ including the amplitudes of the

cross-terms.

(ignoring the higher-order effects of the rotation of the local magnetic field). This
results in a more accurate decoupling for a larger range of x- and y-angles. Fig-
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ure 5.19 shows the difference in identification results when using a 3-DOF position
dependent decoupling and when using a 5-DOF dependent decoupling (including
the rotations about the x- and y-axis). The Bode plot clearly shows a badly damped
resonance. This is caused by the error in the decoupling which at this identification
position results in a complex pole pair in the left-half plane. The expected results
would have been an undamped resonance when assuming the perfectly decoupled
HPPA dynamics to be a double integrator. However, there is a small damping term
present in the HPPA due to eddy current damping in the aluminum back-plate to
which the stator coils are attached causing the complex pole pair to shift slightly to
the left-half plane. Using the 5-DOF dependent decoupling, the resonance in the
identified system is gone as can be seen from figure 5.19.

Figure 5.19. Normalized Bode plots of g q̈∗ψ → gq∗ψ using a 3-DOF (without the angles)

and a 5-DOF (including the gqψ and gqθ angles) dependent commutation algorithm.
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5.4.2 Tracking performance

The second experiment involves measuring the tracking errors for two demanding
trajectories in the xy-plane and a movement in the z-direction. The trajectories are
shown in figure 5.12 where the clearance in the z-direction was set to 1mm for the
xy-trajectories. Further information about the motion profile is given in table 5.2.
The position and angle tracking errors for trajectory e-e’ are shown in figure 5.20
together with the acceleration profile and the estimated power dissipation. The
power dissipation has become position dependent due to the non-linear decoupling
strategy. At first instance the worst-case maximum acceleration at a clearance of
1mm which is derived in section 4.5 seems to be violated by this trajectory. Nev-
ertheless, the trajectory avoids the worst-case points during acceleration (the max-
imum worst-case acceleration in the xy-plane as a function of position is given by
figure 4.10). The motion profile is not visible anymore in the tracking errors, which
are less than 30 µm and 0.1 mrad. The oscillation which is mainly present in the gqx
and gqy position errors is probably caused by vibrations of the H-drive and the mea-
surement frame which moves simultaneously with the translator of the HPPA in the
xy-plane. Further optimization of the controllers is, therefore, only useful when the
measurement system is improved. The acceleration profile, the power dissipation
and the position and angle tracking errors of trajectory f-f’ are shown in figure 5.21.
This trajectory moves exactly through the worst-case switching points at which only
fifteen coils are active, although the acceleration vector is not along the worst-case
acceleration direction in the xy-plane (as explained in section 4.5). The five points
of the trajectory at which only fifteen coils are active are visible in the power dis-
sipation plot as the point where there is a slightly increased dissipation. However,
the switching points are not visible in the tracking errors. The acceleration profile,
the power dissipation and the position and angle tracking errors of trajectory d are
shown in figure 5.22. The H-drive is switched off during the measurement of this
trajectory in order to reduce the disturbances of the measurement setup. It can
be seen from figure 5.22 that the acceleration profile and the increasing levitation
force are visible in the tracking error of the gqz-position. This is an indication that
either the feed-forward or the effective gain at this position in the decoupling still
has some error over the full range in the z-direction. Nevertheless, the error is
much smaller than the mechanical tolerances of the H-drive in the z-direction over
the measurement range in the xy-plane (which is estimated to be < 5 · 10−5 m).

Figure 5.23 shows the 6-DOF steady-state error of the system (when the H-
drive is switched off) at static levitation (in point d indicated in figure 5.12 with
a clearance of 1.5 mm). The rms-errors are 0.1µm and 1µrad, respectively, which
is corresponding to the rms-resolutions of the inductive sensors after calibration
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Figure 5.20. Acceleration profile, estimated power dissipation and the position and

angle errors of the translator of the HPPA during movement on trajectory e-e’ defined

in figure 5.12 and table 5.2.

(0.09-0.13 µm). Moreover, it can be seen that the error of the position in the z-
direction and the rotation about the z-axis clearly contains a 100Hz component
which is not present in the other degrees-of-freedom. This is caused by the com-
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Figure 5.21. Acceleration profile, estimated power dissipation and the position and

angle errors of the translator of the HPPA during movement on trajectory f-f ’ defined

in figure 5.12 and table 5.2.

mon noise of the inductive sensors, which is not canceled for these two degrees-of-
freedom (which is explained in section 5.2.2).
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Figure 5.22. Acceleration profile, estimated power dissipation and the position and

angle errors of the translator of the HPPA during movement on trajectory d defined in

figure 5.12 and table 5.2.
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Figure 5.23. Static levitation position and angle errors of the translator of the HPPA

in point d defined in figure 5.12 with a clearance of 1.5mm.

Table 5.2. Information of the motion profiles at different trajectories

d e-e’ f-f’

clearance 1.0-1.5 1.0 1.0 mm

g q̇x,ref 0 1.0 1.0 m/s
g q̇y,ref 0 1.0 0.575 m/s
g q̇z,ref 0.015 0 0 m/s

g q̈x,ref 0 10 10 m/s2
g q̈y,ref 0 10 5.75 m/s2
g q̈z,ref 1 0 0 m/s2

g ...
q x,ref 0 1000 1000 m/s3

g ...
q y,ref 0 1000 575 m/s3

g ...
q z,ref 1000 0 0 m/s3
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Chapter 6

Conclusions and

recommendations

Control aspects, and the design aspects for controllability, of ironless long-stroke
planar actuators with moving magnets and integrated active magnetic bearing have
been investigated in this thesis. The combined research in electromechanical design
and control presented in [17] and this thesis has resulted in a solid fundament to
the electromagnetic analysis, model based commutation and design of this type of
actuators. Moreover, the research has resulted in a fully operational and success-
fully tested prototype, the Herringbone Pattern Planar Actuator (HPPA).

6.1 Model based commutation algorithm

A novel commutation strategy, called direct wrench-current decoupling, has been
presented in this thesis. Using the derived commutation algorithms it is possi-
ble to decouple both the force as well as the torque components of an ironless
moving-magnet planar actuator. Moreover, the commutation algorithm also allows
for smooth switching of active coil sets without influencing the decoupling, because
only the coils that are underneath or near the edge of the magnet array effectively
contribute to the magnetic bearing and propulsion of the translator. The commuta-
tion algorithm is decomposed into force and torque components where one of the
force components has similarities with the traditional dq0 or Park’s transformation
linking the new theory to the traditional one.
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6.2 Linking control to the design proces

Using the condition number of the direct wrench-current decoupling it is possible to
verify whether or not a stator coil topology is state-controllable in a given position
of the translator. Moreover, additional conditions have been derived which allow
for the design/verification of controllable stator coil topologies with the capability
of an infinite stroke in the xy-plane using smooth switching functions.

The currents resulting in a force distribution, which is optimal with respect to
the minimal ohmic losses when ignoring the disturbance torque, can be calculated
for a given stator coil topology. Moreover, an expression of the stator coil currents
can be calculated which can be used to correct the optimal force distribution in such
a way that the disturbance torque is canceled in an optimal way with respect to the
ohmic losses. These currents do not contribute to the netto force on the translator.
Therefore, keeping the power dissipation caused by this second term as small as
possible is an important performance criteria for the actuator.

Given an ironless planar moving-magnet actuator, using the derived commu-
tation strategy, it is possible to calculate the direction and amplitude of the smallest
worst-case acceleration vector in the xy-plane, over the entire set of admissible x-
,y- and z-positions, which results in one or more of the stator coil currents reaching
the maximum amplifier current constraint.

6.3 Realization and test of the prototype

A prototype of an ironless moving-magnet planar actuator with integrated magnetic
bearing called the ”herringbone pattern planar actuator” (HPPA) has been realized
and tested successfully. The translator can be levitated at standstill with a position
error and an angle error of < 0.5µm and < 4µrad, respectively. The tracking errors
at high-speed motion profiles, using a maximum test speed of 1.4m/s and an accel-
eration of 14m/s2, are < 30µm for the position error and < 0.1mrad for the angle
error.

Currently, the measurement system is most likely to be the limiting factor in
the performance of the HPPA prototype. Parasitic effects due to the dynamic cou-
pling between the measurement frame and the HPPA make it hard to separate the
real dynamics of the HPPA from the dynamics of the measurement frame. In order
to further investigate the prototype, it is advisable to remove it from the H-drive
and install a measurement system which measures the position and orientation of
the translator directly.
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6.4 Outlook towards future developments

6.4.1 Full rotation about the z-axis

The derived commutation algorithm is not necessarily limited to long-stroke xy-
movement. The fundamentally limited stroke in the z-direction results in a limited
rotation about the x- and y-axis because an increasing clearance between the stator
coils and the magnet array results in less force. However, extension of the actuator
design and commutation algorithms to include full rotation about the z-axis could
increase the functionality of planar actuators. Finding and validating controllable
topologies which allow for this increased functionality is challenging because of the
variable pole-pitch during rotation and the increased model complexity.

6.4.2 Planar actuators with non-holonomic constraints

There could be applications for which the accuracy during planar movement is not
necessarily desired over the full xy-range. Moreover, when transportation from
one section of accurate positioning to another section of accurate positioning is
desired, reduction of the number of coils can probably be obtained by allowing for
non-holonomic constraints on the system in the transportation area. Using these
constraints only a finite set of trajectories is controllable in the transportation area.
An example could be to accelerate the translator to a speed which is high enough
to reach the destination area without the need for instantaneous 6-DOF decoupling
(and low power consumption) of the degrees of freedom in all positions of the
transportation area.

6.4.3 Fault tolerant planar actuator commutation

The commutation algorithm can be adapted to become fault-tolerant when it is pos-
sible to detect which coils are not working properly anymore. These coils should be
penalized in the decoupling. As long as the rank of the decoupling does not drop
due to the decreased number of active coils the system will still be operational, al-
though the performance will decrease slightly because the currents in the remaining
coils will increase.

6.4.4 Wireless power transfer, data communication and control

The advantage of a moving-magnet planar actuator over a moving-coil planar ac-
tuator is the absence of cables. With a contactless energy supply and wireless com-
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munication, a manipulator on top of the translator of the planar actuator could be
controlled while maintaining a contactless system. Information of the sensors can
be communicated through radio, optical or inductive links. A robust control strat-
egy of the stacked drives has to be derived which can deal with the influences of
wireless interfacing in an optimal way (e.g. communication delays and data-loss).

A project has already been started to investigate and demonstrate a planar
actuator with a manipulator, which has a contactless energy supply and wireless
data communication and control [20, 14].

6.4.5 Multiple translators above one stator

The realized planar actuator consists of one stator and one translator. With an
appropriate measurement system, also multiple translators can be levitated above a
single stator. Because cables to the translator are not required, there is also no risk
of cables being tangled.



Appendix A

Schur complement

Let A be a square partitioned matrix

A ≡
[

A11 A12

A21 A22

]

, (A.1)

with A11 and A22 also square. When A11 is nonsingular, A has the following
decomposition

[

A11 A12

A21 A22

]

=

[

I 0

A21A−1
11 I

] [

A11 0

0 S

] [

I A−1
11 A12

0 I

]

, (A.2)

with the Schur complement matrix [16] S equal to

S ≡ A22 − A21A−1
11 A12, (A.3)

where A is nonsingular iff S is nonsingular. If A is nonsingular

[

A11 A12

A21 A22

]−1

=

([

I 0

A21A−1
11 I

] [

A11 0

0 S

] [

I A−1
11 A12

0 I

])−1

=

[

I −A−1
11 A12

0 I

] [

A−1
11 0

0 S−1

] [

I 0

−A21A−1
11 I

]

=

[

A−1
11 + A−1

11 A12S−1A21A−1
11 −A−1

11 A12S−1

−S−1A21A−1
11 S−1

]

.

(A.4)
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Appendix B

Proof of theorem 4.7

This proof is based on the work of R.A. Horn et al. [16, section 5.8] but it has been
adapted to include non-square matrices.

Let the error matrix E be small enough so that (A + E) is invertible, then the
error of the inverse is defined as

~̂x − ~x = (A + E)
−
(

~b + ~e
)

− A
−~b, (B.1)

when the following transformation is used

(A + E) = A
(

I + A
−
E
)

, (B.2)

then a possible estimate of the error becomes

~̂x − ~x ≈
(

(

I + A
−
E
)−1

A
− − A

−
)

~b +
(

I + A
−
E
)−1

A
−~e, (B.3)

which is a good assumption if ρ (A−
E) ≪ 1 (where ρ (A) ≡ max (|λ|) is the spectral

radius of A and λ is an eigenvalue of A). Furthermore, if ρ (A−
E) < 1 then

(I + A
−
E)

−1
can be written as a power series in A

−
E resulting in

(

(I + A
−
E)

−1
A

− − A
−
)

~b + (I + A
−
E)

−1
A

−~e

=
∞
∑

k=1

(−1)
k
(A−

E)
k
A

−~b +
∞
∑

k=0

(−1)
k
(A−

E)
k
A

−~e

=
∞
∑

k=1

(−1)
k
(A−

E)
k
~x +

∞
∑

k=0

(−1)
k
(A−

E)
k
A

−~e.

(B.4)
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Assume ‖A−
E‖ < 1 and ~b 6= ~0 then

∥

∥

∥

(

(I + A
−
E)

−1
A

− − A
−
)

~b + (I + A
−
E)

−1
A

−~e
∥

∥

∥

≤
∞
∑

k=1

‖A−
E‖k ‖x‖ +

∞
∑

k=0

‖A−
E‖k ‖A−~e‖

=
‖A−E‖

1−‖A−E‖ ‖~x‖ +
‖A−~e‖

1−‖A−E‖
‖A~x‖
‖~b‖ ,

(B.5)

then the relative error becomes
∥

∥

∥

(

(I+A−E)
−1

A−−A−
)

~b+(I+A−E)
−1

A−~e
∥

∥

∥

‖~x‖

≤ ‖A−E‖
1−‖A−E‖ +

‖A−~e‖
1−‖A−E‖

‖A‖
‖~b‖ .

(B.6)

Assume that ‖E‖ < 1
‖A−‖ then (B.6) becomes

∥

∥

∥

(

(I+A−E)
−1

A−−A−
)

~b+(I+A−E)
−1

A−~e
∥

∥

∥
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1−κ2(A−,A)
‖E‖
‖A‖

(

‖E‖
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‖~b‖

)

.

(B.7)

Moreover, when ‖E‖ ≪ ‖A‖
κ2(A−,A) the following holds

ρ (A−
E) ≤ ‖A−

E‖ ≤ ‖A−‖ ‖E‖ ≪ 1 and (B.7) can be rewritten into a good
estimation of the upperbound on the relative error

‖~̂x−~x‖
‖~x‖ ≈

∥

∥

∥

(

(I+A−E)
−1

A−−A−
)

~b+(I+A−E)
−1

A−~e
∥

∥

∥

‖~x‖

< κ2 (A−,A)

(

‖E‖
‖A‖ + ‖~e‖

‖~b‖

) (B.8)
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Appendix C

List of symbols

Symbol Units Quantity

~ Vector
~q m,rad Coordinate vector
q quadrature axis
d direct axis
~i A Current vector
~u V Voltage vector
~F N Force vector
~T Nm Torque vector
~w N,Nm Wrench vector consisting of force and torque compo-

nents
T Transformation matrix
≻ Positive-definite matrix
c Coil coordinates
m Magnet coordinates
l Local coil coordinates
g General coordinates
s Sensor coordinates
Sn Admissible set of coordinates of a single coil n

Sadm Admissible set of coordinates of a basic active coil
configuration
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S~α Necessary admissible set of coordinates of a basic ac-
tive coil configuration to obtain a switchable config-
uration

αx, αy The switch counters indicating the offset along the
gqx-direction and gqy-direction of a repeated basic
active coil configuration, respectively

~α The switch state vector containing
[

αx αy
]T

T Transpose
H Conjugate transpose

Γ
N
A ,

Nm
A Matrix containing the model of the active set of coils

Γ
− A

N ,
A

Nm Decoupling matrix containing the generalized in-
verse of the active set of coils

Γ
−
F

A
N Decoupling matrix containing the generalized in-

verse of the active set of coils only using the force
components

Γ
−
T

A
Nm Decoupling matrix containing the generalized in-

verse of the active set of coils only using the torque
components

∆
(

l~q
)

Weighing matrix which is added to the decoupling to
assure smooth switching

δ one of the diagonal terms of weighing matrix ∆
(

l~q
)

τ m pole-pitch
τn m effective pole-pitch after rotation of pi/4 rad of the

magnet-array
t s time
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Samenvatting

Dutch abstract

Systemen met meerdere mechanische vrijheidsgraden worden vaak geconstrueerd
met elektromechanische actuatoren met maar één vrijheidsgraad. Over het alge-
meen beschikken deze actuatoren over een standaard, vaak gëıntegreerd, com-
mutatie (d.w.z. linearisatie- en ontkoppelings-) algoritme, welke de actuator van
de noodzakelijke ingangssignalen voorziet. Het toepassen van dit commutatie-
algoritme resulteert bij deze machines in gemakkelijke regeleigenschappen en re-
latief simpele actuator begrenzingen. In sommige applicaties is het noodzakelijk
om actuatoren toe te passen die meerdere vrijheidsgraden combineren om zo tege-
moet te kunnen komen aan de steeds strengere eisen. Als gevolg van het inte-
greren van vrijheidsgraden in één actuator, worden de commutatie en de regeling
echter complexer. Het is daarom van het grootste belang om de regeltechniek
vanaf een vroeg stadium in het ontwerpproces van deze actuatoren mee te ne-
men. De twee belangrijkste bijdragen van dit proefschrift zijn het beschrijven van
een nieuw commutatie-algoritme, maar vooral ook het toelichten van de daaruit
voortvloeiende ontwerpimplicaties.

Een magnetisch gelagerde planaire (in een vlak bewegende) actuator is een
voorbeeld van een actuator waarin meerdere vrijheidsgraden gecombineerd zijn.
Deze actuator kan gebruikt worden als alternatief voor xy-aandrijvingen die bestaan
uit aan elkaar gekoppelde lineaire motoren. Deze aandrijvingen worden veelal
toegepast in industriële hoge precisie applicaties waarbij objecten in een vlak gepo-
sitioneerd moeten worden. De planaire actuator is opgebouwd uit een stator met
een aaneenschakeling van spoelen waarboven een translator met een patroon van
permanente magneten zweeft. De translator, het bewegende deel, wordt hierbij
slechts ondersteund door magnetische velden. Door het magnetische lager moet de
translator echter actief gestabiliseerd worden in zes vrijheidsgraden. In dit proef-
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schrift wordt de dynamica, de commutatie en het regelontwerp beschreven van een
magnetisch gelagerde planaire actuator met bewegende magneten. Het grootste
voordeel van deze actuator is dat er geen kabels nodig zijn van de vaste wereld naar
de translator. Alleen de spoelen die zich onder het magneetoppervlak bevinden,
kunnen een effectieve bijdrage aan de levitatie en voortstuwing van de translator
leveren. Daarom wordt er afhankelijk van de positie van de translator in het xy-
vlak geschakeld tussen verschillende sets van actieve spoelen. Het schakelen tussen
spoelen in combinatie met de volledig contactloze translator maakt, in principe, een
oneindige slag in het xy-vlak mogelijk.

Vanwege de integratie van de voortstuwing in het xy-vlak en de actieve mag-
netische lagering is het niet mogelijk om gebruik te maken van standaard ontkop-
pelstrategieën voor synchrone machines voor het ontkoppelen van de kracht- en
koppelcomponenten. Vandaar dat er een nieuw commutatie-algoritme is afgeleid
dat de transformatie van de kracht- en koppelcomponenten, als functie van de
stromen door de spoelen en de positie en oriëntatie van het platform, inverteert.
In dit proefschrift is er gekozen voor een model-gebaseerde commutatie en regel-
aanpak, gebruik makend van een real-time analytisch model van de planaire actu-
ator. Het real-time model is gebaseerd op analytische oplossingen van de Lorentz
kracht- en koppelintegralen. Het nieuwe algoritme levert een optimale oplossing,
in die zin dat het energieverbruik van de actuator wordt geminimaliseerd. Nog
een belangrijke bijdrage in dit proefschrift is de introductie van gladde positie af-
hankelijke weegfuncties in het commutatie-algoritme. Deze functies resulteren in
een glad schakelgedrag tussen verschillende actieve groepen van spoelen. De re-
sulterende stroomvorm door iedere individueel aangestuurde actieve spoel is sterk
niet sinusvormig.

De model-gebaseerde aanpak, in combinatie met het nieuwe commutatie-
algoritme, heeft een ontwerpmethode opgeleverd die de regelbaarheid van planaire-
actuatortopologieën opneemt in de ontwerpfase. Met behulp van deze methode
worden verscheidene topologieën behandeld in dit proefschrift. Door de veran-
derende hoeveelheid actieve spoelen tijdens het schakelen tussen de verschillende
actieve spoelgroepen, hangen de actuator begrenzingen af van de xy-positie van de
translator. Dit proefschrift bevat daarom ook een analyse van de haalbare accele-
ratie als functie van de positie van de translator in combinatie met de begrenzing
van de stroomversterkers. Verder is het dynamische gedrag van het ontkoppelde
systeem geanalyseerd bij kleine fouten en is er een stabiliserende regelstructuur
afgeleid.

Een van de ontwerpen van de planaire actuator, de HPPA (Herringbone Pat-
tern Planar Actuator), is tot in meer detail uitgewerkt en is ook daadwerkelijk
gebouwd. Deze actuator is vernoemd naar het spoelpatroon (gelegen in een vis-



Samenvatting - Dutch abstract 113

graat patroon). De stator bestaat uit een totaal van 84 spoelen, waarvan er tussen
de 15 en 24 gelijktijdig worden gebruikt voor de lagering en de voortstuwing van
de translator. Het real-time model, het dynamische gedrag en het commutatie-
algoritme zijn experimenteel geverifieerd met behulp van deze volledig operationele
actuator. De magnetisch gelagerde, planaire actuator met zes vrijheidsgraden en
bewegende magneten (de HPPA) is ontwikkeld en getest en werkt naar behoren
volgens alle vooraf gestelde ontwerp- en prestatie-eisen.
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voor de hulp bij al mijn financiële, organisatorische en administratieve problemen.

Ook wil ik langs deze weg al mijn vrienden, die ik de afgelopen tijd heb
moeten verwaarlozen, bedanken. Jullie gaan weer meer van mij horen.

Een raar fenomeen is dat het meest toegankelijke en over het algemeen meest
gelezen deel, namelijk het dankwoord, vaak opgenomen wordt aan het eind van
een proefschrift. Tot slot wil ik dus alle mensen bedanken die de moeite hebben
genomen om dit deel van mijn proefschrift te bereiken door bij de titelpagina te
beginnen en het proefschrift van voor tot achter door te lezen.



Curriculum Vitae

Nelis van Lierop was born in Eindhoven, the Netherlands, on the 11th of March in
1978. He attended secondary school at the Pastoor Aelen-mavo (MAVO) in Eersel
from 1992 until 1994 and at the Rythovius College (HAVO) in Eersel from 1994
until 1996. During this period he received the third price at the ”Nationale wedstrijd
voor jonge onderzoekers” (a national, Dutch, contest for young researchers).

He then started studying electrical engineering in Eindhoven at the Fontys
Hogescholen (HTS) in 1996. His internship at the physics department of the Eind-
hoven University of Technology comprised of the design of a modulator for a lin-
ear micro-bunch particle accelerator. His graduation project took place at Philips
Lighting and concerned the design of a dual output power converter for a light
application. He received his B.Sc.-degree in electrical engineering in 2000.

In 2000, he started studying electrical engineering at the Eindhoven University
of technology. His graduation project within the control systems group took place
at the physics department of the same university, and concerned ”The influence of
amplitude and phase variations on a resonant cavity”. The research comprised of
the analysis of the effect of amplitude and phase variations on the output power of
a linear particle accelerator. The results of this analysis and the designed modulator
(during his internship) have been successfully applied to several accelerators. He
received his (Cum Laude) M.Sc.-degree in electrical engineering in 2003.

From October 2003 to Januari 2008, he pursued his Ph.D. degree in the con-
trol systems group of the department of electrical engineering at the Eindhoven
University of Technology. The topic of his Ph.D. research was a ”Magnetically Levi-
tated Planar Actuator with Moving Magnets” where he focussed on the ”Dynamics,
Commutation and Control Design”. During his Ph.D. research he also received the
course certificate of the Dutch Institute of Systems and Control DISC for completing
a required number of postgraduate courses.

Nelis’ personal interests are art and listening to, performing and composing
(piano) music. He played in several bands (e.g. GuessStation and In-Tension).

117


	Abstract
	Contents
	1. Introduction
	2. Commutation of basic forcer topologies using dq0 transformation
	3. Linearization and decoupling of the wrench
	4. Design of controllable topologies
	5. Experiments
	6. Conclusions and recommendations
	Appendix A
	Appendix B
	Appendix C
	Bibliography
	Samenvatting
	Acknowledgements
	Curriculum Vitae

