24 research outputs found

    Performance Metrics for Network Intrusion Systems

    Get PDF
    Intrusion systems have been the subject of considerable research during the past 33 years, since the original work of Anderson. Much has been published attempting to improve their performance using advanced data processing techniques including neural nets, statistical pattern recognition and genetic algorithms. Whilst some significant improvements have been achieved they are often the result of assumptions that are difficult to justify and comparing performance between different research groups is difficult. The thesis develops a new approach to defining performance focussed on comparing intrusion systems and technologies. A new taxonomy is proposed in which the type of output and the data scale over which an intrusion system operates is used for classification. The inconsistencies and inadequacies of existing definitions of detection are examined and five new intrusion levels are proposed from analogy with other detection-based technologies. These levels are known as detection, recognition, identification, confirmation and prosecution, each representing an increase in the information output from, and functionality of, the intrusion system. These levels are contrasted over four physical data scales, from application/host through to enterprise networks, introducing and developing the concept of a footprint as a pictorial representation of the scope of an intrusion system. An intrusion is now defined as “an activity that leads to the violation of the security policy of a computer system”. Five different intrusion technologies are illustrated using the footprint with current challenges also shown to stimulate further research. Integrity in the presence of mixed trust data streams at the highest intrusion level is identified as particularly challenging. Two metrics new to intrusion systems are defined to quantify performance and further aid comparison. Sensitivity is introduced to define basic detectability of an attack in terms of a single parameter, rather than the usual four currently in use. Selectivity is used to describe the ability of an intrusion system to discriminate between attack types. These metrics are quantified experimentally for network intrusion using the DARPA 1999 dataset and SNORT. Only nine of the 58 attack types present were detected with sensitivities in excess of 12dB indicating that detection performance of the attack types present in this dataset remains a challenge. The measured selectivity was also poor indicting that only three of the attack types could be confidently distinguished. The highest value of selectivity was 3.52, significantly lower than the theoretical limit of 5.83 for the evaluated system. Options for improving selectivity and sensitivity through additional measurements are examined.Stochastic Systems Lt

    Wi-Fi based people tracking in challenging environments

    Get PDF
    People tracking is a key building block in many applications such as abnormal activity detection, gesture recognition, and elderly persons monitoring. Video-based systems have many limitations making them ineffective in many situations. Wi-Fi provides an easily accessible source of opportunity for people tracking that does not have the limitations of video-based systems. The system will detect, localise, and track people, based on the available Wi-Fi signals that are reflected from their bodies. Wi-Fi based systems still need to address some challenges in order to be able to operate in challenging environments. Some of these challenges include the detection of the weak signal, the detection of abrupt people motion, and the presence of multipath propagation. In this thesis, these three main challenges will be addressed. Firstly, a weak signal detection method that uses the changes in the signals that are reflected from static objects, to improve the detection probability of weak signals that are reflected from the person’s body. Then, a deep learning based Wi-Fi localisation technique is proposed that significantly improves the runtime and the accuracy in comparison with existing techniques. After that, a quantum mechanics inspired tracking method is proposed to address the abrupt motion problem. The proposed method uses some interesting phenomena in the quantum world, where the person is allowed to exist at multiple positions simultaneously. The results show a significant improvement in reducing the tracking error and in reducing the tracking delay

    Mining climate data for shire level wheat yield predictions in Western Australia

    Get PDF
    Climate change and the reduction of available agricultural land are two of the most important factors that affect global food production especially in terms of wheat stores. An ever increasing world population places a huge demand on these resources. Consequently, there is a dire need to optimise food production. Estimations of crop yield for the South West agricultural region of Western Australia have usually been based on statistical analyses by the Department of Agriculture and Food in Western Australia. Their estimations involve a system of crop planting recommendations and yield prediction tools based on crop variety trials. However, many crop failures arise from adherence to these crop recommendations by farmers that were contrary to the reported estimations. Consequently, the Department has sought to investigate new avenues for analyses that improve their estimations and recommendations. This thesis explores a new approach in the way analyses are carried out. This is done through the introduction of new methods of analyses such as data mining and online analytical processing in the strategy. Additionally, this research attempts to provide a better understanding of the effects of both gradual variation parameters such as soil type, and continuous variation parameters such as rainfall and temperature, on the wheat yields. The ultimate aim of the research is to enhance the prediction efficiency of wheat yields. The task was formidable due to the complex and dichotomous mixture of gradual and continuous variability data that required successive information transformations. It necessitated the progressive moulding of the data into useful information, practical knowledge and effective industry practices. Ultimately, this new direction is to improve the crop predictions and to thereby reduce crop failures. The research journey involved data exploration, grappling with the complexity of Geographic Information System (GIS), discovering and learning data compatible software tools, and forging an effective processing method through an iterative cycle of action research experimentation. A series of trials was conducted to determine the combined effects of rainfall and temperature variations on wheat crop yields. These experiments specifically related to the South Western Agricultural region of Western Australia. The study focused on wheat producing shires within the study area. The investigations involved a combination of macro and micro analyses techniques for visual data mining and data mining classification techniques, respectively. The research activities revealed that wheat yield was most dependent upon rainfall and temperature. In addition, it showed that rainfall cyclically affected the temperature and soil type due to the moisture retention of crop growing locations. Results from the regression analyses, showed that the statistical prediction of wheat yields from historical data, may be enhanced by data mining techniques including classification. The main contribution to knowledge as a consequence of this research was the provision of an alternate and supplementary method of wheat crop prediction within the study area. Another contribution was the division of the study area into a GIS surface grid of 100 hectare cells upon which the interpolated data was projected. Furthermore, the proposed framework within this thesis offers other researchers, with similarly structured complex data, the benefits of a general processing pathway to enable them to navigate their own investigations through variegated analytical exploration spaces. In addition, it offers insights and suggestions for future directions in other contextual research explorations

    Aeronautical engineering: A continuing bibliography with indexes (supplement 233)

    Get PDF
    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Semi-supervised and unsupervised kernel-based novelty detection with application to remote sensing images

    Get PDF
    The main challenge of new information technologies is to retrieve intelligible information from the large volume of digital data gathered every day. Among the variety of existing data sources, the satellites continuously observing the surface of the Earth are key to the monitoring of our environment. The new generation of satellite sensors are tremendously increasing the possibilities of applications but also increasing the need for efficient processing methodologies in order to extract information relevant to the users' needs in an automatic or semi-automatic way. This is where machine learning comes into play to transform complex data into simplified products such as maps of land-cover changes or classes by learning from data examples annotated by experts. These annotations, also called labels, may actually be difficult or costly to obtain since they are established on the basis of ground surveys. As an example, it is extremely difficult to access a region recently flooded or affected by wildfires. In these situations, the detection of changes has to be done with only annotations from unaffected regions. In a similar way, it is difficult to have information on all the land-cover classes present in an image while being interested in the detection of a single one of interest. These challenging situations are called novelty detection or one-class classification in machine learning. In these situations, the learning phase has to rely only on a very limited set of annotations, but can exploit the large set of unlabeled pixels available in the images. This setting, called semi-supervised learning, allows significantly improving the detection. In this Thesis we address the development of methods for novelty detection and one-class classification with few or no labeled information. The proposed methodologies build upon the kernel methods, which take place within a principled but flexible framework for learning with data showing potentially non-linear feature relations. The thesis is divided into two parts, each one having a different assumption on the data structure and both addressing unsupervised (automatic) and semi-supervised (semi-automatic) learning settings. The first part assumes the data to be formed by arbitrary-shaped and overlapping clusters and studies the use of kernel machines, such as Support Vector Machines or Gaussian Processes. An emphasis is put on the robustness to noise and outliers and on the automatic retrieval of parameters. Experiments on multi-temporal multispectral images for change detection are carried out using only information from unchanged regions or none at all. The second part assumes high-dimensional data to lie on multiple low dimensional structures, called manifolds. We propose a method seeking a sparse and low-rank representation of the data mapped in a non-linear feature space. This representation allows us to build a graph, which is cut into several groups using spectral clustering. For the semi-supervised case where few labels of one class of interest are available, we study several approaches incorporating the graph information. The class labels can either be propagated on the graph, constrain spectral clustering or used to train a one-class classifier regularized by the given graph. Experiments on the unsupervised and oneclass classification of hyperspectral images demonstrate the effectiveness of the proposed approaches

    Summary of Research 1994

    Get PDF
    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.This report contains 359 summaries of research projects which were carried out under funding of the Naval Postgraduate School Research Program. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, and technical reports. The research was conducted in the areas of Aeronautics and Astronautics, Computer Science, Electrical and Computer Engineering, Mathematics, Mechanical Engineering, Meteorology, National Security Affairs, Oceanography, Operations Research, Physics, and Systems Management. This also includes research by the Command, Control and Communications (C3) Academic Group, Electronic Warfare Academic Group, Space Systems Academic Group, and the Undersea Warfare Academic Group

    Reports to the President

    Get PDF
    A compilation of annual reports for the 1988-1989 academic year, including a report from the President of the Massachusetts Institute of Technology, as well as reports from the academic and administrative units of the Institute. The reports outline the year's goals, accomplishments, honors and awards, and future plans

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation
    corecore