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Abstract
The main challenge of new information technologies is to retrieve intelligible information
from the large volume of digital data gathered every day. Among the variety of existing
data sources, the satellites continuously observing the surface of the Earth are key
to the monitoring of our environment. The new generation of satellite sensors are
tremendously increasing the possibilities of applications but also increasing the need for
efficient processing methodologies in order to extract information relevant to the users’
needs in an automatic or semi-automatic way.
This is where machine learning comes into play to transform complex data into simplified
products such as maps of land-cover changes or classes by learning from data examples
annotated by experts. These annotations, also called labels, may actually be difficult or
costly to obtain since they are established on the basis of ground surveys. As an example,
it is extremely difficult to access a region recently flooded or affected by wildfires. In these
situations, the detection of changes has to be done with only annotations from unaffected
regions. In a similar way, it is difficult to have information on all the land-cover classes
present in an image while being interested in the detection of a single one of interest.
These challenging situations are called novelty detection or one-class classification in
machine learning. In these situations, the learning phase has to rely only on a very limited
set of annotations, but can exploit the large set of unlabeled pixels available in the images.
This setting, called semi-supervised learning, allows significantly improving the detection.
In this Thesis we address the development of methods for novelty detection and one-class
classification with few or no labeled information. The proposed methodologies build
upon the kernel methods, which take place within a principled but flexible framework
for learning with data showing potentially non-linear feature relations. The thesis is
divided into two parts, each one having a different assumption on the data structure and
both addressing unsupervised (automatic) and semi-supervised (semi-automatic) learning
settings.
The first part assumes the data to be formed by arbitrary-shaped and overlapping clusters
and studies the use of kernel machines, such as Support Vector Machines or Gaussian
Processes. An emphasis is put on the robustness to noise and outliers and on the automatic
retrieval of parameters. Experiments on multi-temporal multispectral images for change
detection are carried out using only information from unchanged regions or none at all.
The second part assumes high-dimensional data to lie on multiple low dimensional
structures, called manifolds. We propose a method seeking a sparse and low-rank
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representation of the data mapped in a non-linear feature space. This representation
allows us to build a graph, which is cut into several groups using spectral clustering.
For the semi-supervised case where few labels of one class of interest are available, we
study several approaches incorporating the graph information. The class labels can either
be propagated on the graph, constrain spectral clustering or used to train a one-class
classifier regularized by the given graph. Experiments on the unsupervised and one-
class classification of hyperspectral images demonstrate the effectiveness of the proposed
approaches.

Keywords: Machine learning, Kernel methods, Change detection, Clustering, Manifold
learning, Pattern recognition, Semi-supervised learning
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Résumé
Le principal défi des nouvelles technologies de l’information est de réussir à extraire
de l’information intelligible à partir du déluge de données numériques collectées tous
les jours. Parmi ces données, celles provenant des satellites d’observation de la Terre
sont essentielles pour la surveillance de notre environnement. La nouvelle génération
de satellites accroît les possibilités d’applications, mais aussi la nécessité de développer
des méthodes capables d’extraire des informations pertinentes pour les utilisateurs de
manière automatique ou semi-automatique. Dans ce but, l’apprentissage automatique
permet de transformer des données complexes en produits simplifiés, tels que des cartes
de changements multi-temporels ou d’occupation du sol. L’apprentissage s’effectue à
partir d’exemples annotés par des experts. Ces annotations, également appelées étiquettes,
peuvent être en réalité difficiles ou très coûteuses à obtenir, car établies sur la base de
relevés de terrain. Il est par exemple difficile d’accéder à une zone ayant été inondée ou
touchée par des incendies. Ainsi la détection de changement doit être effectuée uniquement
avec des informations sur des régions intactes. Le problème est le même si l’on s’intéresse
à une certaine classe d’occupation du sol et que l’on ne connaît pas toutes les classes
contenues dans l’image. Ces situations particulièrement difficiles en terme d’apprentissage
sont appelées “détection de nouveauté” ou “classification à une classe” dans le domaine
de l’apprentissage automatique. Dans ces situations, la phase d’apprentissage doit se
contenter du nombre très limité d’annotations mais peut utiliser le vaste ensemble de
pixels non étiquetés toujours disponibles dans les images. Cet apprentissage, appelé
semi-supervisé, permet d’améliorer grandement la détection.
Cette Thèse aborde le développement de méthodes, dites à noyaux, permettant l’appren-
tissage avec des données montrant potentiellement des caractéristiques non-linéaires pour
ces situations de détection ou de classification n’ayant que très peu d’informations a
priori. Cette Thèse est divisée en deux parties, chacune ayant une hypothèse différente
sur la structure des données et traitant toutes les deux d’apprentissage non-supervisé et
semi-supervisé.
La première partie fait l’hypothèse d’une structure en groupes qui se superposent. L’accent
est mis sur la sélection automatique des paramètres requis par les différentes méthodes
proposées. Ces méthodes permettent la détection automatique et semi-automatique de
changements en utilisant seulement des exemples provenant de régions inchangées.
La deuxième partie s’intéresse aux données à haute dimensionnalité, telles que les images
hyperspectrales, et fait l’hypothèse d’une composition de structures à faible dimensionna-
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lité, appelées variétés. Les méthodes proposées cherchent une représentation parcimonieuse
et dite à faible rang des données dans un espace projeté non-linéaire. Cette représen-
tation permet de retrouver les multiples structures correspondant à différentes classes
d’occupation du sol par exemple. Lorsque seules quelques étiquettes d’une classe d’intérêt
sont disponibles, plusieures approches peuvent combiner la précédente représentation des
données et les étiquettes. Elles peuvent être utilisées de différentes manières : propagées
en respectant la structure des données, utilisées pour contraindre l’obtention des groupes
ou pour l’apprentissage d’un classificateur qui tient compte de la structure découverte.
Ces approches permettent la classification non-supervisée et semi-supervisée d’une classe
d’intérêt dans des images hyperspectrales.

Mots clefs : Apprentissage non-supervisé, apprentissage semi-supervisé, méthodes
à noyaux, détection de changements, analyse par regroupements, structures à faibles
dimensions, reconnaissance de formes
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1 General introduction

1.1 Motivations

The massive amount of digital data gathered every day by various sensors on and above
the surface of the Earth is far from being fully exploited. The constellation of Earth
observation satellites, the networks of cameras in cities or the various measure stations
are among the many continuous monitoring that occurs everyday on our planet. The
diversity of the sensors allows to foresee applications and products with high impact but
remains a poisoned gift in terms of required processing. The actual challenge is about
extracting relevant information from a deluge of complex observations, whereas less than
fifty years ago, it was about trying to acquire observations [Baraniuk, 2011].

Considering only the Earth observation satellites, more than a dozen terabytes of remote
sensing measurements are collected every day. With the improvements in spectral, spatial
and temporal resolutions of the sensors, the amount of data continues to grow. These
sensors provide a unique chance to characterize the physical processes ongoing on the
surface of the Earth over large areas and various time lapses in an accurate way. This new
generation of satellites fosters applications like long-term monitoring of the ecosystems,
precise weather forecasting, monitoring of agricultural fields and urban growth or early
warning after natural catastrophes.

However, in order to meet the requirements of these applications an important processing
chain is needed to transform the measured data into valuable products for the users. The
processing is challenging: first there are the multiple perturbations occurring between the
surface of the Earth and the sensor and secondly, the data is complex and massive. One
of the most delicate part of the processing chain is the transformation of the data into a
simplified product, such as thematic maps where every pixel of an image is attributed a
thematic class. This stage, at the interface between machine learning, pattern recognition
and image processing, is definitely the main bottleneck for having a complete automatic
processing chain.
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Chapter 1. General introduction

Automatic methods still require a learning phase where a set of annotated examples from
experts are used to learn the desired transformation of the data. These annotations,
also called labels, may be difficult or costly to obtain in practice, leaving the machine
with only a few of these annotations. Fortunately, often a large set of unlabeled samples
is available at no extra cost. In these situations, the combination of both labeled and
unlabeled samples, usually referred to as semi-supervised learning, can greatly improve
the prediction accuracies in classification or detection applications, since the unlabeled
samples are providing valuable information on the data distribution and its structure.

The development of automatic methodologies would be beneficial for most of the mon-
itoring applications. As for instance, the recent programs of the leading information
technology companies, namely IBM’s smarter planet [Zhu et al., 2009] or NASA-Cisco’s
planetary skin [Castilla-Rubio and Willis, 2009] whose common goal is the global mon-
itoring of the environment and the early-warning and mitigation of disasters. These
applications have a tremendous potential for life-safety and economic benefits and will
rely on the success of automatic processing methods.

1.2 What is novelty detection about ?

In standard classification problems, the set of examples used for training a machine is
assumed representative of the different categories desired. However, often in practice the
labels available are not representative of all the data at hand. This requires the ability to
identify data that was not represented by examples during the training stage. This type
of situations are known as novelty detection or one-class classification in the machine
learning community. More precisely, novelty detection is defined as the task of detecting
new or unknown data based solely on some reference data of normal observations. A
data sample that deviates significantly from the normal data distribution is assumed to
be issued from another underlying process and is considered a novelty [Markou and Singh,
2003a,b].

In machine learning, the field of novelty detection is inter-related with the problem of
one-class classification. These two different denominations for a similar problem are used
to emphasize the desired task: novelty detection if we are more interested in the data that
differs from the normal observations, or one-class classification if we are more interested
in the normal observations. Furthermore, this type of problems is closely related to
anomaly and outlier detection. The nuances between these appellations, driven by the
assumptions made on the data and the supervised information available, are presented
in Section 4.1. The ability to discover novelties is crucial for a large set of problems
encountered in many applications which has raised the interest of researchers during last
decade, within the related fields of novelty, outlier and anomaly detection as observed by
the number of citations in these fields, illustrated in Figure 1.1.
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Figure 1.1: Number of citations over the years for novelty detection, anomaly detection,
outlier detection and one-class classification. Source: http://academic.research.microsoft.
com

We, as human beings, perform novelty detection on a daily basis. Our brain models events
from the environment using a distributed neural network involving the hippocampus
and many other different regions of the brain [Knight, 1996]. This network is able to
detect unusual events which are potentially dangerous, by recognizing a bad prediction of
the model. This would indicates that the event is different from what has already been
experienced [Tiitinen et al., 1994]. The closely related topic of concept learning, i.e. how
human beings build their rules for testing if a situation is novel, has been first investigated
by psychologists [Hunt, 1962] and then transferred to the machine [Tenenbaum, 2000].
The understanding of how humans learn abstractions could help in designing models to
detect a specific class of inputs. For a machine, discovering novelties is a delicate process,
since it should detect something for which it has not been trained. The very first successful
attempts were using auto-encoder Artificial Neural Networks (ANN) based on a model
of the hippocampus, the part of the brain involved in learning and memorizing [Bishop,
1994, Japkowicz et al., 1995].

The reason why there is a lack of information about the novelties to be detected is
either their rare occurrence (e.g. rare engine default), their heterogeneity (e.g. different
types of land-cover changes) or the cost and difficulty in collecting them (e.g. patterns
failing after an expensive lithographic manufacturing process, bank frauds, or areas
that are inaccessible after a natural disaster). In many classification problems, we only
possess information from one or few classes of interest and new classes may appear.
Aside novelty detection, the fields of one-shot learning [Miller et al., 2000, Fei-Fei et al.,
2006], where knowledge from other classes is used to detect a novel class, and zero-shot
learning [Palatucci et al., 2009], where new classes are discriminated solely based on
training examples from different classes, are negating the “closed world” assumption. The
latter assumes that all the data at hand during training is known in terms of possible
classes and that unknown classes are not allowed as outputs, which is not reasonable and
unrealistic in practice [Duin and Pekalska, 2005]. Instead the “open world” assumption
should be preferred [Scheirer et al., 2013]. This assumption does not presume that all the
knowledge is available at training and tolerate to have some outputs unknown. This is
in favour of multi-class recognition (i.e. one-vs-all), where additional classes not present
during training are detected as outliers. It is more flexible than the generally adopted

5

http://academic.research.microsoft.com
http://academic.research.microsoft.com


Chapter 1. General introduction

feature 1

fe
at

ur
e 

2

feature 1

fe
at

ur
e 

2

(a) (b)

Figure 1.2: Novelty detection and one-class classification examples in remote sensing.
(a) Multi-temporal situation where the • unchanged pixels (trees) are used to train the
model (dashed boundary) and detect the x changed pixels (burnt trees). (b) Classification
situation where the • examples of a class of interest (vegetation) are used to train the
model (dashed boundary) and detect the x pixels of different classes (building, roads,
etc..) as novelties.

strategy which discriminates pairs of classes (i.e. one-vs-one) and it is more efficient
since less computationally intensive and similar in terms of accuracy [Rifkin and Klautau,
2004].

In this Thesis, we address the problem of novelty detection by introducing methodologies
specifically handling the restricted supervision level and the data structure, particularly in
the context of remote sensing applications. As depicted in Figure 1.2, these situations can
be encountered in multi-temporal or fixed time image analysis. Both cases are essentially
about finding the best description of a class of interest to better detect data of a different
nature, which requires flexible and robust methods for handling the complex statistical
distribution of the data; hence the use of kernel methods in this Thesis. In particular in
remote sensing, the assumption of a linear relationship among the data features does not
hold. As an example, the data in Figure 1.2 shows a non-linear type of relation between
its features producing a banana-shaped cluster.

On the one hand, we focus on the automatic change detection in multi-temporal remote
sensing images, see Figure 1.2 (a). The rapid mapping of an area and the analysis of
changes are decisive in early warning systems. In such small time laps, the experts cannot
provide the machine with reliable information about the changes occurring at the surface
of the Earth. Thus in the completely unsupervised case where no annotated examples
are available, the machine will learn only from the structure of the data to recover the
changed and unchanged areas. In the case where some unchanged areas can be reliably
annotated, they can be used to detect unknown changes. Furthermore, this strategy can
become advantageous for heterogeneous changes that would require many annotations for
a complete characterization.
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On the other hand, we consider the production of thematic land-cover maps under a low
level of supervision. In the completely unsupervised case, the structure of the data is
retrieved and the disconnected components are identified as classes. In the case of an
expert interested in one specific land-cover class and cannot provide the system with all
the different thematic classes present in the covered area, an accurate description of the
class of interest is learned to enable its discrimination.

In all cases, we exploit the inherent structure of the data to cope with the low level of
supervision.

1.3 Thesis objectives

In this Thesis, we aim at addressing the novelty detection problem in situations with no
or partial supervision typically found in remote sensing. We plan to address this problem
using methods that respect the non-linear nature of the data to provide more accurate
products.

The objectives of the Thesis can be summarized as follows:

1. Provide methods for handling non-linear data characteristics and enabling novelty
detection in situations of low level of supervision, such as semi-supervised and
unsupervised settings.

2. Provide parameter selection strategies that support this low level of supervision.

3. Apply these methods to change detection and one-class classification problems in
remote sensing.

The organization of the Thesis is as follows: An introduction to the motivations behind
this Thesis and the related contributions are presented in this first Chapter. A concise
introduction to the field of remote sensing for Earth observation is presented in Chapter 2,
while the required background on machine learning and the state-of-the-art approaches
to novelty detection are exposed in Chapter 3 and 4, respectively. The rest of the Thesis
is organized along two main axes: the first about the type of assumption on the structure
of the data and the second about the level of supervision. It has been natural to group
the Chapters sharing the same assumptions on the nature of the data into two coherent
parts (Part II and Part III). Inside each part, a first Chapter introduces some common
background notions, a second Chapter presents a fully unsupervised approach to novelty
detection, while the third Chapter deals with the semi-supervised setting.
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1.4 Thesis contributions

Here we present the contributions made in this Thesis to the aforementioned objectives
and their associated publications.

Part II studies the use of kernel machines for data formed by overlapping clusters.
Emphasis is put on the robustness to noise and outliers and on the automatic retrieval of
parameters. In Chapter 6, the unsupervised detection of changes is approached as a
clustering problem where arbitrary-shaped and overlapping clusters need to be retrieved.
We present the hierarchical Support Vector clustering and hierarchical Gaussian Processes
clustering. We also propose a cluster validity measure for the selection of hyperparameters
and a cluster merging system adequate to the problem of change detection. This Chapter
relates to [de Morsier et al., 2012b, 2014b]. In Chapter 7, the semi-supervised detection
of novelties is based on a discriminative approach between labeled and unlabeled samples.
We propose to exploit entire solution path algorithms and establish a low-density criterion
providing fast parameter selection since it avoids recurring to the usual cross-validation.
This Chapter relates to [de Morsier et al., 2012a, 2013c].

Part III investigates the use of kernel methods with new paradigms for high-dimensional
data lying on multiple low-dimensional manifolds. In Chapter 9, unsupervised classifi-
cation is performed with the construction of a graph that represents the data manifold
structure. The graph aims at finding a sparse and low-rank representation of the data
mapped in a non-linear feature space. The graph is cut using spectral clustering. The
formulation is flexible, handles multiple manifolds and has a natural out-of-sample exten-
sion. This Chapter relates to [de Morsier et al., 2014c,d]. In Chapter 10, we tackle the
semi-supervised situation, i.e. when few labeled examples of one class are available. We
investigate different approaches to novelty detection based on a graph representing the
data structure based on either label propagation, constrained clustering or semi-supervised
classification.

The contributions in this Thesis are concentrated around the problem of unsupervised
and semi-supervised novelty and one-class detection under appropriate data assumptions.
However, the methodologies developed range from clustering with noise, arbitrary-shaped
clusters/manifolds to unbalanced classification problems. They could be extended to other
related pattern recognition applications, such as face and object clustering as presented
in the first experiments of Chapter 9, and provide new application opportunities.
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Contributions not presented in the Thesis During the PhD, a certain number of
other works have been done but are not presented in this Thesis. These works are most
often the result of international collaborations or performed while doing an internship at
IBM Zurich Research Lab. We simply list them hereafter and let the interested reader
check the corresponding publication.

1. Dempster-Shafer consensus clustering for multi-source thematic classification [Ra-
noeliarivao et al., 2013].

2. Flood detection in SAR images with non-linear kernel clustering and topographic
prior [de Morsier et al., 2013b].

3. Soil moisture estimation from airborne hyperspectral imagery over tilled agricultural
fields based on Support Vector Regression (SVR) [Stamenkovic et al., 2013].

4. Semi-supervised change detection as a multi-view problem based on the semi-
supervised kernel canonical correlation analysis (SSKCCA) [Volpi et al., 2013].

5. Robust registration of airborne videos exploiting motion estimation [de Morsier
et al., 2013a].

6. Learning the geographic features for landscape attractiveness as a geographic one-
class data problem [Produit et al., 2014].

7. Domain adaptation in remote sensing via cross-image synthesis based on dictionary
learning [Matasci et al., 2014].

8. Hierarchical sparse representation for dictionary-based classification of hyperspectral
images [Marcos Gonzalez et al., 2014].

9. Fast detection of novel problematic patterns based on dictionary learning and
prediction of their lithographic difficulty [de Morsier et al., 2014a]

10. Two patents on fast novelty detection in very large VLSI layouts by means of
compressive sampling and dictionary learning (developed while at IBM).

• Fast novelty detection based on compressed sensing and dictionary learning
(filed).

• Fast detection of novel semiconductor patterns and prediction of their lithogra-
phy difficulty based on online joint dictionary and regression learning (pending).
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2 Introduction to remote sensing

We introduce in this Chapter the main notions on remote sensing (RS) and the optical
imagery.

2.1 A brief history of remote sensing

For centuries the Earth has only been observed from the ground. Scientific progress
have made possible the observations from a distance, i.e. sensing from a remote location:
the space. In the 1840s, with the very beginning of photography and cameras, balloon
pilots started to take pictures of the ground. During the First World War, cameras were
mounted on airplanes and provided precious strategic images of the enemy’s side. With
the Second World War and the beginning of aerospace activities, the possibilities to
observe the Earth were increased by jetplanes, rockets and finally satellites. Photo systems
were quickly integrated into satellites for recognition and cartography by U.S intelligence
agencies [Richards, 2013]. Nowadays, the observation satellites are not restricted to the
defence sector anymore and several commercial satellites are now operational. However,
the defence industry has an important technological advance over the commercial sector.
The military satellites were capable of acquiring high-resolution optical images 30 years
before the civil and commercial satellites as presented in Figure 2.1.

Earth observation by satellites quickly became an important tool for monitoring short
and long-term phenomena occurring at the surface or in the atmosphere. It allows the
systematic study of natural resources such as biomass content, moisture analysis, aerosols,
land usage and natural disasters damage assessment. Many other disciplines related to
spatial information are incorporating RS products, with the broad use of Geographic
Information Systems (GIS). The GIS allow to unify all geo-spatial related information
(land-cover, land-use, road networks, urban zones, demography, etc..) and helps for
territorial management and decision making. More recently, RS has become a tool for
geo-politics and humanitarian law surveillance, helping UN peacekeeping mission and

11



Chapter 2. Introduction to remote sensing

(a) (b)

Figure 2.1: High-resolution images acquired over the Eiffel tower, Paris, by (a) the
U.S. military satellite KH-7 (20/03/1966) and (b) the Quickbird satellite (02/08/2004).
Thirty years ago, military satellites could achieve a similar resolution than today’s civilian
satellites.

providing clear evidences of human rights violations. The Earth observation imagery
starts to be recognized as evidence by international criminal courts [Marx and Goward,
2013]. As an example, the destruction of villages in Darfur (Sudan) could be observed
as change in landcover classification from Landsat satellite imagery [Marx and Loboda,
2013].

The democratization of RS information is principally due to the technological advance in
computational power of personal computers. Everyone can access the data from their
personal computer on websites such as Google maps or softwares such as Google Earth
and Earthwind. This widespread distribution of data is nowadays completed by the
interaction with users. They are invited to contribute via collaborative platforms such
as the open-street-maps database. This new source of spatial information forms the
neogeography, also called crowdsourcing. These various sources of spatial information will
provide us in the near future with what is called the Digital Earth, a powerful and rich
source of information on our planet for scientific and non-scientific usage [Richards, 2013].

2.2 Remote sensing of the Earth by
satellites/airborne platforms

The RS by satellite or airborne platforms aims at producing an image of the Earth
revealing some of its surface characteristics. RS instruments can be separated into two
distinct groups: the passive instruments which rely only on the solar radiation and the
active instruments, which emit energy towards the surface and records the backscattered
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Figure 2.2: The electromagnetic spectrum is presented along a large range of frequen-
cy/wavelength. The part of the spectrum corresponding to the visible range is zoomed.
The atmospheric transmittance is also reported on top.

energy. Examples of passive instruments are the multi-and hyperspectral sensors and
examples of active instruments are radars and Synthetic Aperture Radars (SAR). These
instruments are designed for observing a particular region of the electromagnetic spectrum,
in the visible (VIS) and infrared range for passive optical instruments and in the microwave
range for radars. See Figure 2.2 for a logarithm representation of the electromagnetic
spectrum with its different parts. The VIS, where our human visual system is concentrated,
is ranging between 400 and 700 nm as shows the zoom in Figure 2.2.

2.2.1 Optical remote sensing

In this Thesis we focus on the analysis of optical images which are acquired by passive
instruments. Radar and SAR images are of a very different nature in terms of interpretation
for the user and require specific (pre-)processing techniques out of the scope of this Thesis.

Effect of the atmosphere The energy captured by instrument, mounted on a platform
like a satellite, corresponds to sunlight energy backscattered by the surface of the Earth.
However, multiple disturbances, attenuations and additional source of energy are impacting
on the received energy. The spectrum of the solar radiations arriving at the top of the
atmosphere (TOA) is similar to a blackbody at temperature 5700 K, as presented
in Figure 2.3. After passing through the atmosphere, the solar irradiance at the surface of
the Earth is 1000 W/m2 in average, which is 30% less than at the TOA. The backscattered
radiations will again lose energy on their way back to the sensor through the atmosphere.
The content of the atmosphere, a mixture of nitrogen, oxygen, argon, water vapour, ozone
and aerosols varying with altitude, actually interacts with the electromagnetic radiation
causing scattering and absorption.
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Chapter 2. Introduction to remote sensing

Figure 2.3: The solar radiation at the TOA and at surface of the Earth after passing
through the atmosphere. The blackbody spectrum is overlayed and the absorption bands
between the atmospheric windows are well observable.

The absorption of the atmosphere acts as a barrier and protects us from radiations such as
ultraviolet (UV) which are harmful for the human body. However, it drastically restricts
the capacity of any RS system willing to observe the Earth through the atmosphere.
Hopefully, there are regions of the electromagnetic spectrum where the absorption by the
atmosphere is almost non-existent. These regions are called the atmospheric windows.
Between these atmospheric transmission windows are the absorption bands, corresponding
most often to specific atmospheric gases. In Figure 2.3 is presented the solar irradiance
which clearly shows the absorption bands. As expected from our everyday experience,
the VIS is located inside the principal atmospheric window, allowing us to see the stars
from the ground even if they are faint lights.

The scattering of the atmosphere has for principal effect to scatter back to the sensor
solar radiation which did not reach the ground and produce a hazy effect on the images.
Moreover, the scattering is spreading the energy from a zone to another and results in
inaccurate brightness at the sensor.

The optical instruments are sensing in the VIS and usually extend to near infrared (VNIR
or NIR), short-wave infrared (SWIR), middle infrared (MIR) or even thermal infrared
(TIR) corresponding to the principal range of the sunlight energy. Towards the UV range
the atmospheric transmittance decreases which prevent from sensing this part of the
electromagnetic spectrum. The signals acquired in the spectral bands of the blue region
(∼ 400nm) are hazy and only used for specific tasks related to the atmosphere and not
the ground surface.
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Figure 2.4: The spectral response of the surface of the Earth allows to characterize its
material composition. Three different spectral signatures are presented corresponding to
vegetation, water and building roofs.

Spectral response of the ground surface The different materials on the ground such
as water, soil, vegetation, bricks or asphalt interact with the electromagnetic radiations
in different ways. For example, the water will absorb most of the visible and infrared
light, whereas the snow will reflect almost everything. The spectral reflectance signatures
allow to characterize accurately different materials. In Figure 2.4, the spectral signatures
of three different materials corresponding to vegetation, water and a building roof are
represented. The three spectra show different absorption regions. The vegetation presents
a very specific signature with a strong chlorophyll absorption in the visible (blue, red)
and a peak of reflectance in the near-infrared region (> 900 nm). We can also observe
the absorption band due to H2O in both the vegetation and building signatures.

2.2.2 Sensors characteristics

Considering the area of optical passive instruments, we describe here concisely the
principal characteristics of the sensor-platform system from the data acquisition to the
satellite orbit. Among the existing sensors, two main characteristics allow to categorize
them: their spatial and spectral resolutions.

Spatial resolution The pixel size of a sensor is defined by its instantaneous field of
view (IFOV). The IFOV is the finest angular resolution covered by the optical sensor at
a fixed time instant. From the known platform altitude, the IFOV is directly related to
the ground sampling distance (GSD), which is defined as the smallest resolvable element
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Chapter 2. Introduction to remote sensing

in the image [Ian Dowman and Sandau, 2012]. Most of the sensors are based on the
“push-broom” techniques which scan across track as the satellite moves forward. This
defines the field of view (FOV) of the sensor which corresponds on the ground to its swath
width. The spatial resolution of sensors varies depending on the targeted application,
low resolution (∼ km) for global mapping to very high-resolution (< 1m) for precise
ground characterization, typically in urban environment. The highest spatial resolutions
are at sub-meter level with WorldView-2 from DigitalGlobe. See Figure 2.5 for a detailed
summary of the sensors and their characteristics over the years. The trade-off between
spatial and spectral resolution can be observed.

Spectral resolution The sensor is designed to acquire the signal within a certain range
of the spectrum and with a certain spectral resolution. The panchromatic images are
the lowest spectral resolution images possible. A single spectral band is acquired over a
broad region of the spectrum (∼ 400nm, typically in the VIS). However, the panchromatic
image has a high Signal-to-noise ratio (SNR) producing fine spatial resolution images.
The multispectral images acquire data in a small number (3 − 15) of large spectral
bands (∼ 100nm). This provides a way to start discriminating some materials. Finally,
hyperspectral images also called imaging spectroscopy are made of hundreds of narrow
spectral bands (< 10nm). The characterization of the surface becomes extremely accurate
with the distinction of fine differences in the ground composition. The hyperspectral
images, or hyperspectral cubes (see Figure 2.4), with hundreds of spectral bands carrying
information need to be simplified in order to be usable by a user.

Radiometric resolution The radiometric resolution is defined by the sensor system
and the digital quantization of the data. The data acquired by the sensor should have the
best possible SNR to describe as closely as possible the surface of the ground observed.
Among the many components which affect the signal received at the sensor, we can
separate the SNR into the following components [Ian Dowman and Sandau, 2012]

SNR =
ns√

σ2
s + σ2

fp + σ2
rms

(2.1)

where ns is the number of electrons at the sensor generated by the signal, σ2
s is the

variance of the signal electrons ns, σ2
fp is the variance of the local responsivity difference

(fixed pattern noise due to optical system and detector elements differences) and σ2
rms is

the variance of the time-dependent noise of all other components involved. The typical
range of SNR values, determining the finest difference in incoming energy detected by
the sensor, is related to the sensitivity of the CCD of the sensor. This acquired signal
within a certain range of distinct values is then coded into digital numbers (DN) of n
bits. The latter may respect the original electronic sensitivity or compress the data by
quantizing it in the range [0, 2n − 1]. Typically, between 8 and 16 bits are used to encode
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Figure 2.5: (a) Comparison of the main air/space-borne multi/hyperspectral systems in
terms of spectral and spatial resolution. Credits: http://www.enmap.de. (b) Evolution
of spatial resolution through the years. Credits: [Camps-Valls et al., 2011]

each spectral channel.

Temporal resolution Another important characteristic is the temporal resolution or
revisit time, which quantifies the frequency at which a same region is covered by the
satellite. This directly depends on the orbit of the satellite, its capability of observing off
nadir and if it is part of a constellation of multiple satellites which allows to reduce the
revisit time. Typical revisit times range from about 16 days for Landsat, to less than a
day for WorldView 3.

Satellites and airborne sensors The principal orbits on which satellites are found
are the low Earth orbits (LEO) between 0− 2000 km, medium Earth orbits (MEO) above
2000 km and under the geostationary Earth orbits (GEO) which are at 35’786 km. The
latter orbit is in synchrony with the Earth rotation which allows to cover a fixed point
at the surface. Above are the high Earth orbit (HEO). The privileged orbits for RS are
the LEO which allows high spatial resolution, SNR and short revisit time, while GEO
satellites allow a continuous and large coverage but achieve low spatial resolution.

Satellites for Earth observation are numerous and ensured a continuous monitoring of
the Earth for more than fourty years. The Committee on Earth Observation Satellites
(CEOS) reports that 286 Earth observation platforms are in orbit and roughly half of
them are operational. Among others, the series of LANDSAT satellites from 1 to 8 (only
7 and 8 operational today) from the NASA is the longest Earth observation program,
which started in 1972 until today. The 6 SPOT satellites and more recently the Pléiades
constellation (two satellites following each other on the same orbit) from the french CNES
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Chapter 2. Introduction to remote sensing

have been among the earliest high-resolution imagers. The ESA Sentinel program is
made of constellations of pairs of satellites and had its first satellite launched the 3rd of
April 2014. Three Sentinel programs are established, each one with its specific mission
and characteristics (radar, optical, etc..). The Disaster Monitoring Constellation (DMC)
is made of several satellites (4 operational) mainly dedicated to disaster relief under
the International Charter for Space and Major Disaster. The GOES (Geostationary
Operational Environmental Satellite) are geostationary satellites dedicated to weather
monitoring. In the meantime, commercial companies started to launch their own satellites.
BlackBridge, ex-RapidEye is a commercial constellation of 5 identical satellites particularly
efficient in vegetation health monitoring. DigitalGlobe is probably the largest commercial
company owning Earth observation satellites. It owns IKONOS, Quickbird, GeoEye-1
and WorldView-1,2 & 3, the latter planned for 2014. They are among the finest spatial
resolution (∼ 1m) available today among the satellite multispectral sensors.

2.3 Remote sensing classification and change detection

Many of the remote sensing applications are about monitoring the Earth through time
and delivering products in the form of thematic maps. The repeated measures performed
by the satellites allow to update ground information and build time series for monitoring.
This is one of the great advantage of satellite for Earth observation, whereas airborne
flight campaign are fastidious and costly with limited capability in terms of coverage.
The major use cases of remote sensing images are for land-cover or land-use maps, urban
expansion monitoring, deforestation, monitoring of biophysical parameters and detection
of changes or damages. All these applications involve a certain number of processing steps
after the image acquisition to produce the final product. They can be summarized as

learning
(classification/

detection/estimation)

map

feature
extraction

atmospheric
correction geo-registration

image(s)

Acquisition/
compression

Atmospheric correction aims at reducing the wavelength-dependent attenuation. The
geo-registration transforms the image geometry to match a geo-referenced grid. To be
able to obtain a pixel or sub-pixel correspondence, a precise co-registration of the images
based on several tie points is required. The learning step is transforming the data into
maps of the variables of interest (land-cover, biophysical parameters, etc...) and is the
central point of attention in this Thesis.

Methodologies for learning from data are evolving very quickly and follow the increasing
processing power of computers. This brings researchers to consider more and more
automatic processing and to exploit pattern recognition and machine learning techniques.
Moreover, the need for fast product delivery, denoted as rapid mapping, encourages the
development of efficient automatic or semi-automatic methods.
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2.3. Remote sensing classification and change detection

This Thesis focuses on two learning tasks in remote sensing, which are under the novelty
detection paradigm and part of two majors problematics. In change detection: the
detection of unknown changes when considering multi-temporal imagery. In classification:
the detection of a class of interest using hyperspectral imagery. The next Sections detail
these two processing tasks.

2.3.1 Change detection in remote sensing

tim
e

change detection

exp
ert 

la
bels

changednon-changed

change mapmulti-temporal images

Change detection in remote sensing [Singh, 1989, Radke et al., 2005] is defined as the
detection of class transitions between two or more co-registered images acquired at different
time instants. It has a wide range of applications from land use change analysis, study
on shifting cultivation, monitoring of pollution or urban expansion, to the assessment of
the extent of deforestation, floods or wildfires burnt areas. We are going toward a near
real-time monitoring of the Earth, where satellites are part of the surveillance system and
provide alerts. This is crucial for example in early warning systems of natural hazards.
In order to be operational, constellations of satellites are used to shorten the revisit time.

Pre-processing In order to obtain accurate change detection maps, certain pre-
processing steps are needed.

First of all, two images taken at different time will present various differences, with
some due to atmospheric conditions, sunlight angle (time) and sensor calibration, and
others due to seasonal changes and land-cover changes. The latter are the change of
interest in most applications, while the others can be qualified as uninteresting changes.
These changes should be cancelled out to enhance the detection of the changes of interest.
Several approaches are aiming at removing the impact of those changes. Atmospheric
corrections methods would be ideal, however they are complex to preset and can be
replaced by appropriate rescaling of the data in change detection problems [Song et al.,
2001]. The centering of the images, which removes the mean on each image separately, will
reduce the homogeneous perturbations part of the atmospheric disturbances. Furthermore,
the spectral bands may be rescaled to unit standard deviation. This assumes normally
distributed samples and will match the radiometric range of the two images. Alternatively,
the spectral bands may be rescaled inside a fixed interval, e.g. [0, 1]. This preserves
the data distribution but matches the ranges of the different spectral bands. The most
used methods are the histogram equalization and histogram matching. The histogram
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Figure 2.6: Flowchart of the three different approaches to CD: DIA, DMC and PCC

equalization may distort too much the data distributions and induce artefacts. The
histogram matching will reduce efficiently the shift present between the images if matched
on unchanged regions or if the changes are assumed small. Finally, the pixels may be
rescaled to unit norm. This will remove their magnitude and only leave their spectral angle
as a measure of difference. Some methods aim at directly detecting the changes of interest
while reducing the impact of the others by a particular rescaling of the data [Theiler, 2008].
Generally speaking, the matching of two images is part of an entire field of research called
transfer learning. Among many methods, some are adapting the images by searching
for a joint subspace [Arenas-Garcia et al., 2013], while other transfer the model from
one image to another. The latter has been exploited for landcover classification across
time [Bruzzone and Marconcini, 2009].

Features combination Several combinations of the multi-temporal images before their
analysis is possible, as seen in Figure 2.6.

• PCC Post-Classification Comparison. This approach performs the classification of
each single date image separately. This allows to recover the land-cover transitions
that have taken place in a certain area (e.g. vegetation → road). It is prone to
cumulation of classification errors. It requires the knowledge of landcover information
and is adapted to supervised approaches.

• DMC Direct multi-date classification. This approach combines the multi-date
images into a single one by stacking the spectral information of each pixel. This has
the advantage of using all the information available for classifying accurately the
different changes occurring. The advantage is that information about land-cover
types on the unchanged regions is preserved, however it requires some knowledge
and is therefore more adapted to supervised approaches.

• DIA Difference Image analysis: Subtracting pixel by pixel two images at two
different time instants to form a new image difference. As well the use of indices
instead of the spectral bands can provide better enhancement of the changes. For
example the Vegetation index differencing is the difference between the Normalized
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Difference Vegetation Index (NDV I = (NIR−Red)/(NIR+Red)) at two time
instants [Singh, 1989]. Other indices also based on bands difference and ratios exist
such as the normalized burn ratio (NBR) evaluating fire burns severity [Miller and
Thode, 2007] or the normalized difference water index (NDWI) revealing water
bodies. These approaches based on band or indices difference are the preferred
solution in unsupervised change and novelty detection since all unchanged pixels
collapse towards zero [Bruzzone and Serpico, 1997].

Unknown change detection In most situations, the lack of ground truth information
remains the main challenge to overcome. The changes characteristics are often unknown
beforehand, difficult to retrieve in a timely manner after the event or even difficult
to model from a varying spectral signature (e.g. burnt areas, areas on fire, collapsed
buildings) [Mas, 1999]. For this reason, many unsupervised change detection algorithms
have been proposed in recent literature. A common approach is to transform the data in
a way that highlights changed areas (DIA) and then use a threshold on the magnitude of
change, like Change Vector Analysis (CVA) [Bovolo and Bruzzone, 2007b,a, Dalla Mura
et al., 2008, Bovolo, 2009, Im et al., 2008, Chen et al., 2010] or Canonical Correlation
Analysis (CCA) [Nielsen et al., 1998, Nielsen, 2006]. Alternatively, the difference between
bi-temporal images can be represented in a feature space through the use of kernel
functions [Volpi et al., 2012] or multi-scale wavelet decomposition [Celik, 2009] and
k-means clustering performed therein.

The problem of anomalous change detection, where changes are unknown and scarce has
been tackled with the use of elliptically contoured distributions [Theiler et al., 2010] or
chronochrome analysis which finds patterns of spectral changes across time that are less
represented [Theiler, 2008].

Novelty detection approaches, where only unchanged regions are used for training the
model, have been considered for oil slick detection with SAR images using One-Class
Support Vector Machines (OC-SVM) and wavelet decomposition [Mercier and Girard-
Ardhuin, 2006], for landmines detection from Ground-Penetrating Radars using OC-SVM
[Potin et al., 2006] or for fire detection using SVDD initialized with CVA [Bovolo et al.,
2010]. More details on the methodologies behind these novelty detection approaches are
exposed in Chapter 4.

2.3.2 Classification in remote sensing

The goal of classification in remote sensing is to derive thematic maps which are simplified
representations of the Earth surface based on the image spectral content. These thematic
maps are ways to summarize the complex information contained in the images in a
comprehensive format for the users and are vastly used in decision-making, urban planning
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or topography. The classification in hyperspectral images [Camps-Valls et al., 2014]
involves complex inference and inverse problems characterized by the high spectral
dimensionality, the spectral signature variations between and within classes and the small
amount of labeled data (if any).

Multi-class classification The classification approaches have evolved together with
the new types of data and the development of new machine learning methods. At first,
parametric models like the Linear Discriminant Analysis (LDA) were used, but were
prone to the Hughes phenomenon [Hughes, 1968] with small-size training sets and the
curse of dimensionality. Non-parametric methods like k-NN or the decision trees could
better handle more complex and non-linear distributions, before the arrival of artificial
neural networks [Paola and Schowengerdt, 1995] and the supremacy of support vector
machines [Camps-Valls and Bruzzone, 2009, Mountrakis et al., 2011]. The latter provided
tremendous increase in performance with its robustness to noise, high-dimensionality, low
number of labeled samples and intra-class variability. The new learning paradigms such as
semi-supervised learning [Camps-Valls and Bruzzone, 2009],domain adaptation [Bruzzone
and Prieto, 2001, Bruzzone and Marconcini, 2009] and active learning [Tuia et al., 2011]
have been welcomed in the RS field with great enthusiasm. They allow to go a step
further towards automatic, accurate and fast delivery of geo-spatial products.

One-class classification In practice, one may be interested in mapping a specific
land-cover class. This land-cover should be detected independently from the other
land-covers present in the image. Alternatively, one would like to have the ability of
discovering unknown classes [Muñoz-Marí et al., 2007, Sanchez-Hernandez et al., 2007] or
anomalies [Banerjee et al., 2009]. This allows to consider the training set as non-exhaustive
and keep the possibility of having unknown output classes. One-class classifiers can be
exploited either with a single-class or with multiple classes. This approach also shows
the advantage of detecting outliers when a test sample is rejected by all the different
classifiers. The use of the data structure can also help defining more accurate one-class
classifiers [Muñoz-Marí et al., 2010]. This relates to semi-supervised learning and novelty
detection presented in Section 4.3.3. A more in-depth presentation of one-class classifiers
is done in Section 4.4 which reviews the state-of-the-art methods in novelty detection.
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2.4 Summary

In this Chapter, we introduced the field of remote sensing of the Earth and the acquisition
principle of passive optical sensors. We presented the processing chain of remote sensing
images for classification and change detection problems. These tasks requires the help of
machine learning methodologies for learning from the data with a limited interventions of
human experts. The general problem of learning from the data is presented in Chapter 3.

23





3 Introduction to machine learning

“We are drowning in information and starving for knowledge.”

— Rutherford D. Roger

In this chapter we will introduce the field of machine learning and kernel methods.

3.1 Learning from data

Today, the challenges are focused on how to get meaningful information from massive
amounts of observations collected, while not so long ago it was already challenging to solely
get observations of a single phenomenon. This new era for the data processing community
is opening new possibilities and even new research fields with the unprecedented access
to very diverse source of data in massive quantity. In this context, the field of machine
learning which aims at learning information from data observations has a crucial role and
should meet the expectations of this data availability. Machine learning theory started in
the late fifties in an endeavour to understand brain functioning and provide machines
with a degree of decision making “intelligence” [Nilsson, 1965]. The word “intelligence”
has to be taken carefully here, since the machine only learns to do a desired task based on
some examples. Instead of setting up specific and complex analytical models of prediction,
we can let the data speaks for itself. Of course, a priori knowledge on the data such
as the type of data features, their relationship (linear, non-linear) modeling the data
structure or the type of noise are helpful to restrict the family of models describing best
the data when designing our learning machine. Recalling that the goal of learning is
about “separating structure from noise” [Seeger, 2001].

The field of machine learning can be divided into four main groups of learning problems:
classification, clustering, regression and density estimation. These four groups are distinct
in terms of their outputs (class labels, clusters, real values or probability densities),
however they share the learning formalism and they may even interact. For example,
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classification and clustering can rely on density estimation [Hartigan, 1975]; classification
can be built on regression as in the Fisher’s Linear Discriminant Analysis [Fisher, 1936];
and density estimation can be obtained from classification [Steinwart et al., 2004, Scott
and Nowak, 2006]. In general, there is no advantage in using a method which has not
been designed specifically for the learning task at hand: in classification, the notion of
class discrimination is essential while non-existent in regression. Quoting Vapnik [Vapnik,
2000]: “When solving a given problem, try to avoid solving a more general problem as an
intermediate step”. As we will see in this Thesis, the specific task of novelty detection
relates to density estimation and classification, and even regression models and can
benefit from these approaches, which are robust to small sample size, noise and high
dimensionality of the data.

Learning functions Let us consider a given learning task with its associated training
data pairs of input/output samples T = {(xi, yi)}Ni=1 where the input data samples
xi ∈ X are assumed to be independently and identically distributed (i.i.d) and yi ∈ Y are
the outputs. x and y are related by an underlying joint probability distribution P (x, y).
We would like to define a function f : X 7−→ Y which allows to predict the outputs from
input data:

fw : X → Y w ∈ Ω

fw(x) = y (3.1)

We denote the class of functions fw(x) ∈ F , w ∈ Ω, where Ω is the set of parameters w
determining all possible functions from a chosen class and F is the space of all prediction
functions. In principle, the class of functions fw is chosen in advance depending on the
problem at hand and only a few parameters need to be determined. For a given class of
functions, what we call their complexity is typically fixed. However, taking the example of
the class of polynomials, the complexity will increase with the degree d. Other examples
of classes of functions are the Gaussian mixture models (GMM), Support Vector Machines
(SVM), decision trees, etc.

Loss functions The optimal parameters w∗ for the chosen class of functions f can
be obtained by minimizing a loss function L(fw(x), y) on the training data. The loss
function L is a positive function that measures the discrepancy between the prediction
fw(x) given by the learning machine and the true output y.

Different loss functions are used with different learning tasks. In classification, with y being
the class label {+1,−1}, the typical loss functions are the 0−1 loss: L01 = I (fw(x) 6= y) or
the hinge loss: Lhinge = max (1− y · fw(x), 0) a one-sided error function which saturates
at zero for lower values. It is used in the standard SVM [Schölkopf and Smola, 2002].
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3.1. Learning from data

(a) (b) (c) (d)

Figure 3.1: (a) True joint probability P (x, y). Estimation with (b) 17 samples per class,
(c) 100 samples per class and (d) 1000 samples per class. The decision boundary is better
approximated with a larger number of samples.

Finally, the quadratic loss: Lquad = (yi − fw(x))2 which has the advantage of being
differentiable [Rosasco et al., 2004].

The expected value of the loss is given by the following risk functional

R(f) =

∫
X×Y
L(fw(x), y) dP (x, y) (3.2)

which is evaluated for a chosen class of function f . The optimal function f∗ with
parameters w∗ is the one minimizing this risk functional

f∗ = arg min
f
R(f) (3.3)

The desired function f∗ = fw∗(x) requires the knowledge of the true joint distribution
P (x, y).

In classification problems, the optimal classifier is the Bayes decision rule [Duda et al.,
2012], which relies on the knowledge of the joint distribution P (x, y). It is stated as

fbayes(x, P ) =

{
+1, if P (+1|x) ≥ P (−1|x)

−1, if P (+1|x) < P (−1|x)
(3.4)

This is the theoretical optimal rule for classification [Bishop and Nasrabadi, 2006], but it
is unrealistic in practice. This is because in almost all learning tasks, the joint distribution
is unknown and can only be accessed via the limited training set {(xi, yi)}Ni available,
which is assumed to be representative of the underlying process that generated the data.
An example of the optimal Bayes classifier along with the probability density functions
estimated on different training set sizes are presented in Figure 3.1. The effect of the
training set size is evident by observing the approximation of the two-class boundary.

Empirical risk minimization (ERM) Without access to the joint probability distri-
bution, the risk R(f) can only be evaluated from the training set. The empirical risk is

27



Chapter 3. Introduction to machine learning

the evaluation of the average risk on the training data, i.e.,

Remp(f) =
1

N

N∑
i=1

L(fw(xi), yi) (3.5)

This is the so-called training error for the given training data set T .

Let us take the example of density estimation, since it relates to the novelty detection
paradigm studied in this Thesis. An appropriate class of function is the set of densities
p(x, w) described by the parameters w ∈ Ω. The probability that the data is drawn from
a density p with parameters w is

P (x|w) =
N∏
i=1

p(xi, w), (3.6)

which is called the likelihood function. The associated loss function is

L(p(x, w)) = − ln p(x, w), (3.7)

which corresponds to the negative log-likelihood, is broadly used in fitting probabilistic
models. The empirical risk with this loss function becomes

Remp(p, w) = − 1

N

N∑
i=1

ln p(xi, w) (3.8)

which is then minimized (ERM). This corresponds to the maximum likelihood estimate
and provides the optimal parameters w∗, which completely describe the density p(x, w∗).

We see that the ERM principle is very general and can be adapted to any learning task
where a loss function can be defined. It has the asymptotic consistency property, which
ensures that R(f, w∗) and Remp(f, w∗) converge to the true risk as the data set size grows
to infinity. However, for small training set sizes the empirical risk is expected to be
Remp(f, w

∗) < R(f, w∗) because the ERM will lead to an exact fit of the training data.
In this more realistic situation, the model obtained from the ERM is very likely to give
an erroneous prediction on unseen test samples. The prediction ability of the function
f outside the training set, called generalization, needs to be controlled in some ways by
introducing the notion of regularization.

3.2 Generalization

The ERM principle does not ensure that the model is able to generalize to unseen data.
The notion of generalization performance for a model will be related to its complexity
which can be controlled by restricting the class of functions or performing regularization
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Figure 3.2: (a) Trade-off between fitting the data (Remp) and the model complexity in
a classification example in R2. (b) The bias-variance trade-off functions of the model
complexity. For complex models the bias is low while the variance is large. The optimal
trade-off is found for a certain model complexity.

during training. Here are presented the different notions and approaches related to the
generalization of a model.

Occam’s razor The idea to penalize models that are too complex and more likely to be
too specific and fail on a new test set can be viewed as an interpretation of the Occam’s
razor principle. Willam of Occam was a british philosopher and a Franciscan monk in
the 13th century who brought the idea that the simplest explanation of a phenomenon is
usually the right one, provided that it fully explains the phenomenon. When different
models fitting well the data exists, the simplest model is the one to be chosen, ensuring a
better generalization. The underlying assumptions being that meaningful information
is hidden in the data regularities whereas noise corresponds to irregularities [Rissanen,
1987]. The trade-off between goodness-of-fit and the model complexity can be observed in
a small example of two-classes classification in Figure 3.2 (a). Three decision boundaries
are reported with only one (light green) having a null Remp. However, it is obvious that
this boundary will not be able to predict correctly on an unseen test set and that the
other boundaries should be used instead.

Bias-variance trade-off For a certain class of functions f trained on different training
sets issued from the same underlying distribution in X , the optimal parameters w∗ obtained
have a certain instability (variance) and provide a certain prediction accuracy (bias,
equivalently Remp). These two notions are in opposition to each other and lead to the bias-
variance trade-off [Cherkassky and Mulier, 2007] in function of the complexity of the class of
functions (model). The optimal complexity is found for functions showing a low bias (good
prediction) and a not too high variance (complexity). The two extreme cases of model
complexity are called underfitting and overfitting. As observed in Figure 3.2 (b), when
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underfitting occurs, the functions f are not flexible enough to appropriately characterize
the data producing a high bias in prediction, even with an infinitely large amount of
samples. By opposition, overfitting occurs for too flexible functions, which perfectly fit
the training data but poorly predict new test examples due to the important variance in
the model parameters. The problem of overfitting is more important in practice, since
flexible functions are available and the training set is usually limited. This trade-off
between bias and variance corresponds to the trade-off between fitness of data and model
complexity.

Curse of dimensionality The problem of overfitting is enhanced when the dimen-
sionality of the data increases [Duda et al., 2012, Cherkassky and Mulier, 2007]. High-
dimensional data presents very particular statistical and geometrical properties. For
instance, the geometry of high-dimensional data is such that hyper-dimensional objects
have more surface area than volume. Statistically speaking, if a number of samples n
is needed to reliably estimate a function in R1, then the number of samples needed to
maintain the data density in d dimensions is nd. Therefore, the sample size grows expo-
nentially with the dimensions. Moreover, as the dimensionality increases the similarity
among the samples will decrease and prevent from determining groups of similar samples.
They will all look equally distant from each other since located in empty neighbourhoods
of the space.

The bias-variance dilemma and curse of dimensionality can be leverage either by dimen-
sionality reduction, or by introducing a prior restricting the choice of class of functions f .
This regularization will help in designing functions f with a lower complexity, while at
the same time keeping the bias low and the variance bounded. In practice, such priors
take the form of a direct penalization of the model complexity and are placed directly in
the objetive of the risk to minimize.

Regularization As stated previously, the ERM principle will converge to the true
risk R(f) for an increasing training set size and for an appropriate class of function f
(complexity) [Vapnik, 2000]. This can be stated as

lim
N→∞

P{sup
f∈F

(R(f)−Remp(f)) > ε} = 0, ∀ε (3.9)

since in practice the training set size is finite and limited, the empirical risk cannot be
used alone for model selection. A good generalization on new test samples is based on a
trade-off between two major ingredients: the empirical risk and the complexity of the
class of functions. This intuition based on Occam’s razor principle and supported with
the bias-variance dilemma, can be formalized as a regularization problem of the form

Rreg(f) = Remp(f) + λΨ(f) (3.10)
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where the minimization of Rreg(f, w) provides the optimal parameter w∗ for a certain
trade-off between the fit of the training data Remp(f, w) and the model complexity,
evaluated by a general penalization term Ψ(f, w) and regulated by λ. For λ = 0, the
regularization will be ignored and the risk will be the empirical risk, while for a large λ
the data will be ignored and the risk will only reflects the complexity of the model.

How can we measure the model complexity ? Occam’s razor principle has found different
forms in different contexts: in physics it relates to the number of constants, in signal
processing to the smoothness of the functions [Unser, 1999], while in information theory
it is based on the data description length, where the Minimum Description Length (MDL)
principle [Rissanen, 1985] favors the most compressed data description. In the case
of Bayesian inference, the penalization comprises the number of free parameters and
an estimate of the noise variance. These regularized risk estimates are the well-known
Bayesian information criterion (BIC) and Akaike information criterion (AIC) [Cherkassky
and Mulier, 2007]. Considering the problem of the class of linear functions fw(x), the
regularization term Ψ is a norm on the coefficients w, giving the following regularized
risk,

Rreg(f) = Remp(f) + λ‖w‖q (3.11)

In the particular case of linear regression, the empirical risk is the evaluation of the
Frobenius matrix-norm of the reconstruction error: Remp = ‖y − xw‖F . The q-norm
regularization can take different forms based on different assumptions. The ridge regression
is penalizing large weights using the `2 norm [Hastie et al., 2001], related to the Tikhonov
regularization for ill-posed problems [Tikhonov, 1995]. Recently, regularization norms
promoting sparsity in the model (`0<q<1, `∗, `1,2) have been introduced. For instance the
LASSO regression which sets most of the weights to zero and leads to more interpretable
models [Tibshirani, 1996]. This type of regularization also helps to unveil certain structures
in the data for classification [Wright et al., 2009], clustering [Elhamifar and Vidal, 2013,
Liu et al., 2013] and feature extraction [Candès et al., 2011]. Finally, it has to be said
that the problem of regularization is broader than just simply penalizing the complexity
of a model and therefore exposed here only from a model selection point of view.

Structural Risk Minimization (SRM) With the rise of the Statistical Learning
Theory (SLT) [Schölkopf and Smola, 2002, Bousquet et al., 2004], the notion of capacity
of a class of functions f has been introduced for model selection in learning problems.
The SLT and more precisely the VC theory provide probabilistic bounds on the expected
risk error for any function class [Evgeniou et al., 2002]. These bounds help in restricting
the choice of functions f and are based on the so-called function capacity, which measures
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the function space complexity. These bounds are in the form of

R(f) < Remp(f) + φ

(√
h

N
, η

)
(3.12)

where h is the capacity defined by Vapnik and Chervonenkis [1971] as the VC-dimension,
φ(·) is an increasing function of h/N and 1− η is the probability under which the bound
holds true. A detailed form of Φ can be found in Cherkassky and Mulier [2007]. The
structural risk minimization (SRM) is optimizing for both the empirical risk and the
structural term φ. The latter will grow with the function capacity but decrease with a
larger number of training samples. The VC-dimension counts the maximum number of
objects that can be learned without error independently of their output values y [Vapnik,
2000]. For example, the capacity of a linear classifier in R2 is h = 3 and generalizes to
h = d+ 1.

Cross-validation If we could have some independent test data {(xi, yi)}Ntsi for valida-
tion, the empirical risk could be evaluated as

Rcv(f, w) =
1

nts

Nts∑
i=1

L(f(xi, w), yi)) (3.13)

However, as previously mentioned the availability of a validation set is very unlikely in
practice. It is difficult to put aside some samples for validation while the training set is
already limited. The idea behind cross-validation is to artificially divide the data into
multiple folds, which are used alternatively as training and validation set. The learning
machine is optimized with the training fold and performs predictions on the validation
fold. The predictions are compared with the outputs y left aside and provide an estimate
of Rcv. In order to encompass all the information present in the original training set and
not rely on a single partitioning of the data, each fold is alternatively used for validation.
This procedure is the k-fold cross-validation, where k− 1 folds are used for training and 1

fold for validation. This is repeated for all the folds combinations. Finally, the estimation
of the generalization of the model is evaluated based on the average Rcv over all the folds.
In practice, the number of folds k are between 5 and 10. The particular case where k = N

is the leave-one-out cross-validation. It is less used in practice since computationally
intensive due to the number of folds which grows with the number of samples. Related
techniques are bootstrapping, which creates folds by sampling the training data with
replacement.
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Figure 3.3: The three main learning paradigms and their sub-categories in the context of
classification. Modified from [Camps-Valls and Bruzzone, 2009].

3.3 Learning paradigms

In the first part of the Chapter, we have seen how we can learn from data in general, for
the different principal learning tasks (classification, regression, density estimation), all
assuming a set of input/output data examples, the so-called supervised learning paradigm.
Only the nature of these outputs and the respective loss functions differ between them.
However, there are situations where the data available is only made of the input samples
without any output examples at all, namely the unsupervised learning. The situations
at the interface where both examples of input/output paired samples and input-only
samples are available are called semi-supervised learning. These three paradigms are
illustrated in Figure 3.3 and described in the following Sections, together with some of
the state-of-the-art algorithms in the context of classification.

3.3.1 Supervised learning

In supervised learning, the function f is trained from given example pairs of input/output
data samples T = {(xi, yi)}Ni=1. The learned function is able to predict on unseen
data. The most known supervised learning tasks are classification (y ∈ {−1, 1}), and
regression (y ∈ R) [Hastie et al., 2001], but supervised methods can also be used for
feature selection [Guyon and Elisseeff, 2003] and extraction [Guyon, 2006]. In supervised
classification, two main groups of methods can be identified: the parametric classifiers
which assume a certain form of the data probability density function P (x), and the
non-parametric classifiers, which make no assumption on the form of the density. One
typical parametric classifier is the Maximum Likelihood Classifier (MLC) which learns
the mean and covariance matrix of a Gaussian distribution over each class [Scott and
Symons, 1971]. If only the diagonal of the matrix is learned, we call it the Naive Bayes
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classifier. The class of a test sample is inferred from the maximum a posteriori (MAP)
over the different classes. The k-NN classifier is a non-parametric and memory-based
classifier, which computes the distance from a test sample to all the training samples to
attribute the label of the majority among the k nearest neighbours. Although simple
and efficient, these models fail in situations of small training sets, high dimensionality
and noise. More sophisticated methods have been developed, among which the Artificial
Neural networks (ANN) and the Support Vector Machines (SVM), that became extremely
popular. The SVM is presented in more details in Section 3.4.4.

3.3.2 Unsupervised learning

In unsupervised learning, the data samples are not accompanied with their outputs, i.e.
T = {xi}Ni=1 are the only data available and the output examples y are unknown. Two
different types of unsupervised methods exist: dimensionality reduction and clustering
methods.

Dimensionality reduction is about finding few relevant dimensions in the data, which
can be seen as a feature extraction step. The dimensionality reduction methods are
learning either a subspace of the data like Principal Component Analysis (PCA) [Hotelling,
1933] and Canonical Correlation Analysis (CCA) [Hotelling, 1936], or a manifold like
ISOMAP [Tenenbaum et al., 2000], Locally Linear Embedding (LLE) [Saul and Roweis,
2003] and Laplacian Eigenmaps (LEM) [Belkin and Niyogi, 2003]. It is worth mentioning
that supervised dimensionality reduction methods exist such as Linear Discriminant
Analysis or Partial Least Square [Hastie et al., 2001].

Clustering is about discovering structures or groups of similar samples in the data based
on a similarity criterion. The definition of the similarity being the most important piece
of a clustering algorithm, from which highly depends the clustering quality and usefulness
for the user. Aside the definition of similarity, the data features are of prime importance
when performing clustering. A semantic class defined by a user is not meant to be
equivalent to a cluster in the data. This only becomes true when the data features are
carefully designed for the user needs and when the similarity criterion reflects the class
similarities. In situations where this assumption is granted, meaning that the clusters or
groups of clusters are reflecting the classes of interests, the clustering algorithms will be
able to provide the user with classes of interest. The smoothness assumption described
in the semi-supervised learning Section 3.3.3 is based on the same a priori on the data
features.

The problem of clustering has been widely studied in various application fields where
semantic information on the data is not existing or available: grouping sequence of genes
in molecular biology, segmentation of images, classification of diseases in medicine or the
unsupervised classification of patterns.
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The clustering algorithms can be characterized by their ability to handle different types
of problems [Kononenko and Kukar, 2007], such as: i) clusters of arbitrary shapes, ii)
noise, outliers and missing data, iii) user-friendly parameters and usage, iv) high data
dimensionality, v) incremental data and vi) large scale problems. Different clustering
algorithms have been proposed for the different needs emphasizing some of the aforemen-
tioned aspects. In this Thesis, we attack the first four aspects and leave the incremental
and scalability aspect aside. The scalability issue is a general problem, which is addressed
in the same manner for a large class of problems and benefits from the quick advances
performed in fields such as data mining or computer science in general.

As depicted in Figure 3.3, the clustering algorithms can be sub-dived into two groups: i)
partitional algorithms and ii) hierarchical algorithms [Jain et al., 1999]. Partitional algo-
rithms produce a single partition, while the hierarchical algorithms produce a nested series
of partitions. Among the most popular partitioning algorithms are the k-means [Hastie
et al., 2001], ISODATA [Ball and Hall, 1965], Expectation-Maximization (EM) [Dempster
et al., 1977], Self-Organizing Maps (SOM) [Kohonen, 2001], Hebbian learning based on
neural networks [Sejnowski and Tesauro, 1989] and Spectral Clustering (SC) [Von Luxburg,
2007] based on data graphs. Clustering methods deriving from supervised learning meth-
ods have been also proposed such as the Support Vector Clustering (SVC) [Ben-Hur
et al., 2002] or the Gaussian Process Clustering (GPC) [Kim and Lee, 2007], which are
investigated in Chapter 6. Hereafter, we briefly describe the k-means and SC algorithms.

k-means The k-means algorithm is probably the most widely used partitional clustering
algorithm. It has a single hyperparameter: the number of clusters k. k-means minimizes
the sum-of-square distances among the cluster center and the samples attributed to
that center. Given N samples and k cluster centers, the within-group scattering to be
minimized is

Sw =
1

N

k∑
j=1

N∑
i∈Cj

‖xi − µj‖2 (3.14)

with Cj the set of samples corresponding to cluster j and µj its center. The partition
is found in an EM-like fashion by iteratively i) attributing cluster labels given cluster
centers and ii) updating the centers given the labeled samples. This results in a partition
of the input space into Voronoï cells defined by the centers.

Spectral clustering (SC) The SC algorithm is a very popular clustering method,
with theoretical foundations and connection to graph-cut problems. It shows good
performances and can deal with non-convex cluster shapes, where most of the standard
clustering algorithms, such as the k-means, assume that the clusters are convex sets of
samples. SC rely on a graph G = (V,E), where V is the set of vertices representing
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Algorithm 1 Spectral Clustering (SC) [Ng et al., 2002]

Input: unlabeled samples: T = {xi}Ni=1, number of clusters desired k
1: Build a graph G using either

• a k-NN graph, which links a sample to its k nearest neighbours

• an ε-ball graph, which links a sample to neighbours within a ball of radius ε.

2: Compute the graph edge weights W . Either with dummy wi,j = {0, 1} or with the
heat kernel wi,j = exp

−‖xi−xj‖2
2σ2 .

3: Compute the normalized symmetric graph Laplacian L = I−D−1/2WD−1/2, where
D =

∑
iWi,j is the degree matrix and I the corresponding identity matrix.

4: Compute the k first eigenvectors V ∈ RN×k of the Laplacian L ≈ V ΣV T

5: Normalize the rows of V to unit norm: vi ← vi
‖vi‖2

6: Perform k-means clustering on the embedded samples vi, the rows of V .
Output: Samples clustered in k groups

the data samples and E the edges linking each node. The graph can be built using the
affinity of each sample and its k nearest neighbours (k-NN graph) or its neighbours within
an ε distance (ε-ball graph). The graph edge weights can be simply 0 or 1 if the edge
between two samples exists, or using the heat kernel [Von Luxburg, 2007]. Then, the
spectral embedding of the graph is obtained by the eigenvalue decomposition of the graph
Laplacian. The spectral embedding is based on the top k eigenvectors that describes the
major disconnected components in the graph. The clusters can be retrieved by finally
performing the k-means algorithm in this spectral embedding. The full SC algorithm
proposed by Ng et al. [2002] is described in Algorithm 1.

The SC algorithm is linked to the graph-cut problem. The minimal graph cut balanced by
the number of vertices in each partition is the Ratio cut [Hagen and Kahng, 1992] and its
relaxed solution is obtained by the unnormalized spectral clustering [Von Luxburg, 2007],
while the minimal cut balanced by the volume (sum of edge weights) of each partition
is the Normalized cut [Shi and Malik, 2000] and its relaxed solution is obtained by the
normalized spectral clustering [Ng et al., 2002].

SC is extremely flexible since working with any graph built on the data. However, this
brings up the open problem of building a meaningful graph on the data. The use of
the k-NN or ε graph has interesting connection to the Laplace-Beltrami operator on
Riemannian manifolds and kernel approaches such as the kernel k-means [Kulis et al.,
2009] or kernel PCA [Ham et al., 2004]. A fully-connected graph with weights from a
heat kernel is equivalent to a Gaussian RBF kernel and the ε-ball graph can be seen as a
truncated kernel matrix. In Chapter 9, we investigate a new approach to build a graph
revealing the multi-manifold structure of certain high-dimensional data.
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3.3.3 Semi-Supervised learning

In Semi-Supervised Learning (SSL), the training data T = {xi}Ni=1 is composed of two
parts: a (small) labeled set {(xi, yi)}Nli=1 of input/output pairs, and a potentially larger
set {xi}Nl+Nui=Nl+1 of unlabeled samples. The rationale behind this setting is that in many
applications the labeled samples are costly to gather while unlabeled samples are available
at not extra cost. Thus, SSL is not a trade-off between supervised and unsupervised
learning, but a wise combination aiming at performing better than supervised and
unsupervised learning considered alone [Seeger, 2001, Chapelle et al., 2006].

An early attempt at characterizing the benefits from using unlabeled samples in learning
was made by Valiant [1984]. At same time that SSL was developed, the related topic
of constrained clustering [Basu et al., 2008] or clustering with side-information [Xing
et al., 2002] was investigated in parallel. In the latter, pair-wise relationship between
samples are available instead of labels. These relationships are in the form of must-link
and cannot-link constraints between samples and help to guide the clustering process
towards user-related clusters [Blum and Chawla, 2001, Kononenko and Kukar, 2007].
These constrained clustering approaches are investigated in Chapter 10.

The different approaches to SSL can be separated into two main categories: transductive
and inductive learning. In transductive learning, one wants to predict only on the
unlabeled samples in the test set. This setting is sometimes referred to as pattern
discovery. In opposition, inductive learning aims at finding the prediction function f
defined over the whole input space X .

One may want to know under which conditions the output of SSL will be more accurate
than standard supervised learning, i.e. in which conditions the knowledge of p(x) obtained
from the unlabeled samples helps in the prediction of p(y|x). These conditions under
which SSL works take the form of different assumptions [Chapelle et al., 2006]. These
assumptions are summarized, together with the related Parts of the Thesis exploiting
them, in the following table

Assumption Description In the Thesis

Cluster if points x1, x2 are in the same cluster, they are likely
to be of the same class. Part IILow density the decision boundary should lie in a low-density
region.

Smoothness if two samples x1,x2 in a high-density region are
close, so should be the corresponding outputs y1, y2. Part IIIManifold the (high-dimensional) data lie (roughly) on a low-
dimensional manifold.

One may see equivalence between these four different assumptions. The smoothness
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assumption which focuses on high-density regions is similar to the manifold assumption,
which assumes smoothness along the geodesic distances (i.e. over manifold’s high-density
regions). Also the low density assumption is implying that the boundary is not cutting
high-density regions, therefore not producing different labels for two samples in the high
density region: i.e. the cluster assumption. These different assumptions are different
views on SSL and have been the inspiration of different algorithms. Notice that SSL
under wrong assumptions can degrade the performances [Cozman et al., 2002, Singh
et al., 2009].

The various SSL methods can be separated into two main groups of methods: i) iteratively
refining the model or ii) regularizing the model from the unlabeled data.

Among the first group, the generative models [Dempster et al., 1977] can iteratively predict
and incorporate unlabeled data to refine the model, as well as the Transductive Support
Vector Machine (SVM) [Joachims, 1999, Bruzzone et al., 2006] which gradually labels the
unlabeled data to refine its classification boundary. The co-training approach [Blum and
Mitchell, 1998] is another iterative SSL approach made for multi-view datasets. It builds
classifiers on different feature sets of the data and gradually incorporate the unlabeled
samples. It is important to notice that these approaches, while being simple extension of
existing methods, are prone to local minima.

In the second group, we find the low-density separation methods for classification [Chapelle
and Zien, 2004], the cluster kernels adapting to the data manifold [Chapelle et al.,
2002, Tuia and Camps-Valls, 2009, 2011], the regularization by the unlabeled data of
the optimization of the SVM [Bennett and Demiriz, 1999] or neural networks [Ratle
et al., 2010], the graph-based regularization methods [Belkin et al., 2006] and the label
propagation approaches. Two label propagation schemes were roughly proposed at the
same time, the first by Zhu et al. [2003] with Gaussian Functions and Harmonic Fields
(GFHF) and the second by Zhou et al. [2004] learning with Local and Global Consistency
(LLGC). They both can be seen as random walks on the graph, where the label of a sample
xi is attributed to the closest labeled sample in terms of random walk distance [Chapelle
et al., 2006]. These two approaches are investigated in Chapter 10.

3.4 Learning with kernels

In this Section, we introduce the kernel methods which form a unified framework extending
the learning capacities of many standard algorithms to general types of data, such as
strings, vectors, graphs, in a transparent way. We first present the key definitions and
properties of kernels and their relation to reproducing kernel Hilbert spaces (RKHS).
Then, we present the support vector machine (SVM) which exploit the kernel trick to
produce a non-linear classification function.
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Figure 3.4: Representation of a dataset X described by a number of features (e.g.
spectral bands) in input space X and by the kernel matrix in the associated reproducing
kernel Hilbert space that contains the pairwise similarity between the samples (modified
from [Vert et al., 2004]).

3.4.1 The kernel trick

The common idea behind kernel methods is to represent the data only by pairwise com-
parisons instead of its individual features, the so-called kernel trick depicted in Figure 3.4.
We will see in the following Sections that kernels are building blocks for creating powerful
learning functions.

Let us consider the input dataset x ∈ X and a non-linear function Φ that maps the data
into the space H.

Φ : X → H
x 7→ Φ(x) (3.15)

The space H is a Hilbert space since it has an associated dot product 〈Φ(xi),Φ(xj)〉H
which is a measure of similarity in this space. We can now define a kernel function as

K : X × X → R
K(xi,xj) = 〈Φ(xi),Φ(xj)〉H ∀xi,xj (3.16)

As illustrated in Figure 3.4, the kernel matrix is composed of the kernel functions between
pairs of samples. Each element of the kernel matrix are representing the dot product
between the samples mapped in the Hilbert space. An interesting observation is that
kernels are always resulting in a N × N kernel matrix in R, whatever the type and
dimensionality of the data. This will allow a learning machine based on kernels to be
general for data of different sources and even combine them, as shown in Section 3.4.2.
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The definition (3.16) establishes a kernel as a dot product in the feature space H. Kernels
fulfilling this condition are called Mercer’s kernels [Mercer, 1909] or positive definite
symmetric (PSD) kernels. A PSD kernel is defined [Mohri et al., 2012] as

Definition 1. A kernel K : X × X → R is said to be positive definite symmetric (PSD)
if for any x ⊆ X , the matrix Ki,j = K(xi,xj) ∈ RN×N is symmetric positive semidefinite
(SPSD).

The matrix K is said SPSD if

N∑
i,j

cicjKi,j ≥ 0, ci, cj ∈ R (3.17)

From the kernel definition (3.16) and plugging it in the (3.17), we obtain

N∑
i,j

cicj〈Φ(xi),Φ(xj)〉H = 〈
N∑
i

ciΦ(xi),

N∑
j

cjΦ(xj)〉H = ‖
N∑
i

ciΦ(xi)‖2H ≥ 0, ci, cj ∈ R

(3.18)

which proves Definition (1). It is important to notice that any PSD kernel is associated
with a unique space H and mapping function Φ. This means that a kernel function is
used to build a unique RKHS.

3.4.2 Mercer kernels

Let us introduce the kernel functions commonly used in applications. The choice of the
kernel function will mostly depend on the type of data at hand. Among the kernels
existing, we present here the main closed-form solution kernels K(xi,xj) for real-valued
input vectors ∀x ∈ Rd [Schölkopf and Smola, 2002].

Linear kernel : K(xi,xj) = 〈xi,xj〉 (3.19)

Polynomial kernels : K(xi,xj) = (xi · xj + b)p (3.20)

Sigmoid kernels : K(xi,xj) = tanh a〈xi,xj〉+ b (3.21)

RBF kernels : K(xi,xj) = exp

(
−‖xi − xj‖22

2σ2

)
(3.22)

The linear kernel is a polynomial kernel of degree 1, which corresponds to an identity
mapping Φ(x) = x. It measures the collinearity of the vectors xi and xj and is zero
for orthogonal vectors. The other polynomial kernels have a degree d > 1 and an offset
parameter b to tune. The sigmoid kernels have the parameters a > 0 and b < 0 and are
typically used in feedforward neural networks.

The Radial Basis Function (RBF) kernel has a parameter σ, called bandwidth, to be tuned.
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The similarity between two vectors is in relation with their Euclidean distance and quickly
decreases towards zero for distances larger than the bandwidth. This kernel provides an
intuitive notion of local similarity among data samples and has shown in the context of
Support Vector Machines to generalize the linear kernel [Keerthi and Lin, 2003]. Notice
that a full-rank matrix K spans a N -dimensional subspace of H. This implies that the
feature space is potentially of infinite dimensionality if there is no a priori restricting the
number N of training samples.

There are kernels dedicated to images such as the pyramid match kernel [Grauman
and Darrell, 2007] which incorporates similarities from sub-windows at different sizes,
or the histogram kernels based on any binary strings [Odone et al., 2005]. The Fisher
kernel [Jaakkola et al., 1998] or the Kullback-Leibler kernel [Moreno et al., 2003] have been
introduced for measuring similarities between distributions, the principal angles kernel
to compare linear subspaces [Wolf and Shashua, 2003] and the diffusion kernel exploits
the Laplacian of graph data to derive similarities between data samples [Hofmann et al.,
2008]. Many other kernels have been developed and a survey can be found in [Schölkopf
and Smola, 2002].

The choice of kernel functions is not restricted to predefined functions. Any combination
of existing kernels that preserves the positive definiteness property is valid. The following
closure properties are valid operations on kernels preserving the PSD [Hofmann et al.,
2008]

Definition 2. Let K1,K2, · · · be arbitrary positive definite kernels on X ×X where X is
a non-empty set. Then

• α1K1 + α2K2 is positive definite for α1, α2 ≥ 0.

• K is positive definite if K(xi,xj) = limN→∞KN (xi,xj) exists for all xi,xj.

• The pointwise product K1K2 is positive definite.

• The tensor product K1⊗K2 and the direct sum K1⊕K2 are positive definite kernels
on (X∞ ×X∈)× (X∞ ×X∈)

• The function K(xi,xj) = f(xi)f(xj) is a positive definite kernel for any function
f : X → R.

We see that convex combinations of kernel result in valid kernels, since the spectrum of
their Gram matrix remains positive [Shawe-Taylor and Cristianini, 2004]. Some other
operations deriving from the above mentioned elementary operations have been used in
the context of multiple kernel learning [Bach et al., 2004] or in SSL where the kernel can
be distorted using a positive definite matrix, i.e. the graph Laplacian [Belkin et al., 2006].
A survey on kernel construction is presented in [Belanche, 2013].
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3.4.3 Reproducing kernel Hilbert spaces (RKHS)

After defining them, we study now how the kernels are linked to the learning functions.
The kernels can be used to build a Hilbert space F containing a set of learning functions
f . These functions are restricted to be expressed as linear combinations of the kernels,
forming the reproducing kernel Hilbert space (RKHS):

F = {f(·) =
N∑
i=1

αiK(·,xi), αi ∈ R, xi ∈ X}, i ∈ N (3.23)

Notice that the space F is a vector space, i.e. the addition and the multiplication by a
scalar are defined in that space. Let us now define the dot product between two functions
f and g in this space as

〈f, g〉F =

N∑
i=1

N ′∑
j=1

αiβjK(xi,xj) ≥ 0 (3.24)

where g(·) =
∑N ′

j=1 βjK(·,xj), βj ∈ R, xj ∈ X , N ′ ∈ N.

The kernel reproducing property states that any function f ∈ F can be defined as a linear
function of inner products in the vector space F . If we set g(·) = K(·,x), the dot product
with f is

〈f,K(·,xj)〉F =
N∑
i=1

αiK(xi,xj) = f(xj) (3.25)

and

〈K(·,xi),K(·,xj)〉F = K(xi,xj) (3.26)

from the property (3.25), the space F is called a reproducing kernel Hilbert space (RKHS).
From [Aronszajn, 1950], every positive definite kernel K is associated to a unique RKHS
whose kernel is K and vice versa. The corresponding mapping function Φ is called the
Aronszajn map.

Notice that the RKHS norm of a function ‖f‖2F = 〈f, f〉F = is a measure of smoothness
and complexity. This relates to the regularization form of (3.10), where the regularizator
term is Ψ = ‖f‖2F . Since f =

∑N
i=1 αiK(xi,x), the regularization term can expressed as

kernel evaluations: Ψ =
∑N

i=1

∑N
j=1 αiαjK(xi,xj). In this situation, Ψ can be expressed

in a vector notation and the regularized risk only in terms of kernel evaluations

Rreg(K,α) = Remp(K,α) + λαTKα (3.27)

we directly see the relation existing between the RKHS and the regularization of learning
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3.4. Learning with kernels

functions. This brings us to the Representer theorem [Kimeldorf and Wahba, 1971,
Hofmann et al., 2008] which states that the solution of an optimization in the infinite-
dimensional space F lies in the span of the kernels centered at the training samples.
Formally, we have

Definition 3. Representer Theorem. Denote by Ψ : [0,∞)→ R a strictly monotonic
increasing function, by X a set, and by L : X → R∪+∞ an arbitrary loss function. Then
each minimizer f ∈ F of the regularized risk functional

L(f(x1), · · · , f(xN )) + Ψ(‖f‖2F ) (3.28)

admits a solution of the form f∗(x) =
∑N

i=1 αiK(xi,x).

Now that the functions in F have been defined as linear combinations of kernel evaluations,
we will see that some operations in the space F can be computed in the same way.

The first operation is the translation in the feature space: Φ̃(x) = Φ(x) + Γ, Γ ∈ H. By
restricting the translation Γ to lie in the span of Φ(x), we can compute the translated
dot product between samples x and a test sample xt as

〈Φ(x),Φ(xt)〉 = K(x,xt)+
N∑
i=1

αiK(x,xi)+
N∑
i=1

αiK(xt,xi)+
N∑

i,j=1

αiαjK(xi,xj) (3.29)

The translation by the mean of the data µΦ = 1
N

∑N
i=1 Φ(xi) = −Γ, corresponds to a

centering in the feature space of the data.

The normalization in the feature space of the data results in the following dot product

K(xi,xj) = 〈 Φ(xi)

‖Φ(xi)‖
,

Φ(xj)

‖Φ(xj)‖
〉 (3.30)

which is the cosine of the angle in the feature space.

Finally, the computation of distances in the feature space is directly related to the notion
of similarity in the RKHS and can be expressed in terms of kernel evaluations as

d(xi,xj) = ‖Φ(xi)− Φ(xj)‖H =
√
K(xi,xi)− 2K(xi,xj) +K(xj ,xj) (3.31)

3.4.4 Support Vector Machines (SVM)

We can now introduce the Support Vector Machine (SVM), which is one of the most
successful kernel methods.

The SVM is a very efficient machine learning tool for the problem of classification. It
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Figure 3.5: Schematic of the SVM decision boundary. (a) The separable case with the
maximum margin separation. (b) The non-separable (overlap) case. Some of the samples
are on the other side of the decision boundary. These samples on the wrong side are
penalized by their distance ξ to their margin. The boundary tries to maximize the margin
while minimizing the samples on the wrong side.

has been used in a wide range of applications with great success [Osuna et al., 1997,
Schölkopf and Smola, 2002, Camps-Valls and Bruzzone, 2009]. The SVM is directly
connected to the ERM principle. Vapnik’s original idea was to design an algorithm aiming
at finding the minimal empirical risk for a set of training data and a fixed class of learning
functions f [Vapnik, 2000]. Let us assume a set of training samples with associated
labels {(xi, yi)}Ni=1, where xi ∈ Rd and yi ∈ {+1,−1}. The SVM defines the hyperplane
separating the two classes as

〈w,x〉+ b = 0, w ∈ Rd, b ∈ R (3.32)

The margin between the two classes is 2
‖w‖ which gives a measure of the separation

between the two classes, as represented in Figure 3.5 (a). Among all the hyperplanes
separating the two classes, there is only one unique hyperplane which separate them with
maximum margin. With this optimal hyperplane, the minimal empirical risk will be
achieved.

The SVM solves an optimization problem which finds the hyperplane separating two
classes with a maximum margin. Maximizing the separation is equivalent to minimizing
‖w‖

2 . This way we avoid any trouble for w ∼ 0. Furthermore, the minimization of the

convex form ‖w‖2
2 is preferred in terms of optimization.

In the case of two classes which are not perfectly separable, we can allow for some errors
of classification. This can be done by introducing the slack variables ξi that represent the
distance from the margin to the misclassified samples, as represented in Figure 3.5 (b).
The optimization will then search for a trade-off between maximizing the margin and
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3.4. Learning with kernels

minimizing the misclassification distances.

Primal SVM We are now able to formulate the SVM objective function to be optimized.
The so-called primal problem is

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0 (3.33)

with C weighting the penalty term. This quadratic optimization problem under constraints
is solved by introducing Lagrangian multipliers

Lp(w, b, ξ, α, γ) =
1

2
‖w‖2 + C

∑
i

ξi −
∑
i

αi[yi(〈w,xi〉+ b)− 1 + ξi]−
∑
i

γiξi

(3.34)

The optimal solution of the objective function is obtained at the minima of the Lagrangian.
The derivative with respect to w, b and ξ are

∂L
∂w : w −

∑
i αiyixi = 0 → w =

∑
i
αi

∂L
∂b :

∑
i
αiyi = 0

∂L
∂ξi

: C − αi − γi = 0 → αi = C − γi, ∀i

(3.35)

The Karush-Kuhn-Tucker (KKT) conditions are added since the constraint of (3.33) are
inequalities and allows to uniquely relate the following dual problem with the primal
problem.

Dual SVM By substituting partial derivatives (3.35) into (3.34), we obtain the dual
problem

max
α

∑
i

αi −
1

2

∑
i,j

αiαjyiyj〈xi,xj〉

s.t. 0 ≤ αi ≤ C; i = 1, ..., N,
∑
i

αiyi = 0 (3.36)

that ensures an optimal solution in the form of a linear combination of the training
samples. This form of solutions is similar to the statement of the Representer’s theorem
(Definition 3) for kernels.

Non-linear Support Vector Machines The standard SVM is solving the classifica-
tion problem by finding an optimal plane separating the two classes. However in many
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situations, the optimal separation is not a linear hyperplane. In such situations, the data
can be mapped into a higher dimension space where it could become linearly separable.
This leads us back to the notion of kernels and RKHS. When replacing the training set xi
by its mapped version Φ(xi) in the SVM formulation, we end up with only dot products
of the mapped data. The mapping function dot products thus represent kernel functions
K(xi,xj) = 〈Φ(xi),Φ(xj)〉.

Replacing the dot products with kernels back into the SVM dual formulation of (3.36),
we get the following non-linear dual formulation

max
α

∑
i

αi −
1

2

∑
i,j

αiαjyiyjK(xi,xj)

s.t. 0 ≤ αi ≤ C, i = 1, ..., N,
∑
i

αiyi = 0 (3.37)

The dual optimization problem is a standard quadratic programming (QP) problem.
Many algorithms can solve QP problems efficiently by exploiting decomposition methods
(e.g. Sequential Minimal Optimization [Platt, 1998]).

The class label of a test sample xt is obtained from the sign of the decision function

f(xt) =
∑
i

α∗i yiK(xi,xt) + b (3.38)

where α∗i are the support vector coefficients solutions of (3.37). This decision function f(x)

can be interpreted as a distance to the boundary in the kernel induced space, becoming
null for samples lying on it.

3.4.5 Cost-Sensitive SVM (CS-SVM)

In the standard SVM, the cost parameter C penalizes equally the errors done on the
two classes. This is usually desirable, but in some specific situations, like unbalanced
problems, the two classes should be penalized with different strength. The Cost-Sensitive
SVM (CS-SVM) has two costs C+ and C−, one for each class, combined into the cost
asymmetry parameter γ = C+

C++C−
and the total amount of regularization λ = 1

C++C−
[Bach et al., 2006].

Assuming no bias term b, the CS-SVM primal optimization problem is

min
w,ξ

λ

2
‖w‖2 + γ

∑
i∈I+

ξi + (1− γ)
∑
i∈I−

ξi

s.t. yi〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0, ∀i (3.39)

The cost asymmetry γ controls the trade-off between false positive and false negative
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rates. The entire set of classifiers along the Receiver Operator Curve (ROC) are obtained
for γ ranging from 0 to 1. For γ = 0.5, the algorithm reduces to the standard SVM
(Cost-Insensitive SVM).

The optimization problem (3.39) is solved through its Lagrangian dual formulation, given
by

min
α

1

2λ

∑
i,j

αi,γαj,γyiyjK(xi,xj)−
∑
i

αi,γ

s.t. 0 ≤ αi,γ ≤ 1{yi<0} + yiγ, ∀i (3.40)

where K (xi,xj) = 〈Φ(xi),Φ(xj)〉H is the kernel representing the dot product in the high-
dimensional space induced by Φ. The indicator function 1{yi<0} returns 1 for yi = −1

and 0 otherwise. It is important to notice that the solution of (3.40) is obtained for a
single and fixed cost asymmetry γ, and thus it becomes necessary to solve an additional
optimization problem for each new cost asymmetry considered.

Similarly to the standard SVM, the class label of a test sample xt is obtained from the
sign of the decision function

fγ,λ(xt) =
1

λ

∑
i

α∗i,γyiK(xi,xt) (3.41)

where α∗i,γ are the support vector coefficients solutions of (3.40).

The CS-SVM has the drawback of having an additional parameter γ compared to the
original SVM. Efficient ways of computing the solutions for a range of γ and λ values are
presented in Chapter 5.

3.5 Summary

In this Chapter, we have introduced the statistical learning framework allowing a machine
to learn from examples. Its extension with the use of kernel methods allows to consider
new problems where the data is potentially non-linear and of any type, as long as pairwise
similarities can be computed. The kernels methods have been considered in the remote
sensing community with great interest [Camps-Valls and Bruzzone, 2009], since they allow
to address efficiently many of the issues inherent to the complex data characteristics in
the context of remote sensing image processing [Camps-Valls et al., 2011].

The main notions and methods for learning from data having been presented, we can
focus on the particular learning situation of novelty detection in Chapter 4.
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4 Novelty detection
in machine learning

The definition of novelty detection is not unique and the appropriate methods will
drastically change depending on the type of data, the definition of the normality and
the context of the problem. Novelty detection aims at detecting unknown, anomalous
or different data samples. This links novelty detection to one-class classification, which
is focused on the normal class instead of the novelties. Novelty detection is also closely
related to anomaly, outlier and target detection, as well as the classification problems
in situations of extremely imbalanced classes. The distinctions, even if not strict, are
described in Section 4.1.

4.1 The novelty, the outlier and the anomaly

Here we review the similarities and differences between novelty, anomaly, outlier and
target detection, which are schematized in Figure 4.1. We also relate novelty detection
to clustering and learning from positive and unlabeled (LPU) examples settings. These
different topics are misleading when we start comparing them. At first sight they look
equivalent since all look for observations which deviates significantly from the normal
observations. In the literature, these different terms are employed mostly depending
on their related applications and without a narrow and precise definition. In the end,
these problems can be recasted as different instances of novelty detection or one-class
classification, as illustrated in Figure 4.1.

Anomaly detection The detection of anomalies [Chandola et al., 2009] is defined in
a similar way to novelty detection. It is mainly distinguished by the degree of rareness
of the novelty. While novelty detection does not say if the novelties are rare, anomaly
detection usually makes this assumption. Therefore, anomalies can be detected as
insignificant after learning a mixture model [Eskin, 2000], or as badly reconstructed after
performing robust PCA [Kwitt and Hofmann, 2007]. Semi-supervised anomaly detection
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Figure 4.1: Taxonomy of the different fields related to novelty detection depending
on the frequency of novelties (rare or not) and on the level of supervision (supervised,
semi-supervised, unsupervised).

based on incorporating labeled and unlabeled samples in a convex formulation [Goernitz
et al., 2013] and active learning for anomalies [Pelleg and Moore, 2004] are equivalent to
the semi-supervised novelty detection problem presented in Section 4.3.3. Anomalous
change detection [Theiler et al., 2010] is referring to anomaly and novelty detection in
remote sensing change detection problems where the changes are assumed unknown and
anomalous. Finally, with the assumption that anomalies are scarce, anomaly detection
is directly connected to the field of outlier detection in statistics. As an example, the
data can be mapped into a feature space where outlier detection is performed to retrieve
anomlies in the data [Eskin et al., 2002].

Outlier detection The analysis of outliers is an important topic which has received a
lot of interest in statistics, and continues to attract new researchers [Barnett and Lewis,
1994]. If we recall the definition made by Hawkins in 1980:

An outlier is an observation which deviates so much from the other observations
as to arouse suspicions that it was generated by a different mechanism

The notion of deviation can be seen as a definition of anomaly or novelty. In outlier
detection, all the data is available and comparisons between data samples are performed
in order to decide if a sample is an outlier or not. However, the difference lies in that
no supervision is available. The outliers are lying among the data as noise present in a
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4.2. Novelty detection in applications

training dataset. Therefore outlier detection can be seen as the particular case of novelty
and anomaly detection which is unsupervised with rare novelties.

Target detection The field of target detection is falling right into the supervised part
of novelty and anomaly detection. In target detection, it is generally assumed that training
samples or information on the target is available and that targets are sporadic spatially.
The main approaches are based on the RX algorithm (see Section 4.4.2) and other
matched-filters [Nasrabadi, 2014], which can be seen as supervised one-class classifiers
integrating spatial information.

Finally, novelty detection with novelties that are not rare can be seen as an instance of
clustering (see Section 4.3.2) or of learning from positive and unlabeled (LPU)
examples (see Section 4.3.3). Novelty detection as a clustering problem is investigated
in Chapters 6 and 9 and as a LPU problem in Chapters 7 and 10. In these transductive
situations, unlabeled data containing both normal samples and novelties is available.
Before establishing the general formulation of a novelty detection problem in Section 4.3,
we review the main applications in which novelty detection is used in Section 4.2.

4.2 Novelty detection in applications

We here review the principal fields of interest and applications making use of novelty
detection.

Novelty detection is most often related to the monitoring of a certain behaviour like critical
mechanical systems where unusual events are the potential sign of a default or damage.
It has been used for the automatic detection of jet engine default [Tarassenko et al., 1999,
Hayton et al., 2000, Sundaram et al., 2009], atypical machine vibrations [Miljković, 2008]
and milling tools [Dasgupta and Forrest, 1996]. In telecommunications, it has been used
for fraud detection in e-commerce, credit card transactions and mobile phones [Bolton
and Hand, 2002], for the detection of intrusion in computer systems of suspicious trades
in the equity markets [Ryan et al., 1998, Yeung and Chow, 2002], and spatio-temporal
changes in time-evolving graphs [Chan et al., 2008].

The ability to detect unusual events and objects on the way of mobile robots and
autonomous vehicles are of prime importance [Sofman et al., 2010, Munroe and Madden,
2005]. For example, such robots can be used for the detection of rope wire defects in
unreachable places [Wacker and Denzler, 2013].

More recently, the analysis of ego-centric videos could benefit from novelty detection
for discovering important objects or persons [Aghazadeh et al., 2011, Lee et al., 2012],
as well as new situations with respect to routine activities [Blanke and Schiele, 2009].
The idea relies on using on-body wearable devices recording the daily activities of a
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subject, the so-called life logging [Doherty and Smeaton, 2010]. Memory assistance via
a wearable camera could have a great potential in helping patient with the Alzheimer’s
disease [Hodges et al., 2006]. Daily recordings would provide normal data and events could
be evaluated as novel or not, replacing’s brain capacity of novelty detection [Borisyuk
and Kazanovich, 2004].

In biomedical, novelty detection has been used for the detection of masses in mammo-
grams [Tarassenko et al., 1995], of protein interactions [Deris et al., 2006] and of epileptic
seizures in electroencephalograms [Roberts and Tarassenko, 1994, Gardner et al., 2006].
In biometrics, it allows the recognition of a known faces and the detection of unauthorized
persons [Seo and Ko, 2004, Wang et al., 2004, Fernandes et al., 2011].

It finds also applications in audio with the detection of abrupt audio changes [Davy and
Godsill, 2002], in document classification [Manevitz and Yousef, 2002], and in forensic
data to determine whether a similar case exists and if further chemical investigations are
needed [Ratle et al., 2007].

Finally, novelty detection has been investigated in remote sensing for anomaly de-
tection [Banerjee et al., 2009], target detection [Nasrabadi, 2014], one-class classifi-
cation [Muñoz-Marí et al., 2007, Theiler et al., 2010] and multi-temporal change detec-
tion [Mercier and Girard-Ardhuin, 2006, Bovolo et al., 2010, Volpi et al., 2012].

4.3 General formulation

Here, we introduce a general formulation for the novelty detection problem, which boils
down to anomaly, outlier and one-class classification under appropriate assumptions. Let
us denote the distribution of the normal, also called nominal, unchanged or even target,
data p0 and the distribution of novelties p1. Considering a set of N input data vectors,
T = {xi}Ni=1 ∈ Rd ⊆ X , we can assume that the data follows the contamination model

xi ∼ p = πp1 + (1− π)p0

with π the unknown fraction of novelties.

The goal of novelty detection is to learn a decision function f(x), which equals to −1

for a novelty and 1 for a normal sample. Therefore, the positive values of f will refer to
the description of the domain of the normal class. The knowledge of both distributions
p0, p1 would lead to the optimal Bayes decision rule as in supervised classification (c.f.
equation (3.1)). However, this is not realistic in practice since we have access only to
a limited set of data samples not representative of the total distribution p. If novelties
are present in the training data, they are either too few to correctly estimate p1 or not
labeled.
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?

(a) (b) (c)

Figure 4.2: The three novelty detection paradigms considered in this Thesis: (a) supervised
novelty detection where only labels from one-class are available, (b) unsupervised novelty
detection where no labels are available, (c) semi-supervised novelty detection where both
labeled and unlabeled samples are available.

This ill-posed situation requires to make certain assumptions on the distributions. Often
it is assumed that novelties are uniformly distributed. This leads to a density estimation
problem where f is defined as a level set of the probability distribution p0 [Scott and
Nowak, 2006]:

f(x, p0) =

{
+1, if p0(x) > θ

−1, if p0(x) ≤ θ
(4.1)

where the decision function f(x) is positive on density regions p(x) higher than θ. The
level set θ directly relates to the fraction π of the uniform distribution of novelties. We
will see in Section 4.4 that a large number of methods aims at finding the level set function
f directly without passing through the estimation of the distribution p0(x). This follows
Occam’s razor principle, since the real distribution of the data may not be of interest in
detection problems.

In anomaly detection, π will be generally assumed low, since novelties are rare. The same
assumption holds for outlier detection.

In one-class classification, or supervised novelty detection, the training set T is assumed
to be drawn from a distribution p which is novelty-free (π ≈ 0 and p ∼ p0), while the test
samples are derived from a distribution p′ where π′ ∈ [0, 1].

The main paradigm of novelty detection is that information is available on the normal
distribution that may be contaminated, but not on the novelty distribution. However,
depending on the availability of labeled and unlabeled samples at training, different novelty
detection paradigms can be identified. The three main situations, namely supervised
novelty detection, unsupervised novelty detection and semi-supervised novelty detection
are presented in the three following Sections and illustrated in Figure 4.2.
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4.3.1 Supervised novelty detection

The supervised novelty detection is the standard setting. Only samples from the normal
distribution are available without any other information. In this supervised setting, all
the training data is assumed drawn from p0(x) where π ∼ 0. This can be summarized as
finding the support or level set of the data probability density function. If few labeled
novelties are also available, they can be used to better restrict the support of the normal
distribution. This relates to unbalanced classification problems where we have very few
labeled samples for one of the two classes. In the case of wrongly labeled examples or
noisy samples present in the training data, the distribution will be robustly estimated at
a certain level set and assuming π > 0.

4.3.2 Unsupervised novelty detection

Unsupervised novelty detection corresponds to the situation where a set of unlabeled
observations, composed of an unknown combination of normal data and novelties, is
available. This situation is also called the missing label problem. The two distributions p0

and p1 are estimated by either assuming the normal samples to be “contaminated” by
novelties without knowing the contamination level π [Scott and Kolaczyk, 2007] (outlier
detection problem), or by finding large structures in the data (clustering problem). Prior
knowledge on p0 and p1 is definitely crucial to define the type of algorithms needed. In
this Thesis we assume that novelties are not rare and can therefore be retrieved as clusters
in the data distribution.

4.3.3 Semi-supervised novelty detection

Semi-supervised novelty detection (SSND) corresponds to the situation where both
unlabeled and labeled normal samples are available. In comparison to the standard
novelty detection setting, which is inductive, SSND is often transductive and can highly
benefit from the additional unlabeled samples in this challenging context [Scott and
Blanchard, 2009].

The semi-supervised approaches to novelty detection are based on the same assumption
than standard SSL and range from simple extension of one-class classifiers to approaches
very specific to this particular setting, as in the case of LPU.

The Semi-Supervised One-Class SVM (S2OCSVM) [Muñoz-Marí et al., 2010] is an
extension of the One-Class SVM which distorts the kernel via the graph Laplacian to
adapt to the data manifold geometry. The method is further presented in Section 4.4.3
and used in Chapters 7 and 10.

The LPU [Liu et al., 2003, Li and Liu, 2003] is equivalent to SSND. First studied
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theoretically by Muggleton [1997] who assumed known probability density functions of
positive and unlabeled data, LPU moved one step ahead in viewing it as a two-class
classification problem [Liu et al., 2002]. Methods dedicated to the LPU setting have been
designed such as C4.5 trees [De Comité et al., 1999, Letouzey et al., 2000] where the
method learns the fraction of novelties π, weighted logistic regression [Lee and Liu, 2003],
neural networks [Skabar, 2003], co-training [Denis et al., 2003], labeling heuristic [Fung
et al., 2006], a SVM iteratively discovering novelties [Yu, 2005] and finally a cost-sensitive
SVM, also called biased SVM, penalizing less the errors on unlabeled samples [Steinwart
et al., 2004, Elkan and Noto, 2008, Li et al., 2011b]. The reduction of the LPU (or SSND),
problem to a standard two-class classification problem has proved to lead to the optimal
classifier without any assumption made on the distribution of the novelties [Blanchard
et al., 2010]. This approach is further investigated in Chapter 7.

Other SSND approaches have been developed for certain particular applications: the
detection of novelties in time series using a semi-supervised kernel principal component
analysis [Thompson et al., 2012], the detection of anomalies solved by incorporating labeled
and unlabeled samples in a convex formulation [Goernitz et al., 2013], semi-supervised
target detection relying on the kernel distorted by the graph Laplacian [Capobianco et al.,
2009], as in the S2OCSVM, novelty detection in multi-modal or multi-view data with the
semi-supervised CCA [Blaschko et al., 2008, Kimura et al., 2010] or as a multiple instance
learning (MIL) [Maron and Lozano-Pérez, 1998] where the labels are available only on
bags of samples, called instances, and are set positive if at least one sample is positive in
the bag [Maron and Lozano-Pérez, 1998, Bolton and Gader, 2010].

Finally, the SSND can also be formulated as the estimation of the ratio [Sugiyama et al.,
2012] or difference [Sugiyama et al., 2013] of the labeled and unlabeled probability density
functions: p0 and p, respectively.

4.4 State-of-the-art in novelty detection

A large number of methods have been developed for the particular problem of novelty
detection and one-class classification. Here are reviewed the principal approaches with a
particular focus on kernel methods and the approaches used in remote sensing.

4.4.1 Density estimation approaches

Gaussian Data Description (GDD) The simplest Bayesian model for a class of
interest is a Gaussian probability distribution in Rd expressed as

pN (x, µ,Σ) =
1

(2π)d/2|Σ|1/2
exp{−1

2
(x− µ)TΣ−1(x− µ)} (4.2)
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normal class
region

novelties
region

threshold

Figure 4.3: One dimensional Gaussian distribution and a threshold defining the class
boundaries and the region of novelties (modified from Tax [2001]).

where the mean µ and covariance Σ can be directly inferred from the training data. Notice
that the inversion of the covariance matrix may be problematic and one often resorts to
the pseudo-inverse or impose a diagonal covariance matrix. The novelties are detected in
the regions of low density, as illustrated in Figure 4.3. However, this model is often too
simplistic and cannot fit the data distribution correctly, as illustrated in Figure 4.4 (a).

Mixture of Gaussian Data Description (MoGDD) Normal class distribution that
may have multiple modes or that does not fulfil the Gaussian assumption can be modeled
by a mixture of Gaussian models

pMoG(x, µ,Σ) =
1

kMoG

∑
j

αjpN (x, µj ,Σj) (4.3)

where αj are the mixing coefficients. The mixture of Gaussian has an additional parameter
kMoG compared to the single Gaussian, which is the number of Gaussian components in
the mixture. This more complex model requires a larger number of training data samples
to be reliably estimated [Markou and Singh, 2003a, Muñoz-Marí et al., 2007].

These parametric models have the drawback of being often too restrictive in their
assumptions regarding the data complexity. Moreover, they require an important number
of training samples in order to accurately estimate the parameters of the model, without
even considering the problems arising with the curse of dimensionality, described earlier
in Section 3.2.

The assumption of data Gaussianity in the input space is most of the time erroneous
leading to sub-optimal detection of novelties. To alleviate this assumption, Laparra
et al. [2011] proposed to look for a succession of rotations and whitenings of the data
which transforms it into a Gaussian distribution. Therein, novelty detection can easily be
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Figure 4.4: Novelty detection/One-class classifiers: (a) Gaussian model, (b) kernel PCA
with various number of principal components used and (c) SVDD with the same kernel
bandwidth.

performed with the method above, illustrated in Figure 4.3. The idea of simplifying the
distribution prior to detection has been exploited via a one hidden-layer perceptron which
transforms the training data in a Gaussian distribution. Novelties are easily detected in
the low-density regions of the Gaussian [Parra et al., 1996].

Non-parametric approaches have been proposed to approximate the density of the data
using the distance to the kth neighbour on a k-NN graph [Tax, 2001, Hautamaki et al.,
2004, Harmeling et al., 2006]. A test sample is declared novel if its kth distance exceeds a
certain threshold. This procedure is generalized in Chen et al. [2008], where a kernelized
spatial depth is introduced to measure the novelty of samples with respect to a given
dataset. Alternatives based on a local estimation of the density are the local outlying
factor (LOF) [Breunig et al., 2000], the local correlation integral (LOCI) [Papadimitriou
et al., 2003], genetic algorithms for high dimensional data [Aggarwal and Yu, 2001]
or the local outlier probability (LoOP) [Kriegel et al., 2009]. The Prototype-based
Domain Description [Angiulli, 2012] introduces a statistical test for outlier detection,
proposes a subset selection method to encompass large datasets and generalizes the k-NN
approach. Finally, decision trees like the Minimum Spanning Tree (MST) also describe
local relationships among the data samples and novelties can be detected based on the
closest edge distance [Juszczak et al., 2009].

The human immune system has inspired methods which treats novelties in the same
manner our body protects from bacteria and viruses, in retaining unique patterns from
the data and comparing the test data with this collection [Dasgupta and Forrest, 1996].

Also it is worth mentioning the branch of statistic devoted to model extreme and rare
events relying on the Extreme Value Theory (EVT). It allows to study the outlying region
of a known distribution and therefore better detect novelties [Roberts, 1999].
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4.4.2 Reconstruction-based approaches

Among the simplest models based on the reconstruction of the data is the k-centers [Ypma
and Duin, 1998]. The maximum distance of all minimum distances between training
objects and the centers is used as a measure of novelty. This produces a description of
the data made of hyperspheres centered on the k centers. Hereafter are presented other
reconstruction methods all trying to recover the subspace on which lies the normal data.

PCA and Orthogonal Subspace Projections The principal component analysis
(PCA) has been extensively used for the analysis of high-dimensional data. It has
been exploited in applications such as data compression, data visualization or network
intrusion [Wang and Qin, 2002]. More recently, it has been used for change detection in
remote sensing [Wu et al., 2013]. The data is assumed to be composed of the normal class
Xnormal lying onto the principal dimensions related to high variance and the novelties
Xnovelty are found in the other dimensions.

X = Xnormal + Xnovelty (4.4)

The data projections onto the target and novelty subspace respectively are

X̂normal = PP TX (4.5)

X̂novelty = (I− PP T )X (4.6)

where P = U1 the d× k matrix containing the k principal component vectors obtained
from a set of labeled normal samples Xl ⊆ Xnormal ∈ Rd×N . It is computed as UΣU =

eig(cov(Xl)), where U1 : σi, ∀i ≤ k and U2 : σi, ∀i > k. The novelty detection of a
new unseen sample xt is based on the norm of the projection onto the novelty subspace
dnovelty(xt) = ‖x̂t,novelty‖ = ‖(I− PP T )xt‖ where a novelty is detected if it has a larger
projection norm than the set of samples Xl: yi = dnovelty(xi) > max(dnovelty(Xl)).

If the training samples Xl cannot be assumed free of anomaly/outliers, the subspace
projector PP T has to be estimated either by retaining only the largest eigenvalues to
form P or by considering robust estimators [Kwitt and Hofmann, 2007].

The RX algorithm The RX algorithm [Reed and Yu, 1990] is a popular anomaly
detection algorithm that was first developed for multi-spectral imagery, then transferred
to hyperspectral and non-linear data distributions. The RX algorithm is closely related
to the previous idea of orthogonal subspace projections, while being specifically dedicated
to image data and requiring no training data, at least in its original formulation [Chang,
2002]. The RX algorithm computes a Mahalanobis distance to measure the degree of
anomaly of a pixel with respect to its background. The background is modeled over a
window covering M pixels Xb around the pixel of interest x ∈ Rd, d being the number of
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spectral bands. It assumes that standard and anomaly pixels share the same covariance
matrix, but have a different mean. The RX algorithm is widely used in remote sensing
and has evolved together with the advances in machine learning and signal processing.
It has been non-linearized [Kwon and Nasrabadi, 2005] to perform the detection in the
mapped feature space through the use of kernel functions and it has been adapted to
work with data acquired under a compressive sampling scheme [Fowler and Du, 2012].

Kernel PCA Assuming that the normal data lies on a manifold and not a linear sub-
space, the non-linear extension to PCA [Schölkopf et al., 1998] can be used for estimating
the manifold and detecting novelties when the reconstruction error is high [Hoffmann,
2007]. In Figure 4.4 (b), the different boundaries obtained using KPCA with various
number of principal components are illustrated. Note that the KPCA transformation with
the training kernel matrix centered is also called the Kernel Empirical Space (KES) [Xiong
et al., 2005]. The KES is an Euclidean embedding of the training data, which preserves
the geometrical properties of the feature space. It involves also the eigen-decomposition
of the data kernel matrix and leads to the same formulation as KPCA. As for the linear
case, when the training samples are corrupted by outliers, a more robust estimation can
be obtained using the `1 norm instead of the standard `2 norm [Xiao et al., 2013].

Finally, KPCA can be used as a pre-processing step which extracts non-linear features.
Linear algorithms such as the RX anomaly detector algorithm [Gu et al., 2008] can then
be used.

Manifold perturbation Another approach relying on the data manifold is called
PERTurbo [Courty et al., 2011, Chapel et al., 2012]. Perturbo evaluates the novelty of a
test sample as the perturbation it induces in the description of the manifold when it is
added to it. It is interesting to notice that for an equivalent description of the manifold
the formulation of the perturbation measure is equivalent to the KPCA reconstruction
error: i.e. an ε-ball graph with the heat kernel weights for PERTurbo and an RBF
kernel for KPCA, both with similar bandwidths. These two measures are equivalent to a
Mahalanobis distance in the feature space.

4.4.3 Support Vector Machines and boundary approaches

Support Vector Data Description (SVDD)

The Support Vector Data Description (SVDD) has been introduced by Tax and Duin
[1999] and fits an hypersphere around the class of interest. The radius R and the center
a of the sphere are optimized to obtain the minimum volume containing most of the
data. In Figure 4.4 (c), the boundary of the SVD are illustrated. As previously, some
slack variables are added to allow for some data outside the sphere. The primal SVDD
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optimization problem is

min
R,a,ξ

R2 + C
∑
i

ξi

‖Φ(xi)− a‖2 ≤ R2 + ξi, ξi ≥ 0 (4.7)

with C weighting the penalty term. As for the SVM, Lagrangian multipliers are introduced
for the constraints and leads to the following Lagrangian

Lp(R,a, ξ, α, γ) = R2+C
∑
i

ξi−
∑
i

αi[R2+ξi−(xi ·xi−2a ·xi+a ·a)]−
∑
i

γiξi (4.8)

The optimal solution is found for the Lagrangian minima where its derivatives are null.
The derivative of Lp with respect to R, a and ξ are

∂L
∂R : 2R− 2

∑
i
αiR = 0 →

∑
i
αi = 1

∂L
∂a :

∑
i
αi(−2xi + 2a) = 0 → a =

∑
i
αixi∑
i
αi

=
∑
i

αixi

∂L
∂ξi

: C − αi − γi = 0 → αi = C − γi

(4.9)

The results obtained from the partial derivatives (4.9) replaced into the primal formula-
tion (4.7) gives the dual problem

max
α

∑
i

αiK(xi,xi)−
∑
j

∑
i

αiαjK(xi,xj)

0 ≤ αi ≤ C, i = 1, ..., N,
∑
i

αi = 1 (4.10)

This QP optimization problem is very close to the SVM dual QP of (3.37). Once solved,
the optimal solutions α∗ can be used to compute the sphere center a from (4.9). To
evaluate if a test samples lies inside the sphere or not, we need to compute the sphere
radius using the distance between the center and any support vector on the boundary:
R2 = K(xsv,xsv) − 2

∑
i α
∗
iK(xi,xsv) +

∑
i,j α

∗
iα
∗
jK(xi,xj). The decision function of

the SVDD compares the distance between a test sample and the center with the radius
of the sphere.

f(xt) = R2︸︷︷︸
radius

−K(xt,xt)− 2
∑
i

α∗iK(xi,xt) +
∑
i,j

α∗iα
∗
jK(xi,xj)︸ ︷︷ ︸

distance to center

(4.11)

where the test sample xt is declared novel, anomalous or outlier if f(xt) < 0, meaning
that it lies outside the sphere.

The use of SVDD for a novelty detection task is interesting since it does not require any
a priori on the data distribution and relies for testing only on a few number of training
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samples, i.e. the Support Vectors which suffice to describe the boundary. However,
hyperparameters related to the kernel function or the outlier rejection level have to be
set prior to the training of the SVDD using cross-validation and a fixed false detection
rate [Tax and Duin, 2004] minimizing the enclosed volume [Scott and Nowak, 2006, Lee
and Scott, 2007].

One-class Support Vector Machine (OC-SVM)

The One-Class Support Vector Machine (OC-SVM) was proposed by B. Schölkopf around
the same period as the SVDD. Instead of using a hypersphere to enclose the class of
interest, here a hyperplane is used to separate the origin and the class. OC-SVM tries
to maximize the margin between the data and the origin in a high-dimensional Hilbert
feature space where the data has been mapped by a (non-linear) function Φ [Scholkopf
et al., 2000, Schölkopf et al., 2001]. Compared to the standard SVM, OC-SVM assumes
the negative class being at the origin in the feature space. Similarly to SVM, slack
variables ξi are introduced for better generalization. The primal OC-SVM optimization
problem is

min
w,ρ,ξ

1

2
‖w‖2 − ρ+ C

∑
i

ξi

s.t. 〈w,Φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0 (4.12)

where the parameter C controls the trade-off between accepting all the data in the class
description and having a generalized solution performing well with test data and the
quantity ρ

‖w‖ is the margin, i.e. the distance between the origin and the hyperplane.

The OC-SVM dual problem, derived from the Lagrangian of (4.12) and its partial
derivatives, is

min
α

1

2

∑
i,j

αiαjK(xi,xj)

s.t. 0 ≤ αi ≤ C, i = 1, ..., N,
∑
i

αi = 1 (4.13)

The decision function, based on the optimal solutions α∗ of (4.13), is

f(xt) =
∑
i

α∗i yiK(xi,xt)− ρ (4.14)

where the non-null α∗i are called the support vectors.
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Semi-supervised OC-SVM and SVDD

The semi-supervised extension of the OC-SVM and SVDD has been proposed in [Muñoz-
Marí et al., 2010]. It is based on the graph-based semi-supervised approach regularizing the
decision function accordingly to the data manifold [Belkin et al., 2006]. This regularization
which forces the learned function to be smooth on the manifold takes the form of a kernel
“distortion”. The pairwise similarities among the labeled data, in the form of a kernel,
are distorted using a graph built on the labeled and unlabeled data which reflects the
underlying data distribution structure.

More formally, we want the learned decision function f to be smooth over the data
manifold. The RKHS will be transformed to account for the unlabeled data structure and
will provide a training kernel with distorted pairwise similarities. Considering the kernel
matrix K(xi,xj) used for training the OC-SVM or SVDD and the Laplacian L of a graph
built on the data, the regularization term for learning the function f is: fTMf , where
the symmetric semi-definite matrix M = εL and f = [f(x1), ..., f(xN)]. This results in
the distortion of the kernel as

K̃(xi,xj) = K(xi,xj)−KT
xi(I + MK)−1MKxj

(4.15)

where K is the kernel matrix formed by all the data samples (labeled and unlabeled) and
Kxi = [K(x1,xi), ...,K(xN ,xi)]

T and I the identity matrix.

Using the kernel K̃(xi,xj) accounting for the data geometry, the decision functions of
OC-SVM and SVDD can become semi-supervised and provide tighter boundaries. Notice
that the distortion of the kernel requires the inversion of a large matrix of the size of
the number of labeled and unlabeled samples. Nyström methods or incomplete Cholesky
factorization can be used to alleviate the computational burden [Muñoz-Marí et al., 2010].
Moreover, the new distortion parameter ε will have to be tuned and a graph built on the
data.

The semi-supervised SVDD (S3VDD) is compared with our proposed approaches in
Chapter 7, and further investigated with different types of graph in Chapter 10.

Alternatives and improvements In Banerjee et al. [2009], the OC-SVM is exploited
as an RX detector to estimate the background distribution and detect anomalies in
hyperspectral images. The OC-SVM and SVDD have shown to be consistent estimators
of density level sets using their regularization parameters for outlier rejection and an
appropriate RBF kernel bandwidth [Vert and Vert, 2006]. The observation that density
level sets are nested can be imposed to the boundaries at different outlier rejection levels
to better match the density distribution [Lee and Scott, 2007, 2010] (see Chapters 5
and 6). An approach that better scales with the size of the dataset than the SVDD
and OC-SVM is introduced by Campbell and Bennett [2001]. Their algorithm relies on
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minimizing the mean of a decision function similar to the OC-SVM using a simple linear
programming problem.

As a matter of fact, SVDD tends to produce loose decision boundaries even with an
appropriately tuned RBF kernel or with the help of some labeled novelties. Several
approaches addressing this issue have been proposed. In Guo et al. [2009], the post-
processing of the boundary allows to tighten it by reducing its distance with its nearest
samples. The inclusion of the data density in the objective [Lee et al., 2005, 2007, Yin
and Huang], or the minimization of the distance between the sphere center and the center
of gravity [Guo et al., 2009] have helped solving this issue.

The problem of clustering using SVDD has been tackled in [Camastra and Verri, 2005] and
also in Wang et al. [2006], where the global data structure is retrieved using agglomerative
clustering and imposed in the optimization of the class boundary. This is closely related
to the hierarchical clustering algorithms investigated in Chapter 6.

One-class Gaussian Processes Gaussian Processes (GP) are powerful models for
probabilistic regression and classification [Rasmussen and Williams, 2006]. Recently, they
have been used in the context of one-class classification [Kemmler et al., 2011]. The
predictive function f is not issued from a fixed parametric family of functions, but assumed
to be drawn from a probability density function p(f |x), i.e. a GP defines a distribution
over functions f : X → R. The GP prior stipulates that the values of all functions are
jointly normally distributed p(f |x) ∼ N (m(x), k(x,x)). In other words, the functions
f are described by a mean function m(·) : X → R and a covariance k(·, ·) : X × X → R
function, a kernel function.

In GP, classification problems can be tackled by regressing the labeled values as in logistic
regression for classification. For the one-class classification problem, the GP prior is
assumed with a zero-mean and the labeled samples are set to y = 1. The GP function f
will predict 1 on and around training samples and decrease to 0 when moving away from
the samples. Additionally, the variance of the prediction will behave in opposition: it will
be null on the training samples and large when away from them. These are indicators
that can be used to define the class boundary [Kemmler et al., 2011]. Based on the same
observations, GP have been used for clustering [Kim and Lee, 2007]: this interpretation
is exploited in Chapter 6.

4.4.4 Neural network approaches

Bishop [1994] has first proposed to assess the novelty of a sample from the output of an
Artificial Neural Network (ANN).

Since then, ANN have been declined into various models handling the information of a sin-
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gle class: auto-encoder ANN [Japkowicz et al., 1995] and auto-associative ANN [Japkowicz,
1999, Fernandes et al., 2011], adaptive resonance theory which exploits auto-regressive
model parameters to detect novelties [Carpenter et al., 1991], constrained second-order
ANN [Moya and Hush, 1996], single-layer recurrent ANN [Rowland and Maida, 2004]
or oscillatory models, where a resonance amplification mechanism responds to familiar
stimuli [Borisyuk et al., 2000, Borisyuk and Kazanovich, 2004]. All these models are
established in the same way the hippocampus region of our brain is behaving for novelty
detection. They all try to predict the normal behaviour and detect novelties as an erro-
neous prediction or an important adaptation of the model to the current data. It is worth
mentioning the special case of image classification based on image receptive fields ANN
which directly works with the images as input and does not need any feature extraction.
It detects novelties by analyzing the randomness of the ANN response [Smagghe et al.,
2013].

4.4.5 Information theoretic approaches

The information-theoretic measures like entropy [Lee and Xiang, 2001] or Kullback-Leibler
divergence between distributions [Filippone and Sanguinetti, 2011] have been exploited
to describe the normal class and set a threshold to detect anomalies.

The Maximum Mean Discrepancy (MMD) is a measure evaluating if two sets of samples
are issued from the same distribution, assuming the sets as random variables. Therefore,
MMD can be used as an outlier detector where a new sample is tested against the normal
set of samples [Gretton et al., 2012].

4.5 Summary

In this Chapter, we have introduced the field of novelty detection and its co-related
definitions of anomaly, outlier or target detection. We reviewed the main novelty detection
approaches and emphasized on the kernel methods, which are the common point across
all the Thesis. The different paradigms of novelty detection span a large area of machine
learning methods from clustering (see Chapters 6 and 9) to imbalanced classification (see
Chapter 7) and one-class classification (see Chapter 10).
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5 Background

In this Chapter, we describe the cluster assumption exploited in the rest of this Part
of the Thesis and present some background notions on more advanced algorithms for
obtaining SVM solutions. These algorithms will be used in the two next Chapters for
clustering (Chapter 6) and semi-supervised novelty detection (Chapter 7).

5.1 Data made of overlapping clusters

The definition of the data structure is of prime importance when learning with low level of
supervision. In this Part of the Thesis, we are assuming that the data structure is made
of overlapping clusters of arbitrary shapes. This structure is motivated by the physical
properties of optical remote sensing data, as presented in Figure 5.1. The image pixels
can be represented as a mixture of elementary material components. Among these pixels,
some will be representative of a certain material and the rest will be a mixture of several
materials. Most of the methods tackling this type of problems fall in the category of
unmixing techniques and try to find pure pixels representing the sources and the mixing
coefficients by assuming linear or non-linear mixing of the sources [Keshava and Mustard,
2002, Dobigeon et al., 2014].

In remote sensing imagery, unmixing resorts to finding the materials that compose each
pixels, where a pure pixel, representing a single material, is called an endmember and the
unmixing procedure corresponds both to the endmember extraction and the computation
of the mixing coefficients for each pixel [Parente and Plaza, 2010, Plaza et al., 2004, Chang
et al., 2011]. This situation happens most often when dealing with low spatial resolution
images, where the pixels contain different materials mixed linearly or non-linearly [Villa
et al., 2013]. However, we may be interested only in the dominant class label of each pixel
for classification. In this case, we do not need to resort to unmixing, the estimation of the
number of sources and the computation of mixture coefficients. We can simply retrieve
groups of clusters in the data by using classification or clustering algorithms. Clustering
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Figure 5.1: Example of data structure with groups of overlapping clusters. (a) The data
can be decomposed into groups of clusters, cores and outliers. (b) In a change detection
situation, the thematic classes corresponds to different types of changes (or non-change).

and classification approaches appropriate for this type of data structure are presented in
Chapter 6 and 7, respectively.

These methods are adapted to the data structure and can retrieve the clusters that may
overlap by exploiting the regularization of different forms of SVM to find the appropriate
classes boundaries. We present in the following Section 5.2 the support vector clustering
algorithm which is well adapted to this type of data. Then in Section 5.3, we present the
algorithms that allow to find sets of boundaries for all possible regularization at a low
computational cost.

5.2 Support Vector Clustering

In this Section, we present the Support Vector Clustering (SVC) algorithm, which can deal
with overlapping clusters and which is the foundation for one of the proposed clustering
approaches in Chapter 6.

5.2.1 Describing cluster boundaries with support vectors

The idea behind the SVC is the following: the data samples are mapped from the input
space to a high dimensional feature space using a kernel (typically a Gaussian RBF). In
the feature space, the linear boundary that separates most of the data with maximum
margin from the origin or the smallest sphere that encloses most of the data is retrieved.
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Figure 5.2: Principle of the support vector clustering. The data is linearly separated
in a mapped feature space, which defines (multiple) contours in the input space that
may be disconnected. If the path linking two inlier samples is going outside the cluster
boundaries it indicates that they are from two different clusters.

The first corresponds to the one-class support vector machine (OC-SVM) [Scholkopf
et al., 2000, Schölkopf et al., 2001], while the second corresponds to the support vector
data description (SVDD) [Tax and Duin, 1999, 2004]. As illustrated in Figure 5.2, this
boundary mapped back to data space forms a set of contours which enclose the data
samples. These contours can be interpreted as cluster boundaries, where samples enclosed
by each separate contour are associated with the same cluster. Actually, depending
on the kernel bandwidth and the fraction of rejected outlier samples the contours can
be interpreted as a density level set of the underlying probability distribution of the
data. When the bandwidth parameter of the RBF kernel is decreased, the number of
disconnected contours in data space increases, leading to an increasing number of clusters.

5.2.2 Cluster assignment

The problem of assigning a cluster label to each sample has to be addressed. The OC-SVM
or SVDD are only defining inlier and outlier samples from the decision boundary which
defines the contour of the clusters. However, two inlier samples may be from two different
clusters. The idea to obtain the different cluster labels is to look at the line linking every
pair of inlier samples in the input space, as illustrated in Figure 5.2. Two samples that
have their link between them going outside the cluster boundaries are from different
clusters, while two samples that have a link remaining inside the cluster are from the
same cluster.

An adjacency matrix A can be established by checking along the link between each pair
of inliers.

A(i, j) =

{
1 if the link between i and j remains inside
0 otherwise

}
(5.1)
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In practice, the paths are sampled using a certain number of points and the clusters are
defined as the connected components of the graph defined by the adjacency matrix A.

5.3 Entire solution path algorithms

It can be observed that the SVM solutions along different values of the regularization
parameters penalizing the training errors are piecewise linear [Hastie et al., 2004, Bach
et al., 2006] contrarily to the kernel parameter [Wang et al., 2007]. These solutions can
therefore be obtained by tracing the entire solution paths. Actually, not only the SVM has
piecewise linear solutions but any model with an `1 constraint and a quadratic, piecewise
quadratic, piecewise linear, or mixed quadratic and linear loss function [Hastie et al.,
2001]. The sets of solutions being piecewise linear, the path is fully described with the
solutions at the interface between two linear pieces, since the other solutions can be
linearly interpolated in between. In Figure 5.5, the piecewise linear behaviour of the
solutions can be observed for two different types of SVM. This particular property has
the advantage of simplifying the description of all the solutions. They can be described
by their breakpoints between two linear segments which allows to obtain all the solutions
at the same computational cost than a single SVM optimization. The solution path
can be constrained to be nested, which provides more coherent classification boundaries
along the path [Lee and Scott, 2010]. This way, all the boundaries are included in each
other, meaning that the predicted class of a sample changes only once along the path and
that a certain hierarchy can be established among the samples. Hereafter, we introduce
the solution path algorithms for the OC-SVM and CS-SVM and present the algorithms
deriving the nested paths for both of them. These algorithms will be used in Chapters 6
and 7.

5.3.1 OC-SVM entire solution path

The entire solution path of the OC-SVM is called the regularization path since it provides
the set of solutions for all different level of regularization, i.e. the different outlier rejection
levels. An alternative formulation replacing the usual regularization parameter C (setting
the level of outlier rejection) penalizing the errors by a regularization parameter λm
penalizing the margin has been proposed by Lee and Scott [2007] to allow the derivation
of the entire regularization path. Given a dataset {xi}Ni=1, its support is found based on
the following optimization problem

min
w,ξ

λm
2
‖w‖2 +

1

N

N∑
i=1

ξi

s.t. 〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0,∀i (5.2)
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5.3. Entire solution path algorithms

Figure 5.3: The boundary and the active sets of samples (L,M and R) for two different
breakpoints on the solution path of the OC-SVM or cost-asymmetry path of the CS-SVM.

The problem (5.2) is solved through its Lagrangian dual leading to the function

fλm(x) =
1

λm

∑
i

αi,mK(xi,x) (5.3)

where K (xi,xj) is the kernel function and m is a point on the regularization path. The
corresponding decision function is

gm(x) = sign(fλm(x)− 1) (5.4)

which is negative for samples inside the support and positive for those outside.

Consider the three active sets : L, R andM corresponding to inliers, outliers and boundary
samples respectively. They are represented in an example in Figure 5.3 and defined as

Boundary: M = {i, fλm(xi) = 1}
Inliers: R = {i, fλm(xi) < 1}
Outliers: L = {i, fλm(xi) > 1}

The entire regularization path of the OC-SVM is a continuous piecewise linear function
that can be retrieved by starting where all the samples are considered outliers. This
happens when λm is maximum where ∀i : fλm(xi) > 1. By replacing fλm(x) using (5.3)
and isolating λm we get λmax = max

i

1
N

∑
jK (xi,xj).

From this starting solution, the λm should be decreased until a change in the different
sets occurs, meaning a sample entering or leaving the boundary, where a new solution
αm is obtained. This is repeated until λm = 0 to get the entire regularization path with
solutions for all the m breakpoints retrieved [Lee and Scott, 2007]. All the solutions αi,·
in between two λm can be obtained from a linear interpolation between the lower and
upper solutions at λm and λm+1.
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5.3.2 CS-SVM entire solution path

Among the different parameters of the CS-SVM, see Section 3.4.5, the global regularization
parameter λ and the cost asymmetry γ produce solutions that are continuous piecewise
linear [Hastie et al., 2004, Bach et al., 2006]. These are called the solution paths of the
CS-SVM, with the regularization path and the cost asymmetry path respectively. Given
some labels {y}Ni=1, let us split here again the samples xi into three active sets, respecting
the convention used in [Bach et al., 2006]

Margin: M = {i, yifγ,λ(xi) = 1}
Left of margin: L = {i, yifγ,λ(xi) < 1}
Right of margin: R = {i, yifγ,λ(xi) > 1}

In Figure 5.3 (a)-(b), the three active sets are represented, with the non-null αi inside
(i ∈ L) and on the margin (i ∈M), at two different cost asymmetries γ. The corresponding
αi for the three different sets are: ∀i ∈ M : 0 ≤ αi,γ ≤ 1{yi<0} + yiγ, ∀i ∈ L : αi,γ =

1{yi<0} + yiγ, ∀i ∈ R : αi,γ = 0.

For known active sets M, L and R, the optimal solutions αi,γ can be derived from
a linear system of equations. Actually, only the αi,γ ∈ M are really unknown, since
αi,γ ∈ L ∪ R are either fixed at 0 or 1{yi<0} + yiγ. The active sets remain unchanged
on a certain range of the parameter resulting in a linear “segment” on the path where
the αi are linearly related to the parameter. The value at which the active sets change
produces a breakpoint. The breakpoints can be incrementally computed by tracking the
next parameter value for which the KKT conditions are no more satisfied (e.g. the events
when samples enter or leave the margin). Figure 5.5 represents the piecewise linear α
along the cost asymmetry path.

This algorithm, called CS-SVM PATH, starts considering the path in the situation where
all the samples are inside the margin (∀i, i ∈ L,M∪R ∈ ∅). In this situation, all the
αi,γ = 1{yi<0}+yiγ. This is achieved by the largest regularization enforcing the maximum
margin, meaning a null penalization of the errors: C+ +C− = 0⇒ λ =∞. However, this
solution is reached already at a certain regularization parameter λmax above which the
solutions stop changing: ∀λ ∈ [λmax,∞]. This maximum regularization parameter can
be obtained directly from the kernel matrix: since all the samples are inside and on the
margin: yifγ,λ(xi) ≤ 1, ∀i, by replacing fγ,λ(xi) using (3.41) and isolating λ, we end up
with

λmax = max

γ ∑
j∈I+

yiyjKi,j + (1− γ)
∑
j∈I−

yiyjKi,j

 (5.5)

See [Lee and Scott, 2010] for more details on the derivation of (5.5) and on the imple-
mentation of the CS-SVM PATH algorithm based on the SVMPath toolbox [Hastie et al.,
2004].
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(a) (b)

Figure 5.4: Example of CS-SVM decision boundaries along (a) the solution path and
(b) the nested solution path (NCS-SVM). Enforcing the nested constraint provides a
hierarchical set of solutions which are more stable.

5.4 Nested decision boundaries

In practice, it can be desired that the solutions along the path respect a certain hierarchy.
The solution path, even if piece-wise linear, does not ensure a smooth change at the
boundaries, as illustrated in Figure 5.4. In this section, we review how to impose a
constraint to nest the boundaries and obtain boundaries that change smoothly along the
solution path.

5.4.1 Nested OC-SVM solution path

In the nested OC-SVM (NOC-SVM), a nestedness constraint is added to the derivation of
the OC-SVM solution path [Lee and Scott, 2010]. Adding a constraint to the optimization
problem enforces the generated boundaries of the OC-SVM to be included in each other
or nested. This produces a set of boundaries for different rejection of outliers that can
approximate density level sets with an appropriate RBF kernel bandwidth. Assuming M
different level of interest on the path λ1 > λ2 > ... > λM > 0, the optimization problem
leading to a family of m nested solutions is

min
a1,··· ,aM

M∑
m=1

 1

2λm

∑
i,j

αi,mαj,mK(xi,xj)−
∑
i

αi,m


s.t. 0 ≤ αi,m ≤

1

N
,∀i,m

αi,1
λ1
≤ αi,2

λ2
≤ ... ≤

αi,M
λM

(5.6)

with αi,m the Lagrangian multiplier corresponding to the sample xi at level set λm. All
solutions between two points m on the path are obtained by linear interpolation. The
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Figure 5.5: The piecewise linear solutions αi along the path of cost asymmetries γ for the
CS-SVM (top) and NCS-SVM (bottom) for 8 samples (toy example of two overlapping
classes with 4 samples each). Each color represents a different sample and each dot
represents a breakpoint where a solution has been obtained. The number of breakpoints
of the CS-SVM is usually around 2 ≈ 3 times the number of samples whereas the M
breakpoints of the NCS-SVM are manually preset (here M = 7).

optimization problem is iteratively solved by splitting (5.6) into sub-problems solving the
path for a single sample x at each iteration, see [Lee and Scott, 2010] for details.

5.4.2 Nested CS-SVM solution path

The nested Cost-Sensitive SVM (NCS-SVM) is another formulation for computing the
entire cost asymmetry path of the CS-SVM proposed in [Lee and Scott, 2010]. The
NCS-SVM forces the boundaries obtained at different cost asymmetries to be nested (an
example of nested boundaries can be seen in Chapter 7). Let Gγm be the set of samples
in the positive class for the cost asymmetry γm. For a γk > γm, Gγm ⊆ Gγk . A sample on
the positive side of the boundary for a certain γm will remain on the positive side for all γ
larger than γm. This ensures a coherence along the path of cost asymmetries and should
provide less sensitivity to the free parameters (regularization and kernel parameters) and
to the noise in training data.

Nested solution paths are also continuous piecewise linear function of the cost asymmetry
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5.4. Nested decision boundaries

parameter. The nested solution paths are monotonic due to the nestedness constraint, as
it can be observed in Figure 5.5. The breakpoints along the cost asymmetry path are
pre-defined by the user and not derived from the data as in the CS-SVM PATH algorithm
(see section 5.3.2). The monotonicity of the path allows pre-defining only a small number
of breakpoints. In this setting, the NCS-SVM dual formulation is

min
αi,1,...,αi,M

M∑
m=1

 1

2λ

∑
i,j

αi,mαj,myiyjKi,j −
∑
i

αi,m

 (5.7)

s.t. 0 ≤ αi,m ≤ 1{yi<0} + yiγm, ∀i,m (5.8)

yiαi,1 ≤ ... ≤ yiαi,M ∀i (5.9)

This dual formulation is extremely close to the dual formulation of the CS-SVM in (3.40),
see Section 3.4.5. The differences lie in i) the simultaneous consideration of all the
breakpoints and in ii) the additional constraints in (5.9) enforcing the nesting of the
boundaries. The solutions αi,m+η at an intermediate cost asymmetry γm+η (0<η<1) can
be obtained by linear interpolation.

The optimization problem of (5.7) is complex since the constraints are imposed on the
samples (5.8) and the cost asymmetries (5.9) resulting in M ×N variables (N being the
number of labeled samples). A decomposition algorithm is proposed to split the QP
problem into smaller subproblems. The sample xk violating the KKT conditions the most
is selected and its solutions αk,m are optimized along the breakpoints while the other
solutions remain fixed. The objective function of (5.7) is thus rewritten as

M∑
m=1

 1

2λ

∑
i,j

αi,mαj,myiyjKi,j −
∑
i

αi,m

 =

M∑
m=1

 1

2λ
α2
k,mKk,k + αk,m

∑
j 6=k

αj,myjykKk,j − λ

 + Cst

where Cst contains the terms not related to αk,m. Samples are selected iteratively to
update their solutions until the optimality condition error is under a predefined value1.

1For more details on the sample selection and termination criterion of the NCS-SVM, please refer to
Lee and Scott [2010]
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Chapter 5. Background

5.5 Summary

In this Chapter, we have introduced the problematic of retrieving the cluster structure
of the data composed of overlapping clusters of arbitrary shapes. We have described
extensions of the OC-SVM and CS-SVM providing the entire set of solutions related
to the regularization parameters and their nested counterpart providing hierarchical
solutions. These will be further exploited in next Chapters for clustering (Chapter 6) and
semi-supervised novelty detection (Chapter 7).
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6 Unsupervised change detection
via hierarchical clustering

In this Chapter1, we first formally introduce the structure assumption made on the data
already presented in Section 5.1. Then we present two hierarchical clustering algorithms,
the first exploiting the OC-SVM entire solution path algorithms in Section 6.2.1, the
other based on Gaussian Process in Section 6.2.2. We propose a cluster validity measure
for hyperparameter tuning in Section 6.3 and a merging system for unsupervised change
detection in Section 6.4. Finally in Section 6.5, we present experiments on two multispec-
tral datasets to confirm the appropriateness of the proposed system in change detection
situations.

6.1 Clustering and outlier hierarchy

The more general setting assuming overlapping clusters is less restrictive than standard
unmixing where unique pure sources are considered [Villa et al., 2013]. The samples
representative of the clusters form the cluster cores which are surrounded by the mixed
samples or noisy samples from the data inherent variability. These mixed samples preserve
the information on the relations between the clusters: clusters strongly mixed between
each other are more likely to be merged in the same group of clusters. Whereas clusters
with only a few mixed samples are less likely to be grouped together.

Let us consider a dataset X ∈ RN×d made of N samples xi, i = [1, .., N ] and d dimensions.
The aim is to attribute labels yi corresponding to a certain cluster Ck. If the sample
is too far away from the support of its cluster (i.e. in a low density region) or in the
ambiguous region between two clusters, it will most probably be considered as an outlier
or a mixed sample. Thus, the dataset can be decomposed in cluster cores and outliers
around them, which might contain mixed samples. An example of cluster cores and
outliers on a synthetic dataset is presented in Figure 6.1 along with the typical unmixing
setting. The hierarchical levels represent the likelihood of being an outlier and corresponds

1This Chapter is based on [de Morsier et al., 2012b, 2014b]
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Chapter 6. Unsupervised change detection via hierarchical clustering

(a) (b) (C)

Figure 6.1: Two dimensional examples of (a) standard unmixing problem with 3 endmem-
bers (red dots) and mixed samples (black dots), (b) the more general case with 3 clusters
(red dots) surrounded by noisy and mixed samples (black dots) and (c) the corresponding
outlier hierarchy levels.

in our case to the “representativity” of the sample regarding its cluster core.

Let us define properly the different components of a dataset as following:

• Core: a cluster core is the homogeneous group of similar samples representing the
cluster and its natural variability.

• Outliers: outliers are least representative samples of a certain cluster. They may
have been corrupted by noise or be a mixture of several cluster cores.

• Cluster: a cluster is made of an homogeneous core of samples possibly surrounded
by outliers (noisy samples) or mixture of clusters.

• Class: a class is a thematic (user-defined) group of similar samples usually composed
of one or several clusters, but not necessary.

This representation is interesting since it groups most representative samples inside cores
and less representative mixed samples as outliers. The definition of the cluster is cleaner
and no more perturbed by mixed or noisy samples. The classes, made of one or several
cluster cores, can be semantically defined by the user interests or naturally discovered
depending on the relative structure of the cores and of their outliers. The rationale behind
it being that two cores sharing most of their outliers have a higher probability of having
mixed samples issue from their combination and should naturally belong to a common
class or group of clusters.

Such a description of the data with an appropriate separation of core samples and outliers
can be difficult to obtain directly. It is often easier to obtain a complete hierarchical
representation of the data with various levels of outlier rejection, as presented in Figure 6.1
(c). At the bottom level, the few most similar samples represent the cluster cores and

78



6.2. Hierarchical clustering algorithms

all the other samples are considered outliers. Going up in the level of outlier hierarchy,
cluster cores grow as more samples are included. This reduces the number of outliers
until reaching the top of the hierarchy where all the samples are inside cluster cores and
there are no outliers left. The validity measure presented in the next section allows to
select the appropriate separation between cluster cores and outliers.

6.2 Hierarchical clustering algorithms

In this section, we introduce two algorithms for clustering with hierarchical outlier
rejection. The first one is a variant of Support Vector Clustering leading to a set of
truly hierarchical clustering solutions [de Morsier et al., 2012b]. The second one is the
Gaussian Processes Clustering [Kim and Lee, 2007] from which a set of hierarchical
solutions is derived. These two algorithms will be tuned using a cluster validity measure
(CVM) presented in Section 6.3 and groups of clusters will be obtained using a merging
system (CMS) presented in Section 6.4. Finally, two experiments with multi-temporal
multi-spectral images are presented in Section 6.5.

6.2.1 Hierarchical support vector clustering

The Support Vector Clustering (SVC), introduced in Section 5.2, is closely related to the
One-Class Support Vector Machine (OC-SVM). Let us recall that the OC-SVM estimates
a level set (usually the support) of a distribution in a high dimensional space induced by
a mapping function Φ [Schölkopf et al., 2001]. The OC-SVM separates the data with a
hyperplane at maximum distance from the origin. Coming back in the input space, the
level set boundary usually forms disconnected “islands”, which correspond to different
modes of the data distribution, as it can be observed in Figure 6.2. In novelty detection,
these clusters may represent the normal and novelties distribution p0 and p1. These
distinct modes, representing regions of highly similar samples, form different clusters.
The OC-SVM has the ability of rejecting the outliers and produce clusters with inliers
inside the cluster boundary and outliers left outside the cluster boundary. This property
is extremely useful in the case of overlapping clusters where an important number of
mixed pixels is present. If some of the samples are not rejected, the clusters will fuse
together and will not be resolved as distinct clusters.

In order to obtain a set of boundaries with different level of outlier rejection, the entire
regularization path of the OC-SVM, presented in Section 5.3.1, can be exploited [Hansen
et al., 2007]. This produces a pseudo-hierarchical set of solutions, since the OC-SVM
entire solution path does not provide boundaries that are included in each other which
ensures a hierarchy. An example of nested boundaries is presented in Figure 6.2.

In order to derive a truly-hierarchical set of SVC solutions, the Nested OC-SVM (NSVC)
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(a) (b)

Figure 6.2: Nested boundaries of the (a) hierarchical support vector clustering and
(b) Gaussian Process clustering algorithms at different level of outlier rejection for the
example of Figure 6.3. The negative predicted variance of the Gaussian Processes
clustering algorithm is overlayed.

presented in Chapter 5 is used to generate solutions from which clusters are discovered.
The decision function of the NSVC is

gm(x) = sign(fλm(x)− 1) (6.1)

which is negative for samples inside the support (inliers) and positive for those outside
(outliers). The recovery of the cluster labels from the OC-SVM decision function is further
explain in Section 6.2.3 after having presented the Gaussian process clustering, which
assigns cluster labels in the same way.

6.2.2 Hierarchical Gaussian process clustering

The GP, originally introduced for regression, has also been applied to clustering [Kim and
Lee, 2007]. As it can be observed in Figure 6.2 (b), the predicted variance of a GP learned
on a dataset X is small in dense regions and large in regions with few samples. Therefore
the variance characterizes the data probability density function and can be exploited for
clustering in a similar way than the SVC model. The disconnected “islands” formed by
level set of the predicted variance represent the different clusters. It is important to note
that the true data probability density function can be retrieved from OC-SVM or GPs
only for a specific set of hyperparameters. On the contrary to Kim and Lee [2007] who
learn one set of hyperparameters, we do not restrict the clustering solutions to be density
level set estimations. We select the hyperparameters based on a cluster validity index
presented in Section 6.3.

The predicted variance of a GP is derived as follows: the output labels y, equal to 1 for
all the samples in the support and 0 otherwise, are assumed to be generated from a latent
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function f : X → R. The function f is assumed normally distributed, which corresponds
to putting a Gaussian prior on the distribution of functions f . The function values are
therefore jointly normally distributed

f |X ∼ N (µ(X),K(X,X)), (6.2)

which can be explicitly expressed as

p(f |X,Θ) =
1

(2π)N/2|K(X,X)|1/2
· exp−1

2
(f − µ)K(X,X)−1(f − µ) (6.3)

The mean µ of the GP prior is usually set to 0 and an additive Gaussian noise with
variance σ2

n is also considered. The predictive distribution for new samples x is defined
by the following mean and variance

µ(x) = K(X,x)T (K(X,X) + σ2
nI)−1y (6.4)

σ2(x) = K(x,x)−K(X,x)T (K(X,X) + σ2
nI)−1K(X,x) (6.5)

The covariance function K defines the way samples generalize to neighbours and is selected
as: K(xi,xj) = s · exp{− 1

2σ‖xi − xj‖2}. The hyperparameters s and σ can be selected
by maximizing the pseudo-likelihood on the data or, as in our case, using the CVM. The
cluster cores of the data are estimated based on the negative variance of the prediction:
f(x) = −σ2(x), where low variance correlates with higher density and vice-versa [Kim
and Lee, 2007].

We propose to find a hierarchical set of solutions by considering different level sets of the
negative predicted variance, denoted HGPC. A Gaussian Process clustering solution at
level m is defined by

gm(x) = −σ2(x)︸ ︷︷ ︸
f(x)

+ (Θmin +
(m− 1)

M
· (Θmax −Θmin))︸ ︷︷ ︸

the negative variance rescaled at level set m

(6.6)

withm = {1, ..,M}, Θmax = maxx∈X
(
−σ2(x)

)
and Θmin = −s. Samples with gm(x) ≥ 0

are inliers and samples with gm(x) < 0 are outliers.

6.2.3 Cluster assignment from hierarchical adjacency matrices

The hierarchical sets of solutions obtained from either the NSVC or HGPC are not yet
clustering solutions. The decision function gm(x) defines only if a sample x is an inlier
(inside a cluster core) or an outlier (outside cluster core) but it does not indicate if two
inliers belong to the same cluster. To assign cluster labels to all inliers, we use the
following strategy: the path linking a pair of inlier samples xi and xj in the input space
will cross an outlier region (gm(xonpath(i,j)) < 0) if they are from two different clusters, as
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Chapter 6. Unsupervised change detection via hierarchical clustering

by analogy we would have to swim to pass from an "island" to another one. Following
this intuition, an adjacency matrix Am for each specific level m can be built by checking
the gm function along the path between each pairs of inliers.

Am(i, j) =

{
1 if gm(xi + ε(xj − xi)) ≥ 0

0 otherwise

}
(6.7)

with ε ∈ [0; 1]. In practice, the paths are sampled using around 10 different values for ε.
Several methods based on graphs have been proposed to accelerate the computation of
the matrix A. Delaunay diagram, Minimum Spanning Tree or k-NN graphs can be built
on the data and allow to reduce the number of sample pairs checked [Lee and Lee, 2005].

The cluster memberships are retrieved from the adjacency matrix Am by following
the existing links between inlier samples and propagating cluster labels. For outliers,
memberships are assigned to the closest cluster using the Euclidean distance. Further
acceleration is obtained by starting with the lowest outlier rejection level and setting
Am(i, j) = 0 for all the next levels if Am(i, j) = 0 for the current level. This is justified
by the hierarchical structure adopted, which makes it impossible for two samples being in
two different clusters to be found in a common cluster for higher rejection levels.

6.3 Validity measure for hierarchical clustering

Many cluster validity indices are based on notion of compactness and separability of the
clusters introduced by Dunn [Dunn, 1974]. Transferring the notion of compactness to a
hierarchy of cluster cores can be dangerous since this would always select hierarchical levels
having the most compact cluster cores, e.g. the small and dense clusters in Figure 6.3 (a).
Instead of compactness, the cluster cores sizes could be maximized together with their
separation. This leads to cluster cores covering the majority of the samples, but leaving
out samples in the overlapped region between clusters.

Consider a set of M solutions from a hierarchical outlier rejection method, where at
m = 1 most of the samples are rejected as outliers and at m = M all samples are inside
cluster cores. Among the M different levels of clustering, the solution in the hierarchy
fitting the most our representation with homogeneous clusters core surrounded by outliers
should be selected.

We will consider the following measures to build up our validity index handling clusters
of arbitrary shape having an homogeneous core and outliers.

Definition 4. The core size is the maximal distance among two of the cluster core
samples.

din(k) = max
i,j∈Ck

‖xi − xj‖2 (6.8)
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6.3. Validity measure for hierarchical clustering

(a) CVM=2.5 (b) CVM=4.6 (c) CVM=1.8

Figure 6.3: Different boundaries obtained by running a hierarchical support vector
clustering algorithm with different level of outlier rejection on a synthetic dataset. Their
corresponding Cluster Validity Measure (CVM) are indicated at the bottom. The kernel
bandwidth σ corresponds to 1·σ0 (i.e. mean distance among dataset samples) and the level
of outlier rejection are m = 4, 6, 10. Too small cluster cores or too large inhomogeneous
cluster cores result in small CVM.

The core size is defined by the distance din(k) which is the maximal size of the core of
cluster k. Ck is the set of inliers in the k-th cluster.

Definition 5. The core separability is the minimum distance between a core sample to
the closest sample from another cluster core. It is defined as

dinter(k) = min
i∈Ck,j∈Cl,k 6=l

‖xi − xj‖2 (6.9)

The distance dinter(k) is the minimal distance between a sample of cluster core k to a
sample of any other cluster core l. This measure qualifies the smallest separation existing
with any other cluster. This measure is equivalent to the single linkage criterion for
merging two groups of samples [Hartigan, 1975].

Based on these definitions of core size and separability, we can design a cluster validity
measure that is high for large and separated clusters. The usual notion of compactness
cannot be used with a hierarchical set of solutions, since it would select solutions on
top of the hierarchy where almost all the samples are considered outliers apart from the
cluster centers. Therefore the different cluster sizes din should be maximized at the same
time that the separability of the clusters dinter.

However, clustering solutions including noisy samples in the cluster core description,
such as the external boundaries in Figure 6.1 (c), should also be penalized. We define a
measure of core homogeneity that rescales the core size accordingly. In Wang and Chiang
[2008], a homogeneity criterion is used to fix the regularization parameter of the Support
Vector Clustering algorithm before the application of a standard validity measure. On
the contrary, the homogeneity ratio we propose is directly included in the CVM and can
be therefore applied with any clustering algorithms. Moreover, the criterion does not
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Figure 6.4: (a) CVM values for different solutions obtained by support vector clustering
with different level of outlier rejection and kernel bandwidth on the data illustrated in
Figure 6.3. (b) Example of distances involved in the CVM proposed.

represent a global density of the cluster cores, since different cores can have different
densities. The homogeneity of each cluster core is maximized independently from the
others.

Definition 6. The core inhomogeneity is the ratio between the maximum and the average
smallest inner distances (nearest neighbour) inside the cluster core. It is defined as

Rin(k) =
dmax-in(k)

dmean-in(k)
(6.10)

=
max

(
mini,j∈Ck,i 6=j ‖xi − xj‖2

)
1
|Ck|

∑
j∈Ck

(
mini∈Ck,i 6=j ‖xi − xj‖2

)
The ratio Rin reflects the density inhomogeneity inside a cluster core. The larger the
ratio, the more important the inhomogeneity of the core. A ratio close to 1 indicates a
very homogeneous core.

In Figure 6.3, the CVM values are computed on three different clustering solutions
obtained on a synthetic dataset made of five cores surrounded by noisy samples. In
Figure 6.4 (a), the CVM values for various clustering solutions obtained from different
parameters on the same synthetic data are presented. Finally in Figure 6.4 (b), the
distances involved in the CVM are presented.

Summing up, the proposed CVM maximizes the rescaled cluster core sizes din by 1/Rin

and the cluster cores separability. This way solutions with homogeneous cluster cores well
separated are favourized while the ones containing outliers inside cluster cores are avoided,
since they lead to small rescaled cluster core sizes with low homogeneity (Rin << 1). The
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CVM can be expressed as follows

CVM = arg max
λ,σ

M∑
k=1

din(k)

Rin(k)
·
M∑
k=1

dinter(k) (6.11)

The CVM becomes small for solutions with cluster cores being too small, too inhomoge-
neous (including too many outliers) or too close. This translates directly the trade-off
between cluster core size and outlier rejection.

6.4 Cluster merging criteria

Finding the natural cluster cores will most probably over-partition the data with respect
to the user needs or the scale at which the data is investigated. The user is interested
in a certain number of classes depending on the targeted application. However, and
independently from the number of classes desired, the general correspondence between
classes and clusters will be that a group of several cluster cores matches a certain class.
For example in change detection analysis, the final number of classes of interest is two:
changed and unchanged classes. These classes represent an ensemble of “changed” and
an ensemble of “unchanged” cluster cores. However, special care should be taken when
additional changes are present which are not of interest for the user. An example of such
situations is the detection of clouds as changes and cloud-free as unchanged, however
additional changes will be detected from the cloud shadows. These are the type of
situations were it is useful not to have a pre-fixed number of clusters and avoid the
merging.

In the following, we propose a merging criterion allowing to group the cores one after
the other ending up with the desired number of cluster ensembles. The cluster merging
criterion could be application-dependent, since each application implies different underly-
ing assumptions. We present here the main idea, which is valid for all situations, as well
as an additional criterion that can be easily added or removed for specific cases where a
very large cluster core would absorb all small surrounding cores, as it is often for change
detection applications. In this specific application, we expect the merged solution to be
extremely asymmetric (a group of large cluster cores and a group of very small cluster
cores corresponding to the changed areas). This situation is depicted in Figure 6.5 (b).

6.4.1 Outlier dispersion as merging mechanism

The merging criterion proposed in [Wang and Chiang, 2008] assumes Gaussian distributed
clusters and tests the overlap between the projection of clusters probability density
functions on the different variables. This parametric approach lacks of flexibility and
tends to evaluates the distance between cluster centers considering their respective
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sizes. Our merging criterion is indirectly related to the distance between cluster cores
by exploiting the outlier dispersion in between them. Two cluster cores have a high
probability of being part of the same ensemble if they are close to each other and have
shared outliers between them.

The outlier dispersion between two clusters Ck and Cl should be qualified only by the
subset of outliers lying approximately in between the two cores k and l and not with
outliers elsewhere, which are potentially far away in the input space. The dispersion
between outliers can be reflected by the minimal distances between the set of outliers
from cluster k to cluster l. A large distance will underline the existence of a gap between
the two groups of outliers and will tend to the distance between the two cluster cores; on
the contrary a small distance will show the continuity between the two groups of outliers,
which belong to an unified group of mixed samples from the two clusters.

Definition 7. The average minimal distance between the outliers of each cluster, consid-
ering only the outliers in between the two cluster cores.

dout-inter(k, l) =
1

|O∗k|
∑
i∈O∗k

min
j∈Ol,l 6=k

‖xi − xj‖2 (6.12)

where Ol is the set of outliers of the l-th cluster and O∗k = {i,minj∈Ol,l 6=k ‖xi − xj‖2 ≤
dinter(k, l)} defines the set of the outliers located approximately between the two cluster
cores, i.e. the outliers of the k-th cluster at a distance of the closest outlier of the l-th
cluster no larger than the distance between the two cluster cores. Notice that the distance
between clusters dinter(k, l) is evaluated between two arbitrary clusters k and l, instead
of (6.9) where the distance is between k and its closest neighbour. This restricted set
O∗k allows to exclude outliers that are far apart from the two cluster cores and to avoid
involving them in the distance qualifying the outliers dispersion between the two cores. If
no outliers are present in between the cores, dout-inter(k, l) is set equal to dinter(k, l).

The first cluster merging score (CMS A) proposed to merge pairs of clusters is actually
based on the outliers dispersion of the two cluster cores. The first cluster cores to merge
will be those sharing outliers close to each other, intrinsically meaning that they belong
to the same cluster ensemble.

CMS A = arg min
k,l,k 6=l

(dout-inter(k, l) + dout-inter(l, k)) (6.13)

The merging order of clusters is obtained by listing the couple of clusters k and l in
ascending CMS values. The first couple of clusters k and l to be merged are the ones
having the minimal CMS value.
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(a) (b)

Figure 6.5: (a) Examples of distances involved in the CMS criteria A & B. Distances
between outliers lying in between two cluster cores, thus contributing to dout−inter(k, l),
are depicted by dashed arrows. The distance between 1A and 3A is smaller than dinter(1, 3)
and is therefore kept as a distance representing the outlier dispersion between the cluster
cores 1 and 3. In opposition, the distance between 1A and 3B is not considered since
larger than dinter(1, 3). (b) Example of a large cluster with outliers that would merge
with all the smaller surrounding cores. To avoid this type of situation, the cluster core
sizes difference is taken into account in the CMS B criterion. The merging of a larger
cluster core with a much smaller one is penalized by their sizes difference.

6.4.2 Penalizing different core sizes

In some applications, we expect the cluster ensembles to be very asymmetric, as presented
in Figure 6.5 (b) where a very large cluster core is surrounded by smaller ones. The risk
with the previous merging criterion is that the small clusters have few outliers resulting
in merging score close to their distance of separation, while the large cluster may have
more outliers potentially situated close to the outliers of the small clusters. Therefore,
the difference in core sizes should be penalized to avoid the small cluster core being
merged one after the other with the larger one. This would result in an unbalanced
situation in terms of cluster sizes which is usually not desirable. In the specific case
of change detection, the number of ensemble expected is two: changed and unchanged
areas. However, the two ensemble are often of different size, e.g. small and dense cluster
cores for well defined changes and large for the more generic unchanged class containing
variations that are not considered as changes but still enlarging the class cluster ensemble.
These considerations lead to propose a second merging score (CMS B), which penalizes
different core sizes by adding their absolute size difference.

CMS B = CMS A + |din(k)− din(l)| (6.14)
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Figure 6.6: (a) CMS values in ascending order for the 5cores synthetic data and (b) its
optimal CVM solution. Cluster numbers start from bottom-left to bottom-right (cores 1
to 3) then top-left to top-right (cores 4 and 5).

6.4.3 Setting the merging level

Both merging criteria provide an order for cluster merging but no direct information on
how many cluster should be merged. The merging level, i.e. how many cluster cores are
grouped before stopping, is left to the user or driven by the application. In most cases,
the user is interested in a specific number of cluster ensembles corresponding to the final
number of classes. Therefore, the user needs only to merge the cluster cores until the
desired number of ensembles is reached. In cases where the number of cluster ensembles
is not known a priori, the CMS score can be exploited to discover a natural merging level.
One could investigate the values of the CMS in ascending order and merge clusters up
to a knee. Such a breakpoint in the CMS score indicates that the merging of clusters
changes in scale. The CMS values for the synthetic data of Figure 6.3 are reported in
ascending order in Figure 6.6.

6.4.4 Computational considerations

The previously presented validity and merging criteria are computationally intensive.
They imply computations on many different pairs of samples in the training dataset: the
validity measure requires all the pairs of cluster core samples and the merging criterion
all the pairs of outliers. Several approaches based on graphs have been introduced to
decrease the computational burden of other validity measures [Pal and Biswas, 1997].
Minimum Spanning Tree (MST) or Relative Neighbourhood graph (RNG) among others,
allow to consider only certain pairs of samples being the graph edges. For example, the
homogeneity of a cluster core could be approximated by the ratio between the maximum
edge and the average of edges inside a cluster core. However, the size of a cluster
core cannot be efficiently computed from the graph edges. It can be replaced by the
maximum edge contained in the cluster core as proposed in [Yousri et al., 2008] and the
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core separability can be computed as the minimum edge between the cluster core and
another core. This approximation of the cluster validity measure would not preserve the
homogeneity of the cluster cores, the ratio of the core size and homogeneity resulting only
in the average of edges inside a cluster core. Concerning the cluster merging criterion,
graph edges between the outliers could be constructed and used as dispersion measure.
These approximations are too important to be considered in our experiments and we leave
for further research the study of the impact of these approximations on the clustering
results.

6.5 Experiments

We present in this section experiments on unsupervised change detection in two different
natural disasters settings, wildfire and floods detection. The automatic detection of
changes in multi-temporal multispectral images can be performed by finding the two
groups of pixels corresponding to changed and unchanged pixels. These two groups are
retrieved by the clustering algorithms and the CVM/CMS system proposed.

6.5.1 Experimental setup

The two multitemporal remote sensing datasets used are the Gloucester floods and the
Bastrop fires. They are from different sensors and contain different types of changes: a
river flood and a forest fire. Both datasets are presented in Appendix B.1.2 and B.1.1.

In this unsupervised setting and with bi-temporal pair of images, the DIA is an appropriate
choice. Thus the features are the stack of the difference image and we also add the NDVI
indices at the two different acquisition periods.

The experiments involve the SVC, its nested equivalent (NSVC) and the Hierarchical
Gaussian Process Clustering (HGPC) with both M = 10 different outlier rejection levels.
The kernel bandwidth parameter, σ = [1/10, .., 2] ·σ0 with σ0 the median distance between
the samples, and the outlier rejection (hierarchy level) m are selected using the proposed
CVM. The CMS is then applied to merge clusters into two classes if more than two
clusters are retrieved. Cores having less than 1% samples are considered outliers.

The experiments are performed using a subset of the samples to accelerate the computa-
tions (N = 1000 samples) and the remaining samples are labeled based on their nearest
neighbour clustered core sample. The averaged Cohen’s κ, false alarm rate (FAR) and
missed alarm rate (MAR) are reported for 10 random runs and the three best runs in
order to emphasize the stability of the different algorithms.

89



Chapter 6. Unsupervised change detection via hierarchical clustering

Table 6.1: Mean (standard deviation) statistics over different realizations using 1000
random pixels from Gloucester floods.

κ (10 runs) FAR MAR κ (3 best runs) FAR MAR

k-means .556 (.01) 11.8 (.8) 17.3 (1.5) .568 (.00) 11.1 (.1) 18 (.2)
kernel k-means .602 (.02) 9.68 (1.1) 17.5 (1.2) .616 (.02) 8.90 (.8) 18 (.8)
linkage (average) .265 (.35) 1.76 (2.3) 72.2 (36) .681 (.03) 2.43 (2.5) 58 (36)
linkage (complete) .468 (.34) 14.1 (13) 34.0 (31) .675 (.03) 3.36 (3.0) 54 (40)

SVC merging A .553 (.33) 5.96 (13) 44.3 (25) .720 (.00) 5.68 (13) 45 (24)
SVC merging B .306 (.39) 18.7 (20) 52.3 (32) .717 (.00) 2.07 (.8) 32 (3.1)
NSVC merging A .628 (.26) 5.07 (11) 39.5 (16) .728 (.01) 5.12 (11) 39 (17)
NSVC merging B .496 (.24) 11.9 (10) 33.1 (19) .693 (.04) 3.64 (3.3) 28 (7.5)
HGPC merging A .643 (.24) 1.48 (.6) 4.7 (21) .733 (.01) 1.55 (.6) 40 (21)
HGPC merging B .572 (.22) 5.05 (3.9) 36.1 (24) .720 (.02) 3.46 (2.4) 38 (22)

6.5.2 Results

The results are presented in Tables 6.1 and 6.2. Averaged change maps over the three
best runs can be visualized in Figure 6.7.

Gloucester floods (see Table 6.1): The k-means and its non-linear version never capture
properly the data structure due to the significant amount of mixed samples behaving as
outliers. The linkage algorithms are not robust to outliers and show to be very dependent
on the sub-sampled set of pixels. The SVC, NSVC and HGPC have the outlier rejection
ability, which accommodates better the data structure. For all of them, CMS A is more
appropriate than CMS B. Probably, because the unchanged and the changed ensembles
of clusters contain both cores of various sizes. The SVC, which is not truly hierarchical, is
less stable through the ten different random runs and has higher missed detection (MAR)
than its nested counterpart (NSVC) and the HGPC. The HGPC provides the best results
in terms of κ as well as the lowest false detection of changes (FAR). The latter is more
important since some of the ambiguous changes labeled changed are missed by all the
algorithms and therefore increases the MAR, as it can be observed in the change maps in
Figure 6.7.

Bastrop fires (see Table 6.2): The k-means and the linkage algorithms fail to accommodate
the important number of mixed samples (as in the previous case of the Gloucester floods).
They provided very unbalanced solutions with the group of changes being only a tiny
region of a certain type of changes and all the rest being grouped as unchanged. The
kernel k-means is better in terms of κ, but produces a high number of false detection
(FAR) compared to the others. It does not separate the two groups well, due to the mixed
pixels considered as outliers. The two merging systems give nearly similar results for
SVC and equivalent results for NSVC since only two clusters were obtained requiring no
merging. Both give the best results for the ten random runs and the three best runs,
respectively. The HGPC is less stable and only captures the data structure for the three
best runs using the merging system B, penalizing different core sizes.
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Table 6.2: Mean (standard deviation) statistics over different realizations using 1000
random pixels from Bastrop fires.

κ (10 runs) FAR MAR κ (3 best runs) FAR MAR

k-means .243 (.17) 5.0 (14) 76 (18) .437 (.21) .63 (.50) 65 (19)
kernel k-means .522 (.11) 15 (6.5) 24 (1.1) .658 (.05) 7.15 (2.5) 25 (.5)
linkage (average) .081 (.07) .02 (.01) 95 (4.8) .159 (.01) .03 (.01) 90 (1.0)
linkage (complete) .145 (.09) .16 (.30) 90 (6.5) .240 (.08) .49 (.50) 83 (6.8)

SVC merging A .699 (.17) .07 (.04)) 40 (18) .821 (.09) .1 (.03) 26 (12)
SVC merging B .691 (.16) .06 (.02) 41 (17) .799 (.05) .07 (.00) 29 (6.7)
NSVC merging A .467 (.37) 3.9 (11) 57 (30) .831 (.08) .11 (.05) 24 (11)
NSVC merging B .467 (.37) 3.9 (11) 57 (30) .831 (.08) .11 (.05) 24 (11)
HGPC merging A .261 (.20) .04 (.02) 81 (18) .500 (.23) .03 (.01) 60 (23)
HGPC merging B .408 (.29) .04 (.02) 67 (28) .811 (.05) .04 (.00) 27 (6.4)

In both experiments, we observed that the k-means and its non-linear version do not
perform well in situations having an important number of mixed pixels, as reported
in [Volpi et al., 2012], where standard clustering could be performed only after removing
ambiguous samples located between unchanged and changed clusters. Both SVC methods
provide more stable solutions able to handle these mixed pixels. The true hierarchy
of NSVC is more coherent with the proposed CVM, however the nestedness constraint
could regularize excessively the solutions and a larger number of outlier rejection levels
m should be taken to avoid such situations. The HGPC presents a nice flexibility for
representing the clusters but has a tendency to form clusters of very different sizes, as
it can be observed in Figure 6.2. It benefits from the second merging system proposed
(CMS B) penalizing different core sizes to merge. The obtained change maps show very
similar results for SVC, NSVC and HGPC. The SVC performs better in detecting the
bottom-left patch of fire in the Bastrop fires images, whereas HGPC is missing it, as well
as other changes.

Computational costs

The computational costs of the CVM and CMS, as well as the clustering algorithms
are presented in Table 6.3. The k-means and the linkage algorithms are the fastest and
could be applied to the entire image. The kernel extension of k-means is heavier and
already requires to be applied on a subset of the image. The SVC, NSVC and HGPC
algorithms generate boundaries at M = 10 hierarchical levels for a fixed kernel bandwidth
(boundaries) and build a 5-NN graph for accelerating the cluster assignment (clustering)
from the obtained boundaries. We observe the gain obtained by using entire solution
path algorithms for the SVC and NSVC. The HGPC has a larger cost for recovering the
cluster from its adjacency matrix, while the SVC have larger cost for obtaining their
cluster boundaries. Despite the number of distances computed for the CVM and CMS,
the computational costs are of an order of magnitude lower than these algorithms. We
still observe an important gap between these algorithms and the standard k-means or
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Table 6.3: Computational times (seconds) for different steps in the clustering algorithms
with a subset N = 1000 of Gloucester floods on an Intel Quad core Q9400 @2.66Ghz.

k-means ker. k-means linkage SVC SVC (path) N-SVC HGP

boundaries × × × 103.162 17.450 26.891 0.844
clustering 0.492 1.075 0.167 6.329 3.161 4.122 93.055
CVM+CMS × × × 0.110 0.241 0.132 2.144

total 0.492 1.075 0.167 109.601 20.852 31.145 96.043

linkage algorithms. Notice that this is emphasized by the differences in implementation,
the k-means and linkage using the optimized mex compiled version in matlab while the
others are uncompiled matlab implementations.

6.6 Conclusions

In this chapter, we presented two clustering algorithms handling overlapping clusters and
providing hierarchical sets of solutions. We proposed a cluster validity measure allowing
to qualify the quality of the clustering solutions of these hierarchical clustering algorithms.
It allows to perform parameter selection within a set of solutions at various levels of outlier
rejection and with arbitrary shaped clusters. We also provided a merging mechanism
to group clusters that overlaps since sharing a certain number of samples as outliers.
The support vector clustering algorithms are improved in terms of computational costs,
however they still remain the bottleneck compared to the cluster validity measure and
merging system which are more efficiently computed. Experiments on unsupervised change
detection in multi-temporal multispectral remote sensing imagery show the accuracy of
the proposed methods and the benefit from their intrinsic regularization producing less
false detections.

These approaches to unsupervised change detection could have a potential impact on
early warning systems in order to provide change maps in an automatic way. However,
some examples of unchanged regions might be also available in a timely manner after a
natural disaster. This additional information could help better detecting the changes and
is investigated in the next Chapter.
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Figure 6.7: Averaged change maps for different realizations using 1000 random pixels.
The CMS A is used except the HGPC in Bastrop fires using CMS B.
Color legend: white= 100% detected “unchanged”, black=100% detected “changed”, red=false detection,

green=missed detection and gradient levels for percentages in between.
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7 Semi-supervised novelty detection
via SVM entire solution path

In this Chapter1, an approach to semi-supervised novelty detection (SSND) that relies on
an unbalanced classification between labeled and unlabeled samples is presented. The
methodology based on the cost-sensitive SVM (CS-SVM) avoids the heavy supervised
parameter selection thanks to entire solution paths algorithm, already presented in
Section 5.3 and to a low density criterion for unsupervised parameter selection that
we introduce in Section 7.3. The experiments on two multitemporal change detection
datasets (flood and fire detection) are presented in Section 7.5 and finally discussed in
Section 7.5.

7.1 Detecting unknown changes under limited supervision

In this Chapter, we investigate the problem of SSND as an unbalanced classification
problem, as described in Section 7.2, and study the impact of using entire solution paths
algorithms in this particular setting. Moreover, we propose a low density criterion for
selecting the hyperparameters automatically.

If information about the change is often difficult to obtain, information on the nature of
the unchanged areas is easier to have beforehand. Considering these initial conditions
(ignorance about the nature of the change and knowledge about some “unchanged” areas),
the change detection problem can be reformulated as a novelty detection problem where
only samples from “unchanged” areas are available to detect “changed” regions, referred to
as novelties. Since labeling is extremely costly, samples of “unchanged” areas are assumed
to be available only in a limited amount.

However, one can expect to have access to a large set of unlabeled samples at no extra costs,
contrarily to labeled data requiring expert’s labeling time or expensive ground surveys.
Semi-supervised techniques, exploiting unlabeled data, have shown great improvements

1This Chapter is based on [de Morsier et al., 2012a, 2013c]
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for classification methods under appropriate assumptions on the data distributions [Zhu
and Goldberg, 2009]. In remote sensing data classification, semi-supervised learning has
driven a strong current of research, where methods exploiting graphs on manifolds [Camps-
Valls et al., 2007, Gómez-Chova et al., 2008], low density areas [Bruzzone et al., 2006,
Bruzzone and Persello, 2009], clustering of data [Tuia and Camps-Valls, 2009, Gómez-
Chova et al., 2010] have shown to be strongly beneficial for the classification performance.
In [Bovolo et al., 2008], semi-supervised change detection is performed using the Semi-
Supervised SVM (S3VM), which labels progressively the unlabeled samples from an
initial classification requiring both “unchanged” and “changed” labels. A context-sensitive
semi-supervised SVM has been proposed to be robust to mislabeled examples in the
training set [Bruzzone and Persello, 2009] and a semi-supervised SVM using composite
kernels based on clustering and mean map kernel allowed to overcome the problem of
sample selection bias [Gómez-Chova et al., 2010]. Finally in [Capobianco et al., 2009],
semi-supervised kernel orthogonal space projection is proposed to perform target detection
without knowledge of the outlier class. In SSND, two approaches were presented and
compared in [Muñoz-Marí et al., 2010]. The first is the standard CS-SVM with labeled
and unlabeled data, while the second is the SVDD with a kernel distorted by a graph
Laplacian built on the unlabeled samples (S2OCSVM). CS-SVM was very efficient in
difficult change detection scenarios (e.g. cloud vs. snow). In [Li et al., 2011b], the
authors proposed a SSND approach aiming at learning the conditional probabilities of
the “unchanged” class by training on labeled “unchanged” and unlabeled examples. The
retrieved probabilities were finally normalized by a constant factor. This approach showed
promising results in remote sensing one-class classification under the assumption that
labeled samples are selected completely at random. Note that in such a setting (which is
also the one proposed in this Chapter), the natural unbalance of the novelty detection
problem is further increased, since we consider labeled pixels, that are “unchanged”, and
confront them against unlabeled pixels, that are a mixture of “changed” and (mostly)
“unchanged” areas. As a consequence, the unbalance between “changed ” and “unchanged”
regions is even stronger.

The SSND approaches considered in remote sensing so far show three main weaknesses: (i)
they are all extremely time consuming, in particular when they reduce to an unbalanced
two-classes classification problem which requires a heavy parameter selection to find the
optimal cost asymmetry [Elkan and Noto, 2008, Muñoz-Marí et al., 2010]. In [Yao et al.,
2009], the entire regularization path (along λ) of the standard SVM was assessed in SSND
situations but without exploiting the cost asymmetry. (ii) Very often, the approaches are
based on modeling the changes, thus requiring labeled “changed” samples that are difficult
to obtain in sufficient quantity to be representative. (iii) Finally, even the approaches
based only on “unchanged” regions (Novelty Detection approaches) select the optimal
boundary and the free parameters through cross-validation, thus again using labels from
both “unchanged” and “changed” classes.
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(a) (b)

Figure 7.1: (a) Supervised two-class classification (“unchanged” vs. “changed”) and (b)
Semi-Supervised novelty detection by classifying labeled vs. unlabeled data with different
cost asymmetries γ.

7.2 Semi-supervised novelty detection
as a two-class problem

In this Chapter, the following principle is used: the positive samples are classified against
all the unlabeled samples with different penalization on the respective errors [Liu et al.,
2003]. The asymmetry in the classes cost allows to penalize more the errors done on
the labeled samples and less those on the unlabeled samples (since they contain both
“unchanged” and “changed” samples). For an appropriate (but unknown) asymmetric cost,
the “unchanged” and “changed” are optimally classified. This approach reduces SSND to a
binary unbalanced classification problem (labeled vs. unlabeled) and has been proven to
be very effective and general, since no assumptions have to be done on the distributions
and on the proportion of novelties [Blanchard et al., 2010]. This principle is illustrated
in Figure 7.1 (b).

More formally, we define the SSND setting with I+ = {i : yi = +1} the set of labeled
“unchanged” samples and I− = {i : yi = −1} the set of unlabeled samples containing a
mixture of the two classes (“unchanged” and “changed”). The CS-SVM primal optimization
problem is defined as

min
w,ξ

λ

2
‖w‖2 + γ

∑
i∈I+

ξi + (1− γ)
∑
i∈I−

ξi (7.1)

s.t. yi〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0, ∀i

where the cost asymmetry γ controls the trade-off between penalizing the error on the
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labeled and on the unlabeled samples.

We propose to tackle this asymmetric classification problem, where the labeled samples
are classified against the unlabeled samples, using the entire solution path of the CS-SVM,
which is the CS-SVM PATH presented in Section 5.3.2. This provides us with all possible
cost asymmetries in a computationally efficient way. We can further impose a strict
hierarchy in the set of solutions by imposing nested boundaries, which is the NCS-SVM
presented in Section 5.4.2. In this Chapter, we aim at demonstrating that algorithms
providing the entire solution path for CS-SVM result in faster and coherent classifiers for
SSND tasks, which are complex unbalanced situations because of the important overlap
between labeled and unlabeled samples.

From this set of solutions, only one penalizes correctly the labeled and unlabeled samples
and retrieves the optimal boundary. In the following Section, we present a way of
identifying this optimal solution among those in the entire path.

7.3 Unsupervised parameter selection
based on the cluster assumption

In the SSND settings presented above, no assumptions are made on the distribution of the
novelties. There is a trade-off between restricting to certain assumptions and performing
the parameter selection: either no assumptions are made but then a parameter selection
based on cross-validation becomes necessary (thus requiring labeled pixels corresponding
to “changed” areas), or an assumption is made on the two distributions and the parameter
selection can be done in an unsupervised way.

We propose an approach for selecting the optimal cost asymmetry and the other free
parameters based on the cluster assumption, an extensively used assumption in semi-
supervised learning [Chapelle et al., 2006, Zhu and Goldberg, 2009]. This assumption
states that the two classes (“changed” and “unchanged”) are clustered in the input space.
Therefore the boundary of the optimal classifier should not pass through the clusters but
in the region of low density between them. The Transductive SVM (TSVM) exploits
the cluster assumption by iteratively labeling the unlabeled samples and retraining with
the augmented labeled set of samples [Vapnik, 2000], while the Semi-Supervised SVM
(S3VM) penalizes the unlabeled samples lying inside the margin of the SVM directly in
its objective function [Bennett and Demiriz, 1999, Bovolo et al., 2008].

In our SSND context, unlabeled data are already involved in the training process to help
obtaining a better discrimination between the “unchanged” and “changed” classes. The
only remaining step is the selection of the optimal solution along the cost asymmetry
path. This selection is usually done by cross-validation, training on a subset of the data
and testing on a separate subset. It is however impossible to get a reliable accuracy since
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Figure 7.2: Low-density criterion principle for k = 3 for low density (left) and high
density (right). 3 unique pairs of samples with minimum distance across the boundary
are formed. First the closest sample (1) is paired with its closest sample on the other side
(A). Then sample (2) is linked with (C) since the closest sample (A) is already linked.
Finally sample (3) is paired with (B) the closest remaining sample.

no labels are available for the “changed” areas. To overcome this issue, the boundary
selection can be performed based on the local density around the boundary. The distances
between the closest samples across the boundary are inversely related to the density in
these regions: the larger the distances, the lower the density. The other parameters
influencing the boundary (kernel and regularization parameters) can be selected in the
same way by maximizing the distances across the boundary.

Let us define HO+ and HO−, the sets of samples ordered by their distance to the boundary
(|fγ,λ(xi)|) on the positive and negative side respectively. A set of k unique pairs of
samples are built across the boundary (each sample is linked only once). The first sample
of HO+ is linked with the sample at minimum distance from HO−. The second closest
sample from HO+ is linked with the closest of the k − 1 remaining samples on the other
side of the boundary. This linkage goes on until the kth sample has been linked. This
principle is illustrated in Figure 7.2. The procedure is then repeated considering the other
side of the boundary, and finally provides 2 · k pairs of samples across the boundary. The
set of Euclidean distances between the pairs of samples is denoted by Dpair(k, γ).

The estimated average distance across the boundary is obtained using the median of
the paired distances to avoid possible biases related to isolated samples linked with
remaining distant samples. The density criterion across the boundary is defined as
DC(k, γ) = median {Dpair(k, γ)}. A small DC indicates that boundary passes through
high density regions, while a large DC indicates that boundary passes through low
density region. The maximum DC value indicates the optimal boundary passing through
lowest density regions . For this reason, the final criterion LDC is defined as LDC(k) =

maxγ(DC(k, γ)).
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Figure 7.3: Low density criterions along the cost asymmetries γ for different number
of pairs of samples across the boundary (k = 10, 16, 30). The minimal maximum peak
indicates the appropriate k for the low density criterion (here k = 16), since k = 30 adds
pairs of samples far from the boundary and k = 10 misses samples along the boundary.
The low density criterions have been rescaled for visualization purposes with the overlayed
κ statistic. The maximum κ is obtained for γ ≈ 0.64, matching with the low density
criterion peak at k = 16.

Even if a robust average is obtained using the median, the choice of the parameter k
influences the extent of the density measure (from local to global for increasing k). A too
large k could add pairs of samples actually far from the boundary (inside the clusters),
whereas a too small k could miss pairs close to the boundary. Both situations could result
into an overestimated median distance across the boundary. To avoid such situations,
the most accurate distance across the boundary is searched through a range of k values
(krange), see Figure 7.3. The value minimizing LDC over krange is retained as the most
robust value, k∗. Using this optimal k∗, the boundary passing through the lowest density
region is localized at γ∗ = arg maxγ(DC(k∗, γ)). The full procedure is summarized in
Algorithm 2.

7.4 Computational complexity

Solving the QP problem for the standard SVM requires approximately O(s2N + s3) with
s the number of samples inside the margin (e.g. support vectors). The complexity is
dependent on the regularization parameter λ and end up between O(N2) and O(N3)

for high and low regularization respectively [Bordes et al., 2005]. Therefore, if P cost
asymmetries γ are considered along the path, the maximal computational complexity
would be O(PN3).

The CS-SVM PATH algorithm has a complexity of O(m2N +N2m) for an entire solution
path, with m the maximum number of samples on the marginM along the path [Hastie
et al., 2004]. The maximum value for m is N leading to a computational cost equivalent
to two standard SVM. Therefore the CS-SVM PATH algorithm has already a lower
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Algorithm 2 Low density boundary selection
Input: (N)CS-SVM solutions at M cost asymmetries γm
1: for each k ∈ krange do
2: for each γ ∈ γm, m = 1, ...,M do
3: Get HO+ = sort(fγ,λ(xi)) with {i, fγ,λ(xi) > 0}
4: Get HO− = sort(|fγ,λ(xi)|) with {i, fγ,λ(xi) < 0}
5: Build unique pairs of samples (from HO+ and HO−)
6: Dpair(k, γ)← set of distances between the pairs
7: DC(k, γ)← median {Dpair(k, γ)} {median distance across boundary}
8: end for
9: LDC(k)← maxγ(DC(k, γ)) {low density criterion}

10: end for
11: k∗ = arg mink(LDC(k)) {optimal k not overestimating}
Output: γ∗ ← arg maxγ(DC(k∗, γ)) {optimal boundary}

complexity than the standard CS-SVM when more than two cost asymmetries are solved.

The NCS-SVM has a complexity linked to the number of iterations required to converge
which is proportional to the number of samples O(N). The size of the QP subproblem
solved at each iteration is proportional to the number of breakpoints O(M2). More-
over checking the KKT conditions requires O(NM), leading to a total complexity of
approximately: O(M2N +N2M). Experimentally, M ≈ 10 and the iterations required
are ≈ 5×N for the NCS-SVM [Lee and Scott, 2010]. Thus the NCS-SVM will have a
lower computational cost than the standard CS-SVM and CS-SVM PATH algorithms for
datasets larger than ≈ 50 samples.

7.5 Experiments

This Section presents experiments on two multitemporal change detection datasets (flood
and fire detection) and discuss the results obtained with the different methods presented.
The two multitemporal datasets used to compare and validate the proposed approaches
are A. Gloucester floods : SPOT images (3 bands) before and after a flood near Gloucester
in the U.K. B. Bastrop fires 2010/11: Landsat images (6 bands) before and after a forest
fire in Texas, USA.

The Bastrop fires 2010/11 dataset is particularly challenging, since the unchanged areas
show radiometric differences related to seasonal vegetation changes. Therefore, without
any possibilities of matching the two images the traditional unsupervised methods based
on image differencing are exposed to return a large amount of false alarms.
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7.5.1 Experimental setup

The results for the CS-SVM PATH and NCS-SVM methods are compared with the
standard CS-SVM, the semi-supervised and fully-supervised SVDD and the unsupervised
CVA [Chen et al., 2010]. Moreover, the proposed methods are evaluated both using
cross-validation (CV) and low density (LD) parameter selection criteria.

In a change detection scenario, either the difference or ratio image are often used [Camps-
Valls et al., 2006]. Here we consider the difference of the spectral bands of the two images.
Another set of features more physically inspired is a stack of the NDVI obtained separately
at each acquisition. It is important in such scenarios to choose the set of features, which
is best adapted to the situation [Singh, 1989]. The floods over non-urban areas impact
the vegetation which is reflected by a change of the response of flooded vegetation, which
is better visible in the NDVI than in the difference or stacked images. For this reason, the
stacked NDVI will be used with the Gloucester floods dataset. For the Bastrop dataset,
the NDVI features could be ambiguous for regions having dried grass or cut crops. This
type of land, being well spread among the unburnt areas, would avoid detecting burnt
areas. Therefore the difference image is used in the Bastrop fires experiments. The
datasets have been centered (zero-mean) and normalized by their standard deviation on
each feature independently.

Ground truth have been established for the whole images both by visual interpretation
and using documents assessing the range of damages. Some small ambiguous zones (≈ 3%)
have been left aside from the Bastrop fires ground truth. The training set is composed of
Nlabeled samples randomly selected from the “unchanged” class and of Nunlabeled samples
randomly selected among all the remaining samples. The number of labeled and unlabeled
samples are varied in the range: [50, 100, 200, 300, 400, 500].

The validation set, composed of 10000 samples, allows to select the parameters σ (band-
width of RBF kernel) and λ (regularization) returning the highest averaged Cohen’s
kappa statistic (κ) [Foody and Mathur, 2004] (CV hereafter). Our proposed alternative
to cross-validation selects the optimal parameters by finding the maximum low density
criterion (LD hereafter). The average over three different random training and validation
sets is used for both CV and LD parameter selection. An initial guess on the bandwidth
of the RBF kernel σ0 is obtained from the median standard deviation among 1000 random
“unchanged” samples. The search is then realized over 15 values: σ = [0.1×σ0, ..., 1.5×σ0].
The regularization parameter λ, which balances the importance between maximum mar-
gin and error penalization, is searched among different values lower than the maximum
regularization parameter λmax: λ = [0.01× λmax, 0.1× λmax, λmax].

The Cohen’s κ, overall accuracy, F1-score [Meng and Kerekes, 2012], False alarm rate
(False changes detected/total “unchanged”) and Missed alarm rate (Missed changes/total
“changed”) are assessed using the best parameters (σ,λ,γ∗,k∗). Ten independent training
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Table 7.1: Mean (standard deviation) statistics over 10 different realizations using 500
pixels for each class.

Methods κ κ diff. OA F1-score FAR MAR

Gloucester floods
CVA .407 (—–) -.414 80.18 (—–) 0.51 (—–) 20.0 (—–) 18.35 (—–)
S3VDD .725 (.03) -.096 94.01 (0.58) 0.76 (0.03) 3.25 (1.03) 24.85 (7.34)
SVDD .738 (.03) -.083 94.40 (1.15) 0.88 (0.03) 4.09 (1.97) 17.58 (6.50)
CS-SVM .821 (.02) / 96.58 (0.42) 0.84 (0.02) 1.28 (0.51) 20.27 (3.89)
CS-SVM CV .808 (.03) -.013 95.98 (0.61) 0.83 (0.02) 1.37 (0.64) 22.30 (1.54)
PATH LD .752 (.08) -.069 94.44 (2.99) 0.78 (0.07) 2.83 (4.35) 24.40 (10.0)

NCS-SVM CV .819 (.02) -.002 96.21 (0.36) 0.84 (0.02) 1.30 (0.31) 20.99 (1.81)
LD .791 (.04) -.030 95.86 (0.65) 0.81 (0.04) 0.76 (0.40) 27.55 (7.02)

Bastrop fires
CVA -.023 (—–) -.897 38.44 (—–) 0.23 (—–) 65.50 (—–) 39.80 (—–)
S3VDD .620 (.07) -.263 90.59 (2.46) 0.67 (0.06) 6.82 (3.01) 26.55 (7.80)
SVDD .819 (.04) -.064 95.785 (1.13) 0.84 (0.04) 2.77 (1.26) 13.85 (4.35)
CS-SVM .883 (.02) / 97.412 (0.50) 0.90 (0.02) 1.13 (0.257) 12.30 (3.35)
CS-SVM CV .897 (.02) +.017 97.342 (0.39) 0.94 (0.01) 1.44 (0.336) 9.41 (1.96)
PATH LD .803 (.10) -.080 95.26 (1.79) 0.87 (0.11) 1.91 (0.85) 20.36 (14.9)

NCS-SVM CV .870 (.02) -.013 96.69 (0.50) 0.89 (0.02) 1.70 (0.48) 12.31 (2.82)
LD .812 (.07) -.071 95.59 (1.38) 0.84 (0.07) 1.06 (0.65) 23.06 (11.5)

and validation sets are used to validate the approach on the test set composed of the
remaining samples in the image.

For the NCS-SVM, M = 7 breakpoints are preselected equally spaced in the range
γm = [0.5; 1], then the solutions are interpolated by a factor of 10 resulting in 7+6×9 = 61

solutions on half of the cost asymmetry path.

The different number k of sample pairs across the boundary for the low density criterion
are: krange = [10, 11, ..., 40].

To ensure fair comparison, the standard CS-SVM is trained and evaluated on the same
cost asymmetries than the NCS-SVM interpolated breakpoints (P = 61). The semi-
supervised SVDD (S3VDD), described in Section 4.4.3, uses a 5-NN graph on the samples
and finds the optimal kernel distortion parameter ε via cross-validation. A supervised
SVDD is also trained with the same training set than the other methods but using all the
labels of the samples considered unlabeled by the other approaches (“changed” samples
considered as outliers during training [Li et al., 2011b]). This fully supervised classifier
allows comparison with the best classification achievable using standard novelty detection
classifier2.

2Experiments were designed in the MATLAB environment based on the standard mat-
lab optimization toolbox, the SVMPath and Nested SVM toolboxes (downloadable at
http://www.eecs.umich.edu/∼cscott/code.html)
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Gloucester floods Bastrop fires 2010/11
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Figure 7.4: Mean (standard deviation) statistics over 10 different realizations using 500
labeled and 500 unlabeled pixels.
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Gloucester floods Bastrop fires 2010/11
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(a) (b)

Figure 7.6: (a) 2D plot of 3 nested boundaries along the path and (b) the overlay of the
3 corresponding detection maps for the Gloucester floods (NDVI) feature set. In (a) a
“hole” can be visualized in the boundary at γ = 0.62.

7.5.2 Numerical results

Table 7.1 summarizes the different statistics for the best parameters averaged over 10
independent experiments (common to all the methods, except the CVA which uses the
whole image directly). Figures 7.4 and 7.5 present the averaged change detection maps
for the different methods. For CS-SVM PATH and NCS-SVM we report the results
obtained by the two strategies for parameters optimization: cross-validation (CV) and
the proposed unsupervised low density criterion (LD).

In general, the SSND methods considered provide accurate detection maps in both
datasets except for the S3VDD which performs worse than the supervised SVDD and
the different CS-SVM. This is not so surprising since it exploits the unlabeled data for
retrieving the data structure, while our proposed approaches exploit the unlabeled data
in a discriminative way. Therefore, with a relatively small number of unlabeled samples
the discriminative approaches take over the graph-based regularization approaches.

The SVDD, which is the only fully supervised classifier, provides results with more false
detections compared with the standard CS-SVM (see Table 7.1, False Alarm Rate (FAR)).
This can be due to the trade-off for the sphere between fitting precisely the distribution
(requiring a small σ) and covering an important volume of the feature space (requiring a
large σ). Here the sphere is small enough to recover most of the “changed” regions at
the price of many other false detection outside the sphere. The SSND approach using
the standard CS-SVM is more discriminative and thus performs better than the SVDD
in these two change detection scenarios. The best performances of the CS-SVM PATH
and NCS-SVM algorithms using CV parameter selection are equivalent to those obtained
by the standard CS-SVM, confirming the efficiency of solution path algorithms in SSND
situations. Note that the NCS-SVM, with its interpolated solutions can reach the same
accuracy than the CS-SVM PATH.
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Concerning the proposed low density criterion (LD), we observe that it provides results
not far from those obtained by cross-validation (CV). The NCS-SVM LD solutions have
slightly less false alarms but more missed alarms, which results in κ values ≈ 0.02− 0.05

lower than those obtained with CV. This demonstrates that the cluster assumption holds
in these scenarios and that a low density separation exists between the classes. The LD
criterion is less stable than the CV resulting in higher κ standard deviation. As it can be
observed in Figure 7.3, the criterion along the cost asymmetries γ is not smooth, which
could result in selecting a suboptimal boundary.

The NCS-SVM LD gives better results than the CS-SVM PATH LD and is more stable.
We observed that for cost asymmetries close to 0.5, the nesting of the boundaries could
induce boundaries with holes in the middle of the distribution of the “unchanged” class.
This phenomenon is illustrated in Figure 7.6 (a), representing the nested boundaries at
different cost asymmetries. Figure 7.6 (b) illustrates the corresponding nested detection
maps. These boundaries with holes in the middle of the distribution have the advantage
of being difficultly selected by the low density criterion (since part of the boundaries are
in the high density region inside the “unchanged” cluster). Therefore nested boundaries
resulting in false detections are less likely to be selected than un-nested ones.

The sensitivity of the results with respect to the training set is reflected by the standard
deviation of the κ statistics reported in Table 7.1. The random selection of the training
samples can induce a different interpretation of the changes to be detected: if a particular
land cover is not present among the labeled “unchanged” samples but it is present in
the unlabeled data, it will be interpreted as changed (e.g. the circular field at the top
right of the Bastrop fires). It is important to remind that the maximum training set size
considered (Nlabeled = Nunlabeled = 500) corresponds to ≈ 0.1% of the available image
pixels. Experiments with a higher number of training samples (Nlabeled = Nunlabeled =1000,
2000, 5000 samples) for the NCS-SVM resulted in κ improvement of 0.03 and a false
alarm rate slightly lower (under 1%) both for CV and LD. Despite the increase in stability,
the missed alarm rate did not change. Visual inspection of the detection maps for 5000
samples in each class (not reported) shows that most of the false detection regions have
disappeared where the few remaining could easily be filtered out and that the few regions
still miss detected are actually “unchanged” areas mislabeled.

Finally, we compared with the state-of-the-art CVA. For the two case studies, the CVA
solution has an important false detection rate, particularly for the Bastrop case study.
The method, being completely unsupervised, is unable to properly target the changes of
interest in presence of radiometric differences between the images or seasonal changes. In
Gloucester floods, this corresponds to the presence of wet areas and clouds in the first
acquisition, which become challenging “unchanged” regions. For Bastrop, the important
seasonal changes in the vegetation make the “unchanged” pixels nonzero in the magnitude
vector, thus preventing CVA to function correctly. This demonstrates the benefit of
SSND, which allows to define “unchanged” areas even if they show radiometric differences.
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Figure 7.7: Averaged κ statistic (CV) and low density criterion normalized (LD) over 3
random runs for the Gloucester floods dataset with 500 unlabeled samples and different
number of labeled samples Nlabeled, regularization parameters λ and kernel parameters σ
(in terms of σ0).

7.5.3 Free parameters sensitivity

Figure 7.7 illustrates the optimization surface for the range of λ and σ parameters, as well
as for the number of labeled “unchanged” pixels (Nlabeled). For the two algorithms tracing
the entire path, larger regularization gives the best results and reduces the sensitivity to
the parameters (to the level of the standard CS-SVM). The low density criterion changes
rapidly with σ and shows the best performance between 400 and 500 labeled samples.
The matching between the maximum of the low density criterion (LD) and the maximum
κ from cross-validation (CV) can be well observed in Figure 7.7 (bottom row). Therefore,
the parameters σ and λ selected by the unsupervised LD criterion are equivalent than
using the supervised CV.

The dependence on the number of labeled and unlabeled samples is further studied in
Figure 7.8. NCS-SVM is slightly less sensitive than CS-SVM PATH when few labeled
samples are used.

The low density criterion is in comparison more sensitive to the number of unlabeled
and labeled samples. A certain amount of unlabeled data is required to observe a cluster
of pixels belonging to the “changed” regions. Moreover, the number of labeled samples
should be large enough to properly cover the unlabeled samples from the “unchanged”
distribution. NCS-SVM being more robust than CS-SVM PATH, it provides more
accurate solutions in very unbalanced situations (i.e. Nlabeled = 50 and Nunlabeled = 500).
Experiments with a fixed number of labeled samples (Nlabeled = 500) and a larger number
of unlabeled samples (Nunlabeled = 1000, 2000, 5000) for the NCS-SVM did improve the
stability but not significantly the accuracy. The approach is discriminative enough to
ensure an accurate detection with a small amount of unlabeled samples. Adding more
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Figure 7.8: Averaged κ over three random runs as a function of the number of labeled and
unlabeled data for the Gloucester floods using: (a) CS-SVM PATH cross-validation, (b)
CS-SVM PATH low-density, (c) NCS-SVM cross-validation and (d) NCS-SVM low-density.

CS-SVM Path NCS-SVM
SVDD CS-SVM CV LD CV LD

N
=

10
0 Train (s) 11.2 (2.0) 11.2 (2.0) 0.7 (0.3) 9.9 (6.9)

Test (s) 19.3 (0.3) 19.2 (0.3) 14.1 (1.5) 1.2 (0.5) 22.5 (1.5) 0.66 (0.03)
Total (s) 30.5 (2.3) 30.4 (2.3) 14.8 (1.8) 1.9 (0.8) 32.4 (8.4) 10.6 (6.9)

N
=

50
0 Train (s) 40000 (17125) 1505 (700) 36.4 (4.6) 95 (51)

Test (s) 89.9 (0.6) 89.5 (0.9) 82.3 (1.6) 31.4 (5.5) 75 (2.9) 1.3 (0.06)
Total (s) 40090 (17126) 1595 (702) 118 (6) 67 (10) 170 (54) 96 (51)

Table 7.2: Runtimes for the different methods with different training set size (N =
Nlabeled = Nunlabeled) for Gloucester floods.

109



Chapter 7. Semi-supervised novelty detection via SVM entire solution path

unlabeled samples allow a better discrimination of the boundary passing through low
density regions and enforces the unbalanced situation between labeled and unlabeled
samples. This is not to be seen as a drawback, since by doing so the proportions of the
two classes “unchanged” and “changed” are converging towards their true proportions in
the dataset.

7.5.4 Algorithms runtime and convergence analysis

In the experiments, the two algorithms tracing the entire solution path converged to
accurate solutions with low runtimes. In this section we provide further observations on
the training and testing runtimes and convergence of the algorithms.

Table 7.2 reports the training and testing runtimes for different size of the training set.
The solution path algorithms are effectively faster for training and grow linearly compared
to the standard CS-SVM and SVDD (exploiting both the standard quadprog Matlab
routine for fair comparisons). The iterative procedure of the NCS-SVM is arbitrarily
limited to a maximum of 5000 iterations (corresponding to 5×max(Nlabeled +Nunlabeled),
which is a trade-off between computational cost and accuracy). When setting a too large
σ or a too small λ the breakpoints close to γ = 0.5 can be difficult to obtain: in this case,
the algorithm may not converge in the maximum number of iterations allowed.

The testing runtimes are equivalent for the cross-validation (CV) through the different
mehtods but much lower using the low density criterion (LD). The CS-SVM PATH
LD is slower than the NCS-SVM LD for testing since it evaluates a larger number
of breakpoints γ (several times the number of training samples) compared to the 61

interpolated breakpoints of the NCS-SVM. The convergence of the CS-SVM PATH
algorithm is guaranteed by the initialization of the algorithm with an arbitrary cost
asymmetry in the range [0.5; 1].

7.6 Conclusions

In this Chapter, we presented and evaluated two methods for Semi-Supervised Novelty
Detection (SSND), that reduce to an unbalanced binary classification between labeled and
unlabeled samples.The methods, based on the Cost-Sensitive Support Vector Machine
(CS-SVM), assign different error costs for the two classes (cost asymmetry). The errors
done on the unlabeled samples containing both classes samples are less penalized than
those committed on labeled “unchanged” samples. The novelty of the proposed methods
reside in the retrieval of the solutions for different cost asymmetries in a single optimization
and the addition of a constraint imposing nested boundaries. This provides us with a
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certain hierarchy and stability across the solutions.

We also proposed a low density criterion, which allows to select the optimal cost asymmetry
and the other free parameters (kernel and regularization) in an unsupervised way. Such
criterion estimates the local density along the boundary, based on pairwise distances
across the boundary.

The results on the two multitemporal change detection scenarios (flood and fire detection)
showed the efficiency of these SSND approaches that only exploit “unchanged” informa-
tion and unlabeled data. Thanks to the discriminative use of the unlabeled data, the
performances are already excellent with a small number (< 500) of labeled and unlabeled
samples. The two algorithms deriving the entire solution path performed better than the
semi-supervised and supervised SVDD and generally equivalently to the CS-SVM (but
at a much lower computational cost). The nested CS-SVM also has the advantage of
being less sensitive to the choice of parameters and the size of the training set. Using
the low density criterion usually decreases the false alarm rate and slightly the global
performance with respect to cross-validation (κ ≈ 0, 02−0.05 lower). However, we remind
that, contrarily to cross-validation, no labeled information about the change is used, and
that this is the price to pay to maintain the optimization unsupervised. Nonetheless,
the good results obtained confirmed that the two classes are separated by a low density
region.

These approaches could benefit from considering active learning strategies [Tuia et al.,
2011]. These methods would help in the selection of unlabeled examples for semi-supervised
learning allowing to find the most informative pixels for discriminating changed from
unchanged areas [Li et al., 2010].
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8 Background

In this Chapter, we introduce the assumption of high dimensional data lying on multiple
manifolds which is exploited in this Part of the Thesis. We review some of the state-of-the-
art algorithms in the context of clustering based on similar assumptions. A novel clustering
algorithm based on a sparse and low-rank representation of the data in a non-linear
feature space is presented in Chapter 9 for clustering and extended to semi-supervised
one-class classification in Chapter 10.

8.1 High dimensional data on manifolds

High dimensional data can be found in time series, audio, image and video streams and
are encountered in various areas ranging from computer vision to financial risk analysis.
In most of these applications, the number of data samples available is too low with respect
to the high data dimensionality. As presented in Section 3.2, the curse of dimensionality
requires an exponential number of samples regarding the number of dimensions which
will most of the time not be fulfilled. As a consequence, standard statistical tools tend to
fail when applied to these challenging high dimensional situations. Fortunately, in many
cases the complexity and effective dimensions of the data inherent structure tends to be
much lower than the original high number of dimensions. This introduces the notion of
data manifolds.

A manifold is a topological space where the data lies which is locally diffeo-
morphic to an Euclidean space. An example of manifold is the surface of a
sphere in a 3D space.

The term manifold is more general than subspace which defines a linear manifold on
which the data lies. In this Thesis, we favour the term subspace and indicate about the
linearity or non-linearity of the data. Therefore if not stated otherwise, we will assume
that a subspace is linear and a manifold is potentially non-linear.
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Chapter 8. Background

Many algorithms have been proposed for retrieving the few dimensions that are meaningful
to describe the data subspace. The most known example is the Principal Component
Analysis (PCA), retaining only the first directions of maximal variance of the data.

In remote sensing, the hyperspectral image data can be assumed as a low dimensional
manifold [Bachmann et al., 2005]. This is due to both their high dimensionality and
the proximity of the spectral bands in the electromagnetic spectrum (making the data
extremely correlated across the dimensions). This allows to search for a low dimensional
subspace approximating the data [Healey and Slater, 1999]. However, the non-linear nature
of the hyperspectral data requires non-linear dimensionality reduction methods [Lunga
et al., 2014]. Non-linear dimensionality reduction techniques have been applied successfully,
for example in aligning multi-temporal hyperspectral manifolds [Yang and Crawford,
2011]. However, they are restricted to data lying on a single manifold or, at best, on a
collection of well separated subspaces.

Among them, we find the kernel PCA [Schölkopf et al., 1998] and the probabilistic
Gaussian process latent variable models (GPLVM) [Lawrence, 2005], ISOMAP [Tenen-
baum et al., 2000, Bachmann et al., 2005] which exploits geodesic distances, Laplacian
Eigenmaps [Belkin and Niyogi, 2003] and Locally Linear Embedding [Saul and Roweis,
2003] which exploits local neighbourhood distances, Locality Preserving Projections [He
and Niyogi, 2004] which forces projections to be in the span of the data and more
recently, methods aligning the local tangents to the manifold [Zhang et al., 2007] or
finding the principal polynomials describing the data [Laparra et al., 2012]. Beyond their
own specificities, these methods employ notions of local pairwise similarity, the most
often described, either by a graph constructed from an affinity matrix or by a kernel
encoding similarities. Both approaches are equivalent, up to some extent [Ham et al.,
2004]. Usually, the solution reduces to a generalized eigenvalue problem, which is solved
to find a low dimensional structure, where the local similarities are preserved. In this low
dimensional space, it is then possible to perform any statistical analysis: classification,
regression, or clustering.

The situation observed in real data is often very different: in many circumstances, the
data is composed of multiple possibly non-linear subspaces, which may also intersect.
In Figure 8.1, the multi-manifold assumption on the data is illustrated. Considering a
collection of manifolds would improve their discrimination, as well as the quality of the
reduction of dimensionality. More recently, approaches dealing with unions of subspaces
have been proposed for the specific case of linear subspaces. They seek a representation
of the data which is constrained to either use only few samples for its representation,
which will automatically select neighbours from the same subspace (Sparse Subspace
Clustering, SSC [Elhamifar and Vidal, 2013]), or to retrieve a low-rank representation,
which will impose the use of similar samples for the representation of samples from the
same manifold (Low Rank Subspace Clustering, LRSC [Vidal and Favaro, 2013, Liu et al.,
2013]). For better visualization of these representations, see Figure 8.1. In (a) the ideal
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Figure 8.1: (top) Schematic of the non-linear mapping of data in a RKHS where linear
subspace can be retrieved. (a) The true affinity matrix between the manifolds and the
different properties of the representation matrix C: (b) low-rank, (c) sparse and (d)
low-rank + sparse. Once a graph is built from these representation coefficients, the matrix
properties translate into graph characteristics. The low-rankness induces dense intra-
manifold connectivity while the sparsity ensures local affinity and manifold separation. A
trade-off between the intra-manifold connectivity and the manifold separation, meaning
both low-rank and sparse properties, is ideal to recover the three subspaces via spectral
clustering.

representation matrix for clustering has non-zero coefficients only between samples of
the same class manifold. In (b) is illustrated a low-rank matrix (here rank= 3), while in
(c) is illustrated a sparse representation matrix. The latter may produce matrices where
samples from the same manifold are not interconnected by non-zero coefficients. This why
the combination of both low-rank and sparse representation can lead to a matrix that has
only non-zero coefficients between samples of the same manifold and ensure that they are
all inter-connected inside a manifold. These representation are powerful tools which have
a very restricted number of user defined parameters and which provided state-of-the-art
results in face recognition and motion segmentation problems [Vidal, 2011]. These linear
approaches are introduced in Section 8.2, while our proposed non-linear representation
combining both low-rank and sparse constraints (KLRSSC) is presented in Chapter 9.

The more general assumption of data composed of class-wise manifolds, i.e. each class lies
on a dedicated non-linear manifold, has been rarely exploited in the context of clustering.
In supervised classification problems, the evaluation of perturbation of each class-wise
manifold for a test sample has shown to reach the discrimination performance of the
SVM [Courty et al., 2011, Chapel et al., 2012]. Very recently, sparse coding and dictio-
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nary learning approaches, which assume that the data lie in linear subspaces, have been
extended to non-linear settings [An et al., 2007, Zhang et al., 2012, Nguyen et al., 2012,
Xiao et al., 2012, Gao et al., 2013], together with non-linear matrix factorization [Zhang
et al., 2006, Zafeiriou and Petrou, 2010] and very recently non-linear compressed sens-
ing [Ramamurthy and Spanias, 2011, Qi and Hughes, 2011, Beck and Eldar, 2012]. Sparse
coding and dictionary learning approaches have been exploited for supervised classifica-
tion of hyperspectral images and produced state-of-the-art results [Chen et al., 2013b,
Soltani-Farani et al., 2013].

In the unsupervised setting, only a global dictionary can be learned. This has been ex-
ploited for performing vector quantization prior to clustering for unsupervised classification
in multi-spectral images Moody et al. [2012].

8.2 Linear subspaces

In this section, we review the state-of-the-art approaches for clustering multiple linear
subspaces. Some specific applications in computer vision, such as face clustering or linear
motion segmentation, meet the assumption of data lying on a union of linear subspaces.
The problem of clustering linear subspaces [Vidal, 2011] has been tackled by numerous
approaches such as the k-planes [Bradley and Mangasarian, 2000], where hyperplanes
are fitted to the data, the generalized PCA [Vidal et al., 2005], that fits and factorizes
polynomials algebraically, the Spectral Curvature Clustering (SCC) [Chen and Lerman,
2009] that exploits the local flatness, the low rank subspace clustering (LRSC) [Vidal and
Favaro, 2013, Liu et al., 2013] and the SSC [Elhamifar and Vidal, 2013] which exploit
the self-expressiveness property of the data with different constraints on the matrix of
coefficients. Both LRSC and SSC provide the most promising experimental results, with
the ability to handle noise and samples with few missing or erroneous dimensions [Liu
et al., 2013, Elhamifar and Vidal, 2013]. Moreover, they do not require to set the
dimensionality of the subspaces in advance and handle potentially intersecting linear
subspaces. A trade-off between the sparse representation and the low-rank representation
(LRSSC) has been studied in [Wang et al., 2013a] and used in [Zhang et al., 2013a] for
spatially regularized sparse coding.

In remote sensing, the use of sparse representation has been mostly exploited in super-
vised [Chen et al., 2011a, Wang et al., 2013b, Camps-Valls et al., 2014] or semi-supervised
classification [Gu and Feng, 2012] as well as reconstruction [Willett et al., 2014], retrieval
of material signatures [Charles et al., 2011] and target detection [Chen et al., 2011c,b,
Fowler and Du, 2012, Krishnamurthy et al., 2012, Willett et al., 2014, Nasrabadi, 2014].
More advanced priors such as group-sparse representation, meaning that only elements
from the same class are used altogether, have also been investigated in the context
of supervised hyperspectral image classification [Sun et al., 2013] and led to improved
results. However, the assumption of linear subspaces rarely holds in practice and restricts
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drastically the success of these approaches.

Let us enter into some details of the SSC, LRSC and LRSSC algorithms before reviewing
non-linear approaches in Section 8.3.

8.2.1 Sparse Subspace Clustering

Problem formulation Consider a set of samples xi ∈ Rd with X = [x1, ..,xi, ..,xN ]

lying on an union of n linear subspaces ∪nk=1Sk. Following the self-expressiveness prop-
erty [Elhamifar and Vidal, 2013], each sample can be expressed as a linear – or affine –
combination of the others. If a sparse representation is imposed, the few points selected
in the linear combination will tend to belong to the same subspace. This property allows
to build a graph G from the sparse linear coefficients C = [c1, .., cN ] by setting the
graph weights as W = |C| + |C|T . The graph will show n disconnected components
corresponding to the different subspaces. This graph-cut problem can be solved via
spectral clustering, which performs k-means clustering on the rows of the eigenvectors of
the graph Laplacian [Ng et al., 2002]. As introduced above, SSC represents a sample xi
by a linear combination of the others samples

xi = Xci, cii = 0 (8.1)

where ci is a sparse vector of coefficients. The trivial solution cii = 1 is avoided by setting
it to zero.

Finding the sparse coefficients corresponds to the following sparse optimization problem

min
ci
‖ci‖q s.t. xi = Xci, cii = 0 (8.2)

where the `q norm is a sparsifying norm: q ≤ 1. For q = 1, the problem can be solved
by convex optimization using Basis Pursuit or ADMM [Elhamifar and Vidal, 2013]. For
q = 0, the problem is NP-hard but can be solved via Greedy algorithms such as OMP.
Even if OMP is suboptimal for sparse signal recovery, it tends to provide affinity matrices
with energy spread across more edges, which in turn can lead to better performances
with spectral clustering algorithm [Dyer et al., 2013]. An interesting alternative to the
formulation of (8.2) is presented in Wang et al. [2011a]. They replace it by ‖CTC‖1
which leads to a convex problem solved via convex quadratic programming. In terms
of optimization this quadratic problem with box constraint is less costly than variable
splitting schemes for sparse representation.
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Noise The formulation of (8.2) is not robust to noise. The relaxation of the equality
constraint allows a certain noise level ε. The noisy SSC formulation is then

min
ci
‖ci‖q s.t. ‖xi −Xci‖22 ≤ ε, cii = 0 (8.3)

Notice that for `q = `1, 8.3 is the LASSO.

Outlying entries In SSC [Elhamifar and Vidal, 2013] and its supervised counterpart
SRC [Wright et al., 2009], the problem due to noise present solely in few dimensions,
e.g. strong illumination effects or occlusion in face recognition problems, is alleviated by
adding a sparse error matrix E in the representation. The formulation of SSC in matrix
notation becomes

min
C
‖C‖q + λE‖E‖q s.t. X = XC + E, diag (C) = 0 (8.4)

The matrix E represents the outlying entries. The level of sparsity of this specific type
of noise is controlled by λE . This can also be seen as the original SSC formulation with
the augmentation of the dictionary of signals with the identity matrix: [X I] and of the
coefficients C with E:

[
CTET

]T .
8.2.2 Low-Rank Subspace Clustering

The idea behind LRSC is to exploit the subspace intra-connectivity of data samples. The
ideal matrix of coefficients representing the data connectivity is low-rank, where the rank
is related to the number of subspaces present in the data.

Our goal is not to find a low-rank approximation of the data as in PCA or robust
PCA [Candès et al., 2011] but a low-rank matrix of coefficients representing the data.
The motivation for a low-rank coefficient matrix comes from the ideal affinity matrix,
illustrated in Figure 8.1 (a). The ideal affinity matrix between the samples, equivalent
in classification to the label matrix, is equal to 1 for samples of the same subspace and
null otherwise. Therefore this block-diagonal matrix with n blocks for n subspaces has a
rank equal to n. The number of subspaces n is assumed to be smaller than the number
of samples N , allowing to seek a low-rank matrix.

The LRSC formulation is

min
C

rank (C) s.t. X = XC, C = CT (8.5)

whose convex relaxation is

min
C
‖C‖∗ s.t. X = XC, C = CT (8.6)
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The desired symmetric property of the coefficients is directly obtained from the closed-form
solutions hereafter:

• In the noise-free case, the closed-form solution to (8.6) is the Shape-Interaction
Matrix (SIM) [Costeira and Kanade, 1998, Liu et al., 2011]: C = V1V

T
1 , where

X = U1Σ1V
T
1 is obtained from the skinny SVD (null singular values and the

corresponding columns of U and rows of V are removed to form Σ1, U1 and V1).

• If we relax the constraints, the LRSC formulation becomes

min
C
‖C‖∗ +

τ

2
‖X−XC‖2F s.t. C = CT (8.7)

and its corresponding closed form solution is C = VPτ (Σ)VT , where X = UΣVT

and Pτ is the polynomial-thresholding operator [Vidal and Favaro, 2013] defined as

Pτ (σ) :=

1− 1
τσ σ > 1√

τ

0 σ ≤ 1√
τ

(8.8)

• For noisy data, the formulation is

min
A,C
‖C‖∗ +

τ

2
‖A−AC‖2F +

α

2
‖X−A‖2F s.t. C = CT (8.9)

where A is an unknown clean dictionary. We denote (8.9) as the Low-Rank Subspace
Clustering (LRSC). The problem 8.9 is not convex, however it has a unique solution
for a certain range of τ and α. Actually, when 3τ > α two critical points exists,
with one of the two being the optimal solution. To facilitate the thresholding
procedure, it is approximated by two piecewise linear functions. The approximate
polynomial-thresholding is

P̃α,τ (σ) :=

{
σ σ > σ̃∗
α

α+τ σ σ ≤ σ̃∗
(8.10)

where σ̃∗ =

√
α+τ
ατ +

√
α+τ
α2τ

. We see that the singular values above σ̃∗ are kept

untouched. The behaviour of σ̃∗ with respect to α and τ is first quadratic then
linear with respect to τ and increases for decreasing α. The noisier the data, the
lower the α and τ resulting in less singular values preserved.

The closed-form solution to (8.9) is therefore obtained by the approximate polynomial-
thresholding of the SVD of the noisy data: C = VPτ (P̃α,τ (Σ))VT , where X =

UΣVT and the clean dictionary can be recovered from A = UP̃α,τ (Σ)VT .

In the case of sparse outlying noise, alternative minimization approaches have been
proposed via Augmented Lagrange Multipliers (ALM) [Liu et al., 2013] or exploiting
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both shrinkage and polynomial thresholding for recovering both coefficients and outlying
noise [Vidal and Favaro, 2013].

8.2.3 Sparse and low-rank Subspace Clustering

There is a trade-off between the sparse representation and the low-rank representa-
tion [Wang et al., 2013a]. Both SSC and LRSC are based on the self-expressiveness
property of the data samples but LRSC shows denser intra-subspace connectivity. In cer-
tain situation, they fail to produce a graph allowing clustering of the subspaces. For skewed
or high-dimensional data distributions, SSC produces a poorly connected graph [Nasi-
hatkon and Hartley, 2011] which leads to disconnected components, while LRSC appears
to experimentally not suffer that same problem. For dependent or intersecting subspaces,
SSC can resolve the clustering, while LRSC will fail in these situations.

The ideal graph for spectral clustering should benefit from both inter-class separation
and intra-class connectivity and be found as the result of both low-rank and sparse
representation. The trade-off between the graph-connectivity and the self-expressiveness
of the samples can be formulated in convex form as a weighted sum of the nuclear and `1
norm

min
C

1

1 + λ
‖C‖∗ +

λ

1 + λ
‖C‖1 s.t. X = XC, diag (C) = 0 (8.11)

with λ balancing the low-rank and the sparsity properties of the coefficient matrix C.
Increasing λ will add more sparsity in the graph, which helps the recovery of dependent
subspaces. Experimental results show a phase transition phenomenon, with the recovery
of the subspaces for λ > λ∗. Values of λ right after the transition provide the best results.
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Table 8.1: Summary of the principal characteristics of state-of-the-art methods for non-
linear subspaces/manifolds clustering as well as our proposed methods.
Legend: ∵ flexible neighbourhood, ©©: handles separated subspaces, χ: handles
intersecting subspaces, D: dimension free, T: tangent spaces.

Method ∵ ©© χ D T

SC [Ng et al., 2002] × X - X -
STSC [Zelnik-Manor and Perona, 2004] × X - X -
K-Manifolds [Souvenir and Pless, 2005] × × X × -

Cao et al . [Cao and Haralick, 2006] × X (X) X -
MiPPS [Koyejo and Ghosh, 2009] × X X × -
LLMC [Goh and Vidal, 2007] × X × X -
SMCE [Elhamifar and Vidal, 2011] (X) X (X) X -

SMMC [Wang et al., 2011b] × X X × X
RMMSL [Gong et al., 2012] × X X (×) X
SCLPCA [Arias-Castro et al., 2013] × X X × X

Proposed in this Thesis:
KSSC → Section 9.1.3 X X X X -
KLRSC → Section 9.1.2 X X × X -
KLRSSC → Section 9.1.1 X X X X -

8.3 Non-linear subspaces

In this section, we review the state-of-the-art approaches for clustering multiple non-linear
manifolds, before introducing our approaches (KLRSSC, KLRSC, KSSC) in Chapter 9.

The problem of clustering multiple non-linear subspaces has been investigated under
different assumptions. The major difference between the approaches is their definition
of affinity between samples: either based on local neighbourhoods, on locally linear
relationships or on tangent spaces similarities. Table 8.1 summarizes their characteristics.

The first family is composed of methods based on local neighbourhoods. Two well known
approaches are spectral clustering [Ng et al., 2002] (SC) and its self-tuning extension
(STSC) [Zelnik-Manor and Perona, 2004]. Both assume well separated subspaces and
use a local neighbourhood of fixed size k to build a graph, which is then clustered
via its Laplacian. In STSC, the graph edges are weighted using a local bandwidth,
which is the distance to the kth neighbour [Zelnik-Manor and Perona, 2004]. The
k-Manifolds algorithm [Souvenir and Pless, 2005], which is based on heuristic expectation-
maximization, also exploits a local neighbourhood to retrieve geodesic distances, as
ISOMAP does. However, it handles only intersecting subspaces and fails, when applied
to well separated ones.

The second family of methods assumes a certain smoothness of the subspaces which
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can be locally approximated as linear. In general, this assumption requires a large
number of samples to be met. In [Cao and Haralick, 2006], a local estimate of the data
dimensionality is obtained by local PCA and then used for clustering multiple subspaces.
Although successful on non-linear problems, the method cannot deal with intersecting
subspaces. In [Koyejo and Ghosh, 2009], a mixture of probabilistic principal surfaces is
fit to multiple subspaces in high-dimensional data via the EM algorithm. The model
handles intersecting manifolds, but requires a large amount of samples and can fail in
presence of important outliers. In [Goh and Vidal, 2007], an affine subspace is fitted
to each point and to its k nearest neighbours. The authors of [Goh and Vidal, 2007]
propose a closed-form solution. A low-rank embedding is presented in [Liu et al., 2011],
which generalizes LLE to multiple manifolds using a low-rank constraint, whereas a
sparse optimization program is used in the Sparse Manifold Clustering and Embedding
(SMCE) [Elhamifar and Vidal, 2011]. The latter allows to vary the number of neighbors
k for each sample. This increases the robustness to outliers and intersections. These
methods can perform poorly on under-sampled or intersecting subspaces. In these cases,
the local affine subspace assumption might not hold and degrade the clustering results.

The last family of methods uses the estimation of a tangent space at each sample to
build the affinity matrix. The Spectral Multi-Manifold Clustering (SMMC) in [Wang
et al., 2011b], fits mixtures of probabilistic PCA to the data to estimate the tangent
spaces, whereas in [Arias-Castro et al., 2013] local PCA is used instead. In both cases, the
affinity matrix is based on similarities between the local tangent spaces instead of single
samples, raising the opportunity to handle non-linear and possibly intersecting subspaces
of different dimensionality. However, these methods requires the a priori knowledge of
the number of dimensions and components in the mixture. In the Robust Multi-Manifold
Structure Learning (RMMSL) [Gong et al., 2012], the local tangent spaces are estimated
by a weighted low-rank factorization which relaxes the need to know the dimensionality of
the subspaces. Although it is the first work to raise attention to the problem of outliers,
their method is restricted to smooth subspaces with low curvature. Finally, the kernel
extension of the Spectral Curvature Clustering (KSCC) [Chen et al., 2009] maps the data
to a high dimensional space where flat surfaces are retrieved. The mapping is implicit via
the kernel functions, however the high computational complexity requires an iterative
computation of the affinity weights and is prone to local minima.

8.4 Summary

In this Chapter, we have introduced the problem of retrieving the structure of data lying
on a composition of multiple subspaces or manifolds. We have described the state-of-the-
art approaches building graphs using sparsity or/and low-rank constraints. In the next
Chapters, the similar constraints will be exploited to retrieve the data manifold structure
via a RKHS representation and build a graph that will be used for clustering (Chapter 9)
or semi-supervised one-class classification (Chapter 10).
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9 Unsupervised classification
via non-linear low-rank and sparse
subspace representation
This chapter tackles the problem of unsupervised analysis of high-dimensional data such
as hyperspectral images by assuming multiple non-linear subspaces, i.e. manifolds, as
illustrated in Figure 8.1. In Section 9.1, we propose a spectral clustering method based
on a graph representing the data structure, which is assumed to be an union of multiple
manifolds. The method constraints the data samples to be expressed as a low-rank and
sparse combination of the others in a RKHS. This captures the global (low-rank) and
local (sparse) structures. Spectral clustering is applied on the graph to assign the samples
to the different manifolds. In Section 9.2, a scalable approach is proposed in which the
optimization is first performed on a subset of the data and then it is applied to the entire
image using a non-linear collaborative representation respecting the manifolds structure.

Finally, experiments on standard face and object databases and two hyperspectral images
show the adequacy of KLRSSC in dealing with multiple manifolds1.

9.1 Non-linear subspace representation

In this Section we present the KLRSSC algorithm as well as the particular cases where
only sparsity (KSSC) or low-rank (KLRSC) constraints are imposed. These approaches
extend the methods of Sections 8.2.1, 8.2.2 and 8.2.3 to RKHS and combine the following
properties, which are desirable for a non-linear subspace clustering method: i) they can
cluster both linear and non-linear data, ii) they utilize a sparse/low-rank representation
to provide a flexible neighbourhood and a well connected graph, iii) they can cluster
correctly intersecting manifolds and iv) they can provide out-of-sample and scalable
clustering.

1This Chapter is related to [de Morsier et al., 2014c,d]
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via non-linear low-rank and sparse subspace representation

9.1.1 Kernel Low-Rank and Sparse Subspace Clustering (KLRSSC)

Let us introduce the main problem and the corresponding notations, before going through
the main formulation of KLRSSC and the particular cases: KLRSC and KSSC.

We consider a set of N samples X = {xi, ...,xN} ∈ Rd, drawn from a union of n non-
linear subspaces or manifolds {∪nk=1Mk}. Let us define a non-linear mapping function Φ

between the input space and a higher dimensional feature space H, a RKHS, as

Φ : x ∈ Rd → Φ(x) ∈ H (9.1)

We use the following notation when referring to the whole set of mapped samples,

Φ(X) = [Φ(x1), ..,Φ(xN )] (9.2)

For the set of samples X, we would like to find the coefficient matrix C that represents
well the data in the mapped feature space

Φ(X) ∼= Φ(X)C (9.3)

and avoids the trivial solution where C is the identity matrix I. Finally, based on the
sample correspondence described in C, each sample can be assigned to its corresponding
manifold. This would lead to the ideal coefficient matrix being block-diagonal, for samples
ordered by manifolds, where each block corresponds to a different manifold.

C =


C1 0 · · · 0

0 C2 · · · 0

0
...

. . . 0
...

0 0 · · · Cn

 (9.4)

The generalization of sparse and low-rank subspace clustering for data mapped in a RKHS
builds on previous sparse and low-rank subspace clustering approach [Wang et al., 2013a].
As in the linear case, combining sparsity and low-rank criterion allows to exploit the self-
expressiveness of data samples with an increased graph-connectivity. In [Elhamifar and
Vidal, 2013], the graph-connectivity is improved by adding a `row,1 norm which minimizes
the number of non-zero rows of C. They observed that a low `row,1 regularization could
be beneficial whereas a too large regularization would connect the subspaces altogether.
The regularization of the number of non-zero row is very similar to the minimization of
the rank of C. We will observe a similar behaviour on the amount of rank regularization
needed for recovering correctly the non-linear subspaces.
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Algorithm 3 Kernel Low-Rank and Sparse Subspace Clustering (KLRSSC)

Input: A set of N samples xi from an union of n subspacesMk and a kernel K(xi,xj)
representing the dot-product in an appropriate RKHS.

1: Get C by solving (9.5) using the optimization scheme of (9.6)
2: Normalize the columns of C as Ci ← Ci

‖Ci‖∞
3: Build the graph representing data manifolds affinity with weights W = |C|+ |C|T
4: Apply spectral clustering [Ng et al., 2002] to the graph
Output: Samples clustered in n groups representing the manifolds

General formulation

The general formulation for sparse and low-rank subspace clustering of data mapped by
an implicit function Φ is

min
C

1

1 + λ
‖C‖∗ +

λ

1 + λ
‖C‖1 s.t. Φ(X) = Φ(X)C, diag (C) = 0 (9.5)

where ‖X‖1, defined as
∑

i ‖xi‖1, is the convex relaxation of the pseudo-norm `0 and
‖X‖∗ is the convex relaxation of the rank (X) function.

We would like to notice that in (9.5), the assumption that the equality Φ(X) = Φ(X)C

holds in the induced feature space is made. However, notice that feature spaces induced by
RBF kernels, or any normalized kernel, are hyperspherical with potentially every sample
in a different axis [Courty et al., 2012]. This geometry of the space allows Φ(X) ≈ Φ(X)C

and not a strict equality. This restriction is not problematic in our case, since this
constraint is relaxed in our optimization approaches allowing for an approximation only.

Once the optimal representation coefficients C are retrieved from (9.5), a graph can be
built. Symmetric graph edge weights are obtained as W = |C|+ |C|T . Finally, spectral
clustering cuts the graph into separated components corresponding to the different
manifolds. The full KLRSSC algorithm is summarized in Algorithm 3.

Optimization in the feature space

In order to solve (9.5), we use an augmented Lagrangian approach and the alternating
direction method of multipliers (ADMM). Auxiliary variables C1, C2, A and the error
term are introduced in order to split the nuclear norm and `1 norm and make the objective
strictly convex w.r.t. A and C. Notice that ADMM is designed and converges for an
objective composed of two functions and not three. However, here the two terms with C1
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and C2 are not dependent on each other and count as a single function.

min
1

1 + λ
‖C1‖∗ +

λ

1 + λ
‖C2‖1 +

λz
2
‖Φ(X)− Φ(X)A‖2F

s.t. A = C2 − diag (C2) , A = C1 (9.6)

The parameter λz = αz
µz

controls the level of noise, where αz is a user-defined pa-
rameter and µz is the minimal maximum mutual coherence between samples: µz =

mini maxj 6=i |Φ(xi)
TΦ(xj)| = mini maxj 6=iK(xi,xj). This can be interpreted as the po-

tential noise based on the smallest mutual coherence in the data [Dyer et al., 2013].
In [Elhamifar and Vidal, 2013], their Proposition 1 proves that in the SSC αz > 1 other-
wise the trivial solution C = 0 is obtained. This is due to the fact that the error will not
counter balance enough the `1 term for αz ≤ 0.

The corresponding augmented Lagrangian objective is

L(C·,A,∆·) =
1

1 + λ
‖C1‖∗ +

λ

1 + λ
‖C2‖1 +

λz
2
‖Φ(X)− Φ(X)A‖2F

+
µ2

2
‖A−C2 + diag (C2) ‖2F +

µ3

2
‖A−C1‖2F

+ tr(∆T
2 (A−C2 + diag (C2))) + tr(∆T

3 (A−C1)) (9.7)

with tr(·) the trace operator on matrices and ∆2,∆3 the Lagrangian multipliers enforcing
A = C2 − diag (C2) and A = C1, respectively. Setting the derivative of the augmented
Lagrangian w.r.t C1, C2 and A to zero provides the following update steps

As+1 = (λzK(X,X) + (µ2 + µ3)I)−1(λzK(X,X) + µ2C
s
2 + µ3C

s
1 −∆s

2 −∆s
3)

(9.8)

Cs+1
2 = S λ

(1+λ)µ2

(As+1 +
∆2

µ2
), Cs+1

2 = Cs+1
2 − diag

(
Cs+1

2

)
(9.9)

Cs+1
1 = T 1

(1+λ)µ3

(As+1 +
∆3

µ3
) (9.10)

∆s+1
2 = ∆k

2 + µ2(As+1 −Cs+1
2 ), ∆s+1

3 = ∆k
3 + µ3(As+1 −Cs+1

1 ) (9.11)

where K(X,X) = 〈Φ(X),Φ(X)〉 and s is the iteration. The soft-thresholding operator
Sη(x) = sign(x)(‖x‖ − η)+ shrinks the values of x larger than η and sets the others to
zero. The singular value soft-thresholding operator is Tη(X) = USη(Σ)VT where UΣVT

is the skinny SVD of X, see page 121 for details. An adaptive penalty scheme can be
adopted which modifies at each iteration the values of µ2 and µ3. However, we choose
to keep µ2, µ3 fixed to avoid recomputing the matrix inversion at every iteration when
updating A.
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9.1.2 Kernel Low-Rank Subspace Clustering (KLRSC): λ→ 0

Formulation for λ→ 0

The particular case where λ = 0 is similar to the low-rank representation (Section 8.2.2)
problem but solved in a RKHS induced by the use of kernel functions. We remove the
constraint diag (C) = 0 specific to the sparsity-promoting `1 norm and add the symmetry
of the coefficients C = CT . This last constraint is superficial since always fulfilled by
the manner the coefficient matrix is recovered. Notice that the general formulation
of (9.5) may produce similarly dense coefficient matrix under sufficient relaxation of the
constraints.

We are looking for a low-rank representation C of the data matrix in an induced feature
space Φ(X). The formulation of the Kernel Low-Rank Subspace Clustering (KLRSC) is

min‖C‖∗ s.t. Φ(X) = Φ(X)C, C = CT (9.12)

With only the nuclear norm in the objective, we can consider the relaxed noisy data
formulation

min‖C‖∗ +
τ

2
‖Φ(A)− Φ(A)C‖2F +

α

2
‖Φ(X)− Φ(A)‖2F s.t. C = CT (9.13)

which represents the data in the feature space via a clean dictionary Φ(X) = Φ(A)C + E.

This low-rank representation in the linear case (Φ(X) = X) is derived in closed-form by
performing hard, shrinkage or polynomial thresholding of the singular value decomposition
(SVD) of the data matrix, as presented in Section 8.2.2. In the non-linear case, these SVD
operations cannot be directly performed on the mapped data Φ(X) since its columns
dimensions can be infinite and Φ is implicit.

Hopefully, the eigen decomposition of the Gram matrix K(xi,xj) = 〈Φ(xi),Φ(xj)〉 is
related to the SVD decomposition of the data Φ(X). This allows to handle the implicit
mapping Φ through the use of kernel matrices and lead to the following proposition.

Proposition 1. Let Φ(X) ∈ H be the data samples X = [x1, ...,xN ] ∈ Rd mapped in
a RKHS induced by Φ equipped with a kernel K(xi,xj) = 〈Φ(xi),Φ(xj)〉H. The low-
rank representation of the mapped data is given by C = VT (Σ)VT , where V∆VT =

svd(K(X,X)) and ∆ = ΣTΣ. The operator T thresholds the singular values in different
ways depending on the noise assumption and constraint relaxation. The hard-thresholding
operator for clean data as in (9.12), polynomial-thresholding or approximate polynomial-
thresholding for relaxed constraint and noisy data as in (9.13).

Proof. Let the SVD of the mapped data be Φ(X) = UΣVT . The decomposition cannot be
directly computed since the mapping Φ is implicit. Meanwhile, the eigen decomposition
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of its Gram matrix, which is the kernel matrix uniquely defining the RKHS, can be
computed as K(X,X) = V∆VT with ∆ = ΣTΣ. The closed-form solutions for the
low-rank representation of the mapped data only require the singular values Σ and the
row space V as for non-mapped data. The proof relates then to the proofs for the linear
cases of Vidal and Favaro [2013].

Optimization in the feature space

The advantage of the formulations (9.12) and (9.13) is the possibility to obtain closed-form
solutions. As presented for the linear case in Section 8.2.2, the closed-form solution to
the low-rank representation with noise is obtained via a polynomial thresholding P̃α,τ (σ)

which shrinks the singular values in a softer way than the standard shrinkage operator.
The closed-form solution is C = VPτ (P̃α,τ (Σ))VT , where V and Σ are obtained from
the kernel data matrix eigendecomposition.

9.1.3 Kernel Sparse Subspace Clustering (KSSC): λ→∞

Formulation for λ→∞

The particular case where λ = ∞ is similar to the SSC problem (Section 8.2.1), but
solved in a RKHS induced by the use of kernel functions. A very similar approach has
been developed in parallel by Patel et al. [2013]. They project the data in a latent space
where SSC is performed. This latent space can be a RKHS induced by a Mercer kernel.

Similarly to SSC, each sample xi is expressed as a sparse linear combination ci of the
others, exploiting the self-expressiveness property but this time in the high dimensional
Hilbert space induced by Φ. The formulation of the Kernel Sparse Subspace Clustering
(KSSC) is

min ‖ci‖q s.t. Φ(xi) = Φ(X)ci, cii = 0, (9.14)

where the norm q is a sparsifying norm: q ≤ 1. For q = 1, the problem can be solved
by convex optimization using ADMM or Second-order Cone Programming (SOCP). For
q = 0, the problem is NP-hard but can be approximated via the Greedy Kernel OMP
algorithm [Li et al., 2011a]. The sparse coefficients ci are non-null for samples of the
same manifold (i.e. self-expressiveness property) and the trivial solution is avoided by
setting cii to zero. The problem of (9.14) is equivalent to finding a non-trivial sparse
representation of Φ(xi) in the dictionary Φ(X\i).
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Optimization in the feature space

The problem of (9.14) is optimized differently depending on the sparsity promoting norm
used (`0 or `1). For `0, the kernel Orthogonal Matching Pursuit (kOMP) can be used [Li
et al., 2011a]. However, we consider the `1 formulation being more stable experimentally
and consistent with the other proposed optimization approaches.

The problem of (9.14) in its relaxed version with the sparsifying norm `1 is a particular
case of KLRSSC and can be solved with ADMM. The augmented Lagrangian corresponds
to (9.7) without C1 and ∆3 terms.

L(C,A,∆) = ‖C‖1 +
λz
2
‖Φ(X)− Φ(X)A‖2F

+
λc
2
‖A−C + diag (C) ‖2F + tr(∆T (A−C + diag (C))). (9.15)

with ∆ the Lagrangian multiplier enforcing A = C− diag (C). As for KLRSSC, setting
the derivative of the Lagrangian w.r.t. A and C to zero provides the same update rules
as (9.11), where C = C2, ∆ = ∆2 and C1, ∆3 are absent.

9.1.4 Handling noise

Most of the time, the data do not lie exactly on a subspace, mainly because of the presence
of noise. The representation equality constraint can be relaxed to allow a certain level
of noise ε in the feature space or as previously mentioned in Section 9.1.1, for the RBF
kernel with its hyperspherical geometry which may not allow a perfect representation.

The geometric analysis of [Soltanolkotabi and Candes, 2012] guarantees the recovery of
the subspaces in the noiseless case, even when the subspaces overlap. When considering
the noisy case, authors of [Wang and Xu, 2013] provide bounds for the alternative
LASSO formulation where a parameter controls the trade-off between sparsity and
the reconstruction error. These bounds are a function of the noise level ε and of the
distribution of the data in the subspace. The less spread the data are along the subspace,
the smaller is the range of the valid parameters balancing sparsity and error. In this case,
the recovery becomes more unstable.

For the case of noise acting only on few dimensions, a sparse matrix E can be added and
its `1 norm minimized together with C. In our non-linear setting, it is not possible to add
the matrix E in the representation, since the dimensions of the columns of E would be
unknown and possibly infinite in the space induced by Φ. A sparse matrix in the feature
space could indicate outliers but not sparse outlying entries. This is further explored in
Section 9.1.5 for outlier detection.
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9.1.5 Handling outliers

The problem of outliers is somehow related to the problem of outlying entries. As seen in
the previous section, the outlying entries are sparse when expressed in the coordinate
system of the input space. In the the Kernel Empirical Space (KES) [Xiong et al., 2005]
spanned by the mapped samples in the RKHS, each sample corresponds to a dimension in
this mapped coordinate system. The outliers can be considered as localized on an isolated
part of the space. This is equivalent to the problem of finding outlying entries but in the
feature space. Actually, this can be done by looking at the `1-norm of ci. For an outlier,
its representation ci will be less sparse and produces a larger norm, while for an inlier its
representation will be of a sparsity related to the dimension of the subspace [Soltanolkotabi
and Candes, 2012].

Outliers can then be put aside when performing spectral clustering and get either a
random assignment or the one of their most similar sample. For fair comparisons between
algorithms, we did not consider the detection of the outliers in our experiments.

9.1.6 Handling missing entries

The problem in (9.5) can handle missing entries in X by simply restricting the evaluation
of the objective (and its respective norms `1, `∗ and `F ) to the observed entries using a
diagonal matrix acting as a mask [Nguyen and De la Torre, 2008, Elhamifar and Vidal,
2013]. In the case of missing entries in unknown location, the problem comes back to
handling a specific type of noise or outliers if not similar for all samples. There is a
forthcoming work of Candès related to the linear SSC with missing data which can be
read at www.stanford.edu/~mahdisol/RSC.

9.2 Scalable clustering

9.2.1 Collaborative representation

The computational complexity of these algorithms is in the order of O(N3), which restricts
their usage to small to middle sized datasets. The scalability and out-of sample issues are
solved by proceeding in three steps: we first find the manifolds on a training set using the
KLRSSC described above and then predict manifold membership for test samples. To do
so, we use a non-linear collaborative representation, as proposed for the linear case [Peng
et al., 2013]: we express the test sample xt as a function of all the training samples X:
Φ(xt) = Φ(X)ct, thus respecting the manifold structure. The ct vector representing xt is
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obtained by the multivariate kernel ridge regression [An et al., 2007] formulation

ct = (Φ(X)TΦ(X) + γI)−1Φ(X)TΦ(xt)

= (K(X,X) + γI)−1K(X,xt) (9.16)

where the γ parameter is a regularization parameter on the coefficients and relates to the
inverse noise variance. The `2 regularization is less computationally demanding than the
`1 and `∗ and has shown to be similarly efficient [Deng et al., 2013, Zhang et al., 2011]
when used with training sets of sufficient size in supervised settings or unsupervised but
with dependent subspaces only [Lu et al., 2012]. If the superior discrimination power
between the `1 and the `2 norm is still an open debate, the sparse representation allows
to be robust to outliers and lower-dimensional input spaces, and last but not least it
enables to recover the data structure in unsupervised approaches when the subspaces are
dependent or intersecting.

If xt belongs to manifold k, the reconstruction using only the training samples assigned to
k in the training phase will be the most accurate. Therefore, in the final step we compare
the residuals obtained when reconstructing xt only with the training pixels belonging to
each manifold: arg mink {rt,k}, where

rt,k =
|Φ(xt)− Φ(X)δk(ct)|22

|δk(ct)|22
= [K(xt,xt)− 2K(xt,X)δk(ct)

+ δk(ct)
TK(X,X)δk(ct)]/ |δk(ct)|22 (9.17)

with δk(c) a function returning 0 to all the elements of c which are not from manifold k.

9.2.2 About scalability

The proposed out-of-sample extensions allows to avoid rebuilding the whole graph when a
new sample is available. However, the scalability issue remains a problem if the training
samples are already too many. In large problems, the kernel matrix can be too large to
be manipulated or even stored. In that case, Nyström methods allows to manipulate a
smaller matrix which is related to a low-rank approximation of the larger initial matrix (in
our case the kernel matrix). This requires to find landmarks representative of the whole
initial training set [Chen and Cai, 2011, Kumar et al., 2012]. In [Cawley and Talbot, 2002],
the specific problem of finding a low-rank approximation for the kernel ridge regression is
investigated. They propose to greedily add samples which minimize the reconstruction
error. A convex optimization approach instead of the previous greedy method for reduced
rank kernel ridge regression is introduced in [Chen et al., 2013a]. In [Cai and Osher, 2010],
a fast Singular Value Thresholding is proposed to obtain the low-rank approximation.
Recently Liu and Yan [2012] tackled the subspace clustering problem. The coefficient
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matrix C is retrieved by decomposing it into two smaller matrices Q and J , with Q

contrained to the Stiefel manifold (QT ·Q = I). The low-rank structure can be retrieved
through the smaller matrix J , since the nuclear norms of Q · J and J are equivalent.
These methods are foundations for extending our proposed KLRSSC formulation to larger
scale, meanwhile we kept our experiments at a reduced scale to better study their results
and leave this for further research.

9.3 Parameters and model selection

Number of subspaces The number of subspaces present in the data might be unknown
to the user. Nevertheless, the observation of the eigenvalues of the graph Laplacian allows
to infer the number of subspaces. In the ideal case, where n disconnected components are
present in the graph, there exist n eigenvalues equal to 1. The difference with the n+ 1th

value called spectral gap is used to infer the number of subspaces [Von Luxburg, 2007].

Spectral gap = σn+1 − σn (9.18)

where σn is the nth eigenvalue of the graph Laplacian. The spectral gap shows how
well the components are intra-connected and separated between each other. The n top
eigenvalues will present a small decrease while the largest difference will still be found
with the n+ 1th component, when the components are not properly disconnected and
present some connections between them.

The drawback of the spectral gap is its dependence to the magnitude of the eigenvalues. A
more robust approach based on the eigenvalues and less affected by the range of magnitude
of the eigenvalues is the spectral gap ratio [Lauer and Schnorr, 2009].

Spectral gap ratio =
σn − σn+1

σn−1 − σn
(9.19)

The spectral gap ratio evaluates the ratio between the nth and n+ 1th difference and the
n− 1th and nth difference.

Kernel parameters The bottleneck of the use of kernel functions is the selection of
the function itself and of its parameters. In the experiments that follow, we consider the
linear, polynomial and Gaussian (RFB) kernels, the latter having shown to be generic
and flexible in numerous applications [Gao et al., 2013]. Once a valid kernel is chosen, its
free parameters have to be tuned.

The selection of the kernel parameters, for instance the polynomial degree p or the RBF
bandwidth σ, can be based on the previously mentioned spectral gap or spectral ratio.
Also it can be done using a cluster validity index which describes the result of spectral
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clustering. The Davies-Bouldin (DB) index is used for this purpose:

Rk,l =
Sw,k + Sw,l

Sb
=

∑
i∈Mk

d(vi, µk) +
∑

i∈Ml
d(vi, µl)

dist(µk, µl)
(9.20)

DB =
1

n

∑
k

max
k 6=l

Rk,l (9.21)

where dist(·) is the Euclidean distance between two samples, µk are cluster centers and
vj ∈ R1×n is the jth row of the matrix formed by the n first eigenvectors of the graph
Laplacian. DB describes the ratio of the inner cluster variance over the minimal distances
between clusters and is to be minimized in order to obtain a mapping towards a space
where the n subspaces are characterized by compact and well separated clusters in the
spectral embedded space.

9.4 Subspace independence measures

9.4.1 Linear subspaces

A measure between two disjoint or independent subspaces is their smallest principal angle
denoted by θ1,2

cos θ1,2 = max
v1∈S1,v2∈S2

vT1 v2

‖v1‖2‖v2‖2
(9.22)

where vi are the basis vectors of the corresponding subspace i. Two subspaces that are
said to be dependent, are actually sharing some dimensions and have a null smallest
principal angle.

A richer measure is the normalized affinity between two subspaces, based on all their
principal angles

aff(S1,S2) =

√∑
i cos2 θi
d1 ∧ d2

(9.23)

where the angles θi are between shared dimensions d1 ∧ d2, with d1, d2 the dimensions
spanned by subspace 1, 2 respectively.

Another notion is the subspace incoherence defined as the separation of a set of samples
from a subspace to the others. This has been studied in detail by [Soltanolkotabi and
Candes, 2012, Wang et al., 2013a] based on geometric notions such as dual directions and
different data distribution models. In the general case, with data drawn at random, the
incoherence measure is proportional to the principal angles between the subspaces. The
incoherence is close to 1 for small principal angles and close to 0 for orthogonal subspaces,
as defined by Soltanolkotabi and Candes [2012].
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Both SSC and LRR have shown to recover perfectly independent subspaces [Elhamifar
and Vidal, 2013, Liu et al., 2013]. The recovery of disjoint subspaces [Elhamifar and Vidal,
2013], and of subspaces with potential overlap between them [Soltanolkotabi and Candes,
2012] has been studied. SSC can deal with outliers under mild assumptions [Soltanolkotabi
and Candes, 2012] and guarantees recovery under noise and corruption [Wang and Xu,
2013]. LRR can deal with large outliers [Liu et al., 2012] and its graph connectivity
is typically dense [Liu et al., 2013], but it requires independence. Whereas, the dense
connectivity may not be satisfied for SSC when dimensions are greater than 3 [Nasihatkon
and Hartley, 2011].

9.4.2 Non-linear subspaces

In the non-linear case, the notions and associated measures of subspaces dependence,
incoherence, and representation are different.

For instance, the smallest principal angle between two subspaces in RKHS can be retrieved
by

cos θ1,2 = max
x1∈M1,x2∈M2

Φ(x1)TΦ(x2)

‖Φ(x1)‖2‖Φ(x2)‖2
RBF
= max

x1∈M1,x2∈M2

K(x1,x2) (9.24)

where the kernel K is a kernel inducing a normalized feature space, e.g. the RBF kernel.
In opposition to the linear case, the measure given by (9.24) will not be informative of the
independence of two non-linear subspaces in many cases. In the specific case of the RBF
kernel, the data samples are mapped to an hypersphere surface of potentially infinite
dimension. The RBF bandwidth controls how the samples are distributed at the surface.
A small bandwidth will signify that samples are all orthogonal to each other, each one
along its own dimension. Whereas a large bandwidth will move the samples close to each
other at the surface of the hypersphere and become more dependent between each other.
Therefore, the ideal RKHS will set the samples in a way maximizing the independence
between subspaces, facilitating their recovery.

Therefore, the independence of two manifoldsM1,M2 can be evaluated by considering
their sets of samples X1 and X2 as two random variables drawn from two different
distributions in H. The Maximum Mean Discrepancy (MMD) [Gretton et al., 2012]
evaluates the difference between the mean map of the two sets. The empirical unbiased
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MMD estimate is given by

MMD2(X1,X2) = ‖µM1 − µM2‖2H

=
1

N1(N1 − 1)

∑
i 6=j,i∈X1

K(xi,xj) +
1

N2(N2 − 1)

∑
i 6=j,i∈X2

K(xi,xj)

− 2

N1N2

∑
i∈X1,j∈X2

K(xi,xj) (9.25)

with N1, N2 the number of samples in each set. MMD is large if the subspaces are
independent and close to 0 if dependent, meaning potentially issued from the same
probability distribution function.

9.5 Experiments

In this Section, we first perform experiments on standard real-world datasets generally
used to evaluate subspace and manifold clustering methods. These experiments aim
at grouping images of objects or faces by subjects with varying illuminations, poses
or expressions. Then, we perform experiments on different hyperspectral datasets for
unsupervised classification and discuss their results.

9.5.1 Experiment 1: Face and object clustering

Given a set of images of objects or faces from different subjects, we aim at clustering
the images of the same subject together. We discuss the results obtained on different
real-world datasets showing either linear or non-linear characteristics: clustering of faces
under certain illuminations (linear), expressions or poses (non-linear), clustering of objects
under various poses (non-linear) and recognition of hand-written digits (non-linear). We
compare the performance of our non-linear approach with state-of-the-art algorithms,
namely: SSC [Elhamifar and Vidal, 2013], LRSC [Vidal and Favaro, 2013], LRSSC [Wang
et al., 2013a], SMCE [Elhamifar and Vidal, 2011] and STSC [Zelnik-Manor and Perona,
2004].

Experimental setup

In these experiments, we have investigated the following three non-linear approaches

1. KLRSSC which seeks a low-rank and sparse representation in a RKHS with the
low-rank-sparsity trade-off parameter λ = 10[−4,−3,−2,−1,0,1,2].

2. KLRSC which seeks a low-rank representation in a RKHS.
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Table 9.1: Selected parameters for the different databases and methods.

method SSC LRSC LRSSC KSSC KLRSC KLRSSC
Dataset Poly RBF Poly RBF Poly RBF

Yale B. E. γ/σ/d 20 10000 - 2 2 2 2 2 2
τ/λ - 0.075 0.1 - - 3 0.5 0.1 0.1
αz 20 0.0075 20 20 20 20 20 50 50

AR γ/σ/d 20 10000 - 2 9 2 2 3 5
τ/λ - 0.075 0.01 - - 1.5 3 0.01 0.01
αz 20 0.075 20 20 20 100 10 20 20

AT&T γ/σ/d - 0 - 4 1.1 2 1.1 4 1.2
τ/λ - 1 10 - - 1.5 1.5 1 1
αz 20 20 20 20 20 20 20 20 20

Sheffield γ/σ/d - 0 - 5 0.5 4 0.3 3 0.3
τ/λ - 1 0.1 - - 3 1 0.001 0.001
αz 20 100 5 20 20 20 50 0.5 0.5

COIL20 γ/σ/d - 0 - 2 0.5 3 0.2 4 0.3
τ/λ - 1.5 0.1 - - 1.5 1 0.001 0.001
αz 20 1 2 20 20 1 50 0.5 0.5

USPS 1&2 γ/σ/d - 0 - 3 0.5 2 0.4 3 0.5
τ/λ - 3 1 - - 3 0.5 .1 1
αz 20 20 1 20 20 100 100 1 20

3. KSSC which seeks a sparse representation in a RKHS.

For all three, the noise penalty is searched over the range αz = [1, 5, 10, 20, 50, 100], and the
Lagrangian constraints are set either fix or equal to the noise penalty: µ2 = µ3 = [20, αz].
Two different kernels are used: polynomial and RBF. The kernel free parameters are
selected in the ranges p = [2, 3, .., 10] and σ = [0.1, 0.2, .., 1.6] · σ0, where σ0 is the
median distance among the data samples. These parameters are tuned with 100 random
projections by finding the optimal missrate and kept fixed for the other number of
dimensions. We observed no significant differences in the optimal parameters chosen
across the different number of dimensions (random projections). We present in Figure 9.3
the correlation between different measures (DB index, spectral gap and spectral gap ratio)
and the clustering results. For the comparisons with state-of-the-art algorithms we used
the settings reported by the respective authors, and their code if provided. For SSC,
the noise penalty is set to αz = 20 [Elhamifar and Vidal, 2013]. The neighbourhood for
STSC [Zelnik-Manor and Perona, 2004] and SMCE is set to k = 7 and its noise parameter
= 10 [Elhamifar and Vidal, 2011]. For Yale B Extended and AR database, both SSC and
LRSC exploit the noise term for sparse outlying entries.

The different datasets used in the experiments are presented in Appendix B.3.
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Table 9.2: Clustering missrate results averaged over all pairs of subjects.

linear non-linear proposed
Dataset SSC LRSC LRSSC SMCE STSC KSSC KLRSC KLRSSC
kernel Poly RBF Poly RBF Poly RBF

Yale B. E.
mean .024 .041 .039 .173 .329 .093 .103 .176 .490 .173 .199
median .000 .039 .039 .047 .445 .039 .031 .109 .492 .117 .109

AR
mean .205 .139 .110 .325 .256 .257 .239 .126 .099 .142 .092
median .214 .036 .000 .286 .214 .214 .161 .036 .000 .036 .000

AT&T
mean .041 .056 .066 .077 .058 .068 .052 .055 .042 .055 .038
median .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Sheffield
mean .277 .243 .249 .064 .062 .259 .095 .192 .057 .282 .080
median .333 .252 .277 .000 .000 .280 .000 .149 .000 .357 .000

COIL20
mean .048 .057 .053 .001 .010 .041 .011 .040 .006 .065 .009
median .000 .000 .000 .000 .000 .000 .000 .000 .000 .021 .000

USPS 1&2
mean .121 .160 .091 .098 .091 .108 .081 .499 .068 .135 .088

Results

Experiments aim at performing face or object clustering using the different clustering
methods. In each dataset, the clustering is performed for all pairs of subjects or objects
and the results averaged. Additionally, experiments with reduced input dimensions based
on random projections are averaged over three random runs. The average and median
missrate over all the pairs are evaluated for each dataset. The selected parameters,
such as the kernel parameters (polynomial degree and RBF bandwidth), the weight
γ for the sparse noise term in SSC and LRSC, the low-rank representation parameter
τ for (K)LRSC, the low-rank sparsity trade-off parameter λ for (K)LRSSC and the
noise penalty αz, are reported in Table 9.1. The results without random projections
are summarized in Table 9.2 and the results for different number of random projections,
ranging between 10 and 200, are presented in Figure 9.2 for the RBF kernel. The results
with the polynomial kernel are shown in Appendix C Figure C.5.

Yale B Extended The Yale B Extended face dataset contains frontal photos of 38

subjects under 64 different illuminations [Georghiades et al., 2001]. The cropped face
images, resized to 42× 48 pixels, of the first 10 persons are used. For this dataset, it has
been proven that the images of a single person lie close to a 9-D linear subspace.
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In this frontal face dataset with illuminations variations, both SSC and LRSC exploit the
term for sparse outlying entries. The selected RBF kernel bandwidth is relatively high,
between 2 · σ0 and 9 · σ0 for all three non-linear methods. These large bandwidth values
confirm the close-to-linear type of data. The optimal trade-off parameter found for LRSSC
and KLRSSC is 0.1, which is a balanced state exploiting both the sparse and low-rank
properties. The best results are obtained with SSC followed by the LRSSC and then the
LRSC. It is important to emphasize that LRSSC does not have an additional sparse noise
term specific to outlying entries and still achieves a result comparable to LRSC. The
combination of the sparse and low-rank properties provides a certain robustness to the
noise present in this dataset. The advantage of the low-rank characteristic is observed at
lower dimensions with a stable recovery until 30 random projections for both LRSC and
LRSSC. SSC has a missrate which increases for reduced input dimensions. Under 100

random projections it performs worse than kernel approaches. Both RBF and polynomial
kernels produces similar results. This was expected from the linear nature of this dataset.
The polynomial kernel of degree 2 and the RBF with a large bandwidth are both closer to
a linear mapping than higher degree polynomials for instance. The linear kernel is atually
the most appropriate with this data (e.g. LRSSC result). The subspaces formed by each
subject are extremely close to each other with very small principal angles [Elhamifar and
Vidal, 2013], but they are still independent enough to be able to recover them via the
low-rank property (LRSC) until very reduced input dimensions (∼ 20).

AR Faces The AR face database contains 4000 frontal images of 126 subjects. Each
subject is photographed in 26 images taken in two sessions [Martinez and Benavente, 1998].
In comparison to the Yale B Extended database, the AR database contains variations of
facial expressions, as well as of illumination. We consider the 20 first subjects and use
grayscale images cropped and resized to 55× 40 pixels. The images with occlusions (for
instance scarfs and sun glasses) have been left aside, resulting in 14 images per subject.

In this frontal face dataset with varying illuminations and expressions, again both SSC
and LRSC exploit the sparse noise term for outlying entries. The selected RBF kernel
bandwidth is between 2 · σ0 and 9 · σ0 for all three non-linear methods, confirming here
also the close-to-linear type of data as for the Yale B Extended dataset. The best results
are obtained with the KLRSSC and RBF kernel, followed by the KLRSC. These two
approaches accommodate well this dataset which has under-sampled subspaces (only
10 image per subject). Here as well, the low-rankness property allows to more robustly
segment the subspaces than with the sparse property alone. The SMCE and STSC do
not perform well on this dataset, which does not fulfil their assumptions on the nearest
neighbours. A decrease in performance is observed under 100 random projections, due to
the small number of samples per manifold.
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AT&T Faces The AT&T (ex-ORL) database of faces contains 40 subjects in frontal
position with tolerance to certain movements [Samaria and Harter, 1994]. The images
contain 10 facial expressions and sometime show occlusions (for instance glasses). Images
of the 20 first subjects are used after being cropped and resized to 32× 32 pixels.

The best results are obtained also by KLRSSC and the RBF kernel. The low-rank sparsity
trade-off parameter λ is well balancing the two with λ = 1. The linear SSC performs
better than the other linear approaches. The sparse representation and the sparse error
term allow to handle the facial details and the small pose variations. The LRSC does not
behave similarly, since worse results are obtained when the sparse error term is added.
The STSC results are among the best while SMCE does not perform well, since the
local affine relationship requirement is not fulfilled. This is expected with under-sampled
dataset containing some non-linear variations.

Sheffield (ex-UMIST) The Sheffield (ex-UMIST) Face database contains 20 subjects
under poses from frontal to lateral (0 to 90◦) position [Graham and Allinson, 1998]. Each
subject has between 19 and 48 images. The images are cropped and rescaled to 28× 23

pixels. The database contains no occlusions nor variations in expressions or illumination.
This dataset presents non-linear characteristics with faces under varying poses, which
is an ideal case for manifold clustering evaluation. The independence between the pairs
of subjects is illustrated in Figure 9.1. Sample images of the most and least dissimilar
subjects are also presented. Among the MMD of the different pairs of subjects, the
clustering failures for the KLRSSC seem to occur with MMD under ≈ 0.25.

The kernel RBF bandwidths selected are around σ = [0.3, 0.5], since the data is highly
non-linear. The trade-off parameter is in favour of the low-rank property (λ = 0.001)
in this dataset, the manifolds being independent enough. This is confirmed by the best
results obtained using the KLRSC and the RBF kernel. The KLRSSC results follow
close-by together with the SMCE and STSC. The two latter have good performances
since their neighbourhood assumptions hold with these better sampled manifolds. All
kernel approaches are stable until 30 random projections.

COIL Database The COIL-20 database [S. A. Nene and Murase, 1996] contains 1440

images of 20 objects rotated over 360◦. Each object is represented in 72 images. The
processed images are cropped and rescaled to 32 × 32 pixels. This object database is
an interesting non-linear dataset. The best results are obtained with SMCE, since the
assumption of locally affine relationship between samples holds, considering the high
sampling of the manifold. Similar results are obtained by the KLRSC, STSC and KLRSSC.
The low-rankness property is taking over the sparsity with λ = 0.001, the manifold being
independent. The linear approaches cannot achieve comparable results with this dataset,
even if locally linear.
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Figure 9.1: Maximum Mean Discrepancy (MMD) for each pair of subjects in the Sheffield
face database with a RBF kernel (σ = 0.5 · σ0). The relation between the non-linear
subspace independence (MMD) and the non-linear subspace clustering missrate can be
well observed. Two pairs of subjects are presented: the two most dissimilar subjects with
highest MMD and the two most similar subjects with lowest MMD.

USPS Digits The USPS hand-written digits recognition dataset are images of digits
from the US Postal Service [Hull, 1994]. We consider a subset composed of the digits
1 and 2, each one having 1100 samples. The best results are obtained by the KLRSC
followed by the KSSC and KLRSSC. The sparsity required is more important with λ = 1

for KLRSSC RBF and LRSSC. The results are stable above 40 random projections. The
linear methods are performing worse on this non-linear dataset.

Discussion Across the different experiments, the following observations can be made:
the KLRSSC and its two particular extension, namely the KSSC and KLRSC, generalize
well to both linear and non-linear datasets and are more robust to reduced input spaces
and insufficient subspace sampling (AR or AT&T), see Figure 9.2. The flexibility of
having a trade-off between low-rankness and sparsity is advantageous to adapt to datasets
with different properties. Moreover, this trade-off appears to be important with datasets
containing strong variations like AR, AT&T and Yale B Extended. The self-expressiveness
property is efficient alone but produces better representation graphs when combined
with the low-rank property. The gain in subspace intra-connectivity due to the low-rank
property is not counter-acting the clustering, recalling that spectral clustering can handle
additional weak connections between different subspaces. Regarding the two competing
non-linear approaches, the SMCE shows more flexibility than STSC mainly because the
latter uses a fixed neighbourhood. Nonetheless, in AR Faces SMCE does not perform
well. This effect is due to the subspaces lying close to each other and having non-linear
variations due to expressions variations, which make them even closer or intersecting. We
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believe that in such situation the imposed affine relationship in SMCE captures samples
from other subspaces.

Reduced input space The kernel approaches are more robust to reduced input space.
Stable results can be obtained with input dimensions as low as 40. This is equivalent
to only about 2% of the original data dimensions. This is advantageous for speeding
up computations and suggests also that data corruption like low-resolution may be
better handled using non-linear kernel approaches. With Yale B Extended, the linear
approaches exploiting the low-rankness property (LRSC, LRSSC) are robust to reduced
input dimensions, whereas the SSC results are getting worse more quickly (see Figure C.4
top row). In opposition, with USPS1&2 the LRSC is getting worse quickly while SSC
and LRSSC remains stable.

DB index and spectral gap criteria The different measures such as the Davies-
Bouldin index, the spectral gap and the spectral gap ratio, have been proposed to qualify
the resulting spectral embedding helping in the parameter selection.

The DB index is useful for KSSC where it correlates with the missrate. When used with
the low-rank property, it has a certain bias toward low σ values as it can be observed
in Figure 9.3 second row and therefore cannot be used for parameter selection. This can
be understood by the fact that KSSC is over-segmenting at too low σ which produces a
certain dispersion of the clusters in the spectral embedding. A similar observation can be
made for the spectral gap, third row in Figure 9.3, where it correlates with the missrate
only for KSSC and biased towards low σ otherwise. Finally, in Figure 9.3 bottom row we
can observe that the spectral gap ratio is not affected by this bias since it involves only
the ratio of the eigenvalues. The spectral gap ratio is largest around 0.4 · σ0 and starting
from λ = 10 and above. It better correlates with the missrate when a certain amount
of sparsity is imposed. Despite its slight instability, it indicates combination of σ and
λ parameters leading to low missrate and thus appears to be a reliable indicator of the
clustering quality for the selection of the parameters.

Some additional details on these experiments are reported in Appendix C.1.
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Figure 9.2: Average missrate (the lower the better) over all pairs of subjects for various
number of random projections for 3 different datasets: Yale B Extended Faces, AR Faces,
AT&T Faces, Sheffield Faces, COIL-20 and USPS-1&2. The left column shows the results
for the non-linear methods with the RBF kernel.
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Figure 9.3: Different values of λ and σ in Sheffield Faces with (a) missrate, (b) DB index,
(c) spectral gap and (d) spectral gap ratio, averaged over all pairs of subjects. The other
parameters are αz = µ2 = µ3 = 20.
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9.5.2 Experiment 2: Unsupervised hyperspectral image classification

We perform experiments aiming at retrieving the manifolds present in different hyper-
spectral scenes from the ROSIS optical sensor. Details on the two scenes can be found in
Appendix B.2.

Experimental setup

In order to properly evaluate the recovery of different manifolds in the images, we use the
available groundtruth to provide a subset of pixels to the different methods. This allows
to control the experiment to be able to assess the recovered structures. The subset X is
formed by ns pixels randomly sampled, with ns = 1000 for Pavia DFC and ns = 990 for
Pavia center. The number of clusters is given to all algorithms for fair comparisons. This
avoids a bias against weakly represented classes with spectral clustering methods and
facilitates the comparison of the algorithms.

We use the proposed low-rank and sparse representation with a linear kernel – LRSSC, thus
assuming linear subspaces –, and with a RBF kernel – KLRSSC, thus assuming smooth
manifolds. The low-rank or sparse representation alone are also used for comparisons,
being the KLRSC and KSSC with the RBF kernel. The linear LRSC and SSC are also
evaluated for comparisons. They are run on the subset X and the remaining pixels of the
image are assigned using the collaborative representation of (9.16).

Moreover the following methods are used for comparisons: i) k-means (KM), ii) kernel
k-means (KKM), which both assign the remaining pixels to their closest center in the
input space or feature space respectively [Volpi et al., 2012], iii) the sparse manifold
clustering and embedding (SMCE) [Elhamifar and Vidal, 2011], iv) the spectral clustering
(SC) with a k-NN graph and the weights from the heat kernel and its v) self-tuning
extension [Zelnik-Manor and Perona, 2004] which are followed by the assignment of the
remaining pixels with 1-NN classification.

The quality and stability of the results are assessed with the adjusted Rand Index
(aRI), Normalized mutual information (NMI) and the Cohen’s κ statistic on the labeled
groundtruth after finding the best match between clusters and classes using the Hungarian
matching method (see Appendix A.1).

The parameters are tuned in the following ranges: λ = [10−6, ..., 106], σ = [0.5, .., 10] · σ0,
where σ0 is the median distance among pixels, µ = 1000, γ = 10−6 and k = 7 for SC and
STSC and the neighbourhood of SMCE equal 10.
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Pavia DFC Pavia center
Method κ aRI NMI κ aRI NMI

KM .50± .02 .51± .01 .61± .02 .50± .05 .50± .02 .66± .02
KKM .71± .17 .65± .12 .72± .08 .58± .10 .55± .06 .70± .04
SMCE .14± .04 .05± .03 .07± .04 .37± .03 .27± .04 .47± .04
SC .85± .01 .77± .01 .81± .01 .70± .03 .63± .01 .76± .01
STSC .85± .02 .77± .04 .81± .03 .69± .03 .64± .03 .77± .02
SSC .62± .01 .64± .03 .71± .02 .46± .06 .33± .06 .42± .07
LRSC .86± .02 .76± .03 .78± .02 .59± .07 .46± .06 .57± .05
LRSSC .62± .01 .63± .02 .71± .01 .51± .05 .37± .06 .46± .06
KSSC .91± .01 .84± .01 .85± .01 .73± .03 .68± .02 .78± .01
KLRSC .92± .01 .85± .02 .86± .01 .82± .07 .74± .04 .82± .02
KLRSSC .93± .01 .87± .02 .87± .02 .86± .01 .77± .01 .84± .01

Figure 9.4: The κ statistic, adjusted Rand Index (aRI) and Normalized Mutual Informa-
tion (NMI) over 10 random runs for the Pavia DFC image with subset size ns = 1000.

Results

The Figure 9.4 presents the numerical performances for the unsupervised classification of
Pavia DFC and Pavia center averaged over 10 independent experiments for the different
methods. Figure 9.7 presents the resulting land-cover classification maps for both datasets
and some of the methods. In both datasets, the KLRSSC outperforms the other methods
in terms of all the statistics reported (κ, aRI and NMI) and is followed closely by the
KLRSC, indicating a benefit in adding some sparsity to the low-rank constraint. When
using the sparsity only, the KSSC, the performances decrease (−.13 κ in Pavia center w.r.t
KLRSSC) due to a lack of intra-class connections over-partitioning each class and leading
to miss-classifications. The performances vary slightly with the trade-off parameter λ
with the maximum clustering accuracy is obtained for small λ, indicating a very small
contribution of the sparsity w.r.t. the low-rank representation.

On the side of the linear methods, the LRSC achieves the best results compared to
SSC and LRSSC. Seeking a low-rank representation matrix is a more flexible constraint
than the sparse representation and provides spectral clustering with a matrix where
the connected components can be well distinguished. The limitation of LRSSC and the
other linear methods can be appreciated in Figure 9.7 for Pavia Center : the result of
the unsupervised classification is poor (.51 κ) with the water class assigned to too many
pixels. This is due to the low magnitude of water pixels, which can span linear subspaces
in every direction using large coefficients and will produce large edge weights in the
graph. The SC is performing close to our proposed approach. This is not surprising
since SC relies on a nearest-neighbour graph weighted by the heat kernel whereas our
KLRSSC finds representative samples which are local neighbours with the RBF kernel.
Even if both rely on local neighbourhood, the KLRSSC has the advantage of letting the
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Figure 9.5: The κ statistic over 10 random runs for Pavia DFC with different subset size
(ns = [50, .., 1600]).

neighbourhood adapt to the data, while in SC it is fixed. For manifolds that are close
to each other, wrong neighbours can be picked by SC, as for some pixels in the river in
Pavia center which are attributed to the asphalt manifold lying very close to the water
manifold. The KM does not provide satisfying solutions and performs more than 30%

worse (in κ) compared to KLRSSC. The KKM is also performing worse than SC and
KLRSSC. It does not recover properly the multiple manifolds, since it assumes clusters in
the feature space and not subspaces. It therefore produces unstable solutions, as shown
by the large standard deviations in Figure 9.5.

Figure 9.5 illustrates the κ results for different subset sizes ns over 10 runs. KLRSSC is
very accurate at recovering the manifolds already for subset of size ns = 50, confirming
the well-posed assumption of multiple manifolds. The other non-linear KLRSC and KSSC
stabilizes above ns = 200. The linear LRSC follows closely while the SSC and LRSSC are
decreasing above ns = 200. With very small subset, the data structure is less clear and
can satisfy more methods while with larger subset the linear assumption does not hold
any more. The KKM accuracy has an important variability across the different subset
sizes showing difficulties to retrieve the multiple manifolds. The decreasing performances
of the SMCE is due to the neighbourhood limit which should probably be increased
together with the increasing subset size. As a matter of fact, the SMCE representation of
the data by affine subspaces is too flexible for retrieving accurately the different class
manifolds in hyperspectral images.
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Low-rank and sparsity trade-off The main advantage of the proposed formulation
for non-linear subspace clustering reside in the fact that it exploits the self-expressiveness
of the samples from the same subspace and injects subspace intra-connectivity by the
additional low-rank constraint. The low-rank representation is very effective for clustering
since it is equivalent to the ideal affinity matrix: fully connected within the manifolds and
disconnected between them. However, the low-rank constraint is sensitive to manifolds
dependence. Therefore, the sparsity constraint helps when independence fails between
manifolds. In Figure 9.6, the positive symmetric and normalized representation coeffi-
cients corresponding to the graph edge weights (W = |C|+ |C|T ) are presented for Pavia
DFC and the KLRSC, KLRSSC and KSSC methods as well as their linear counterpart,
the LRSC, LRSSC and SSC. Also graphical confusion tables which represents the corre-
sponding samples and their label predicted by clustering allow to better see how spectral
clustering handles the different coefficient matrices. In Figure 9.6 (a) the linear LRSC
groups the classes roads and water together which produces out-of-diagonal non-null
blocks in C. This due to the low-rank constraint which seeks dependent columns of the
matrix C. However spectral clustering can handle these smaller coefficients resulting only
in few miss-classifications with other classes. LRSC provides the best result among the
three linear method (κ = .86) demonstrating the benefit of representation matrix with
dense connections within classes. The addition of the sparse constraint in LRSSC remove
the off-block-diagonal coefficients. It finds a compromise between blocks of coefficients
and sparse representation which leaves only a few non-null out-of-diagonal coefficients.
However, spectral clustering produces more miss-classifications in the class roads which
is too sparsely connected. When only the sparsity constraint is used (SSC), too few
non-zero coefficients remains which produces miss-classifications in the clustering results
as observed in (c). The non-linear approaches better retrieve the manifolds structure
with representation matrix better filled inside each class block. The KLRSC presents a
near-ideal block-diagonal structure. However, miss-classifications remain between the class
roads and building. The KLRSSC eliminates certain of the undesired off-block-diagonal
coefficients which reduces the number of miss-classifications between classes roads and
building. The KSSC produces a neat block-diagonal matrix structure, but reduces the
intra-manifold connections and induces certain miss-classifications.

High dimensional input space In practice the manifolds are all embedded in a very
correlated space meaning that many dimensions are not accounting for the manifolds
variations. Therefore, we have investigated to first reduce the dimensionality of the data by
keeping the 15 principal components, which account for 99.8% of the data total variance.
The result obtained where similar than without any prior reduction of the dimensions for
our proposed methods. This demonstrates their ability to handle high-dimensional data
as well as to analyze correctly the remaining non-linear variations in reduced dimensions.
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Figure 9.6: Top part: graph weights W = |C|+ |C|T . The samples from Pavia DFC
are in class order. Bottom part: confusion matrix presenting for each sample (columns)
its class labels obtained by clustering (rows). Samples that are miss-classified appear as a
vertical segment out of the main block diagonal.
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9.6 Conclusions

This chapter introduced a non-linear low-rank and sparse representation method for
clustering, the Kernel Low-rank Sparse Subspace Clustering (KLRSSC). KLRSSC assumes
a union of multiple low-dimensional manifolds which are recovered as subspaces in
Reproducing Kernel Hilbert Spaces. It benefits from the self-expressiveness property due
to the sparsity constraint and from the improved intra-manifold connectivity due to the
low-rank constraint. This allows to handle situation where manifolds are overlapping. We
have also investigated the particular cases where only the sparse or low-rank constraint is
active. The experimental behaviour of KLRSSC is evaluated over a set of databases of
faces and objects and applied to the unsupervised classification of hyperspectral images.

This new representation of the data can be exploited in other settings such as active
learning or semi-supervised learning. The latter is investigated in Chapter 10.
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10 Semi-supervised one-class
classification via graphs

In this Chapter, we introduce several graph-based methods for one-class classification and
evaluate their respective performances with different types of graphs, among which the
KLRSSC introduced in Chapter 9. We compare label propagation, constrained clustering
and graph-regularized classification and observe the benefit of exploiting jointly the
data, the graph and the labels to obtain the best detection performances in one-class
classification problems.

10.1 Introduction

In Semi-Supervised Learning (SSL) situations, the data available is only partially labeled.
The unlabeled samples carry information about the global geometry of the data and
the labeled samples help recovering semantic classes meaningful for the user. A flexible
approach for incorporating the data structure takes the form of a graph where the vertices
represent the samples and the edges represent the similarities among them. As we have
seen in the previous Chapter 9, many approaches exist to build a graph on the data,
from the naive k-NN graph to our proposed KLRSSC graph representation, that tries to
unveil the inherent data multi-manifold structure. In this Chapter, we investigate the
SSL situation where additionally to the data a graph representing the data structure is
available together with a few labels from one class, as illustrated in Figure 10.1.

The main families of methods compatible with this setting are the following:

• Label propagation: the labels are spread along the graph edges [Zhu et al., 2003,
Zhou et al., 2004].

• Constrained spectral clustering: a spectral graph embedding is optimized to satisfy
the constraints due to the labels [Wang et al., 2012a,b].

• Graph-based regularization: a classifier is adapted to the geometry of the data by
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Chapter 10. Semi-supervised one-class classification via graphs

one-class detection

Figure 10.1: The different information to be exploited for the detection of a class of
interest: the data features, a graph built on the data and some class labels.

distorting the training samples similarities accordingly to the graph structure [Belkin
et al., 2006].

Before diving into the different approaches, let us recall some notations: the given
graph G = (ν, ε,W ) is composed of a set of vertices ν, a set of edges ε and an edge
weight matrix W representing the weights between each pair of vertices. The normalized
graph Laplacian is L = I − D−1/2WD−1/2 and the transition probability matrix is
P = D−1W = D−1/2WD−1/2 = I − L, where Dj,j =

∑
iWi,j is the diagonal degree

matrix and I the corresponding identity matrix.

10.2 One-class label propagation

The propagation of labeled information on the graph is an intuitive approach for combining
the labels and the data structure. The labels are spread on the graph based on transition
probabilities which are related to the graph Laplacian L and the matrix of random walk
transition probabilities P [Zhu and Goldberg, 2009]. Zhu et al. [2003] introduced the
Gaussian fields and harmonic functions (GFHF) which propagates the labels across the
unlabeled samples, while the learning with local and global consistency (LLGC) proposed
by Zhou et al. [2004] propagates the labels over the whole graph allowing a trade-off
between the initial label and the propagated information. This trade-off allows the original
labeled samples to be modified by the propagated information, which is interesting in
case of erroneous labels.

The original formulations of GFHF and LLGC are established for two classes with the
labels set to {−1,+1}. The labels are retrieved based on the positive or negative sign
of the propagated information. The multi-way formulations, presented in Algorithm 4
and 5, spread the labeled information {+1} separately for each class. The class likelihood
after propagation can be directly used as a one-class classification score or to retrieve the
labels by looking at the maximum class information in multi-class classification problem.
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10.3. One-class constrained spectral clustering

Algorithm 4 Label propagation (GFHF) [Zhu et al., 2003]

Input: A graph G, its weights W and a label matrix Y ∈ RN×k
1: Compute the transition probability matrix P = D−1W = D−1/2WD−1/2 = I − L,

where D =
∑

iWi,j is the degree matrix.
2: Ŷ∞unlabeled = (I− Puu)−1PulYl
Output: Label {xi}Ni=Nl+1 from arg max Ŷ∞unlabeled

Algorithm 5 Label spreading (LLGC) [Zhou et al., 2004]

Input: A graph G, its weights W and a label matrix Y ∈ RN×k
1: Compute the normalized symmetric graph Laplacian L = I−D−1/2WD−1/2, where
D =

∑
iWi,j is the degree matrix and I the corresponding identity matrix.

2: Choose a parameter α ∈ [0, 1) controlling how much the labels can spread
3: Ŷ∞ = (1− α)(I− αL)−1Y
Output: Label xi from arg max Ŷ∞

The one-class GFHF label propagation after convergence [Zhu et al., 2003] is obtained by

Ŷ∞unlabeled = (I− Puu)−1PulYl (10.1)

where Yl = {yi}Nli=1, Ŷ
∞
unlabeled are the class probability obtained for each unlabeled sample

{xi}Ni=Nl+1 and P =

[
Pll Plu
Pul Puu

]
. A sample issued from the class of interest will have

Ŷ∞ ∼ 1.

The one-class label spreading (LLGC) after convergence [Zhou et al., 2004] is obtained by

Ŷ∞ = (1− α)(I− αL)−1Y (10.2)

where α is the parameter controlling the trade-off between initial labelling and propagated
information. It is interesting to notice that (I− αL)−1 is a diffusion kernel [Schölkopf
and Smola, 2002] and that the parameter α controls the diffusion. For α = 0 , the initial
labels are obtained without any diffusion. The values of Ŷ∞ can be interpreted as class
probabilities after the diffusion process.

10.3 One-class constrained spectral clustering

The graph representing the data ideally shows disconnected components corresponding
to the classes of interest, i.e. here the labeled class and the rest. The spectral embedding
from the graph Laplacian has for principal dimensions the indicators of disconnected
components in the graph. The spectral clustering relies on this graph property to infer
class labels, see Algorithm 1 in Section 3.3.2. In the spectral embedding of Ng et al. [2002],
the k first eigenvectors V ∈ RN×k of the Laplacian L ≈ V ΣV T are normalized along
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Figure 10.2: Schematic of the two dimensional spectral embedding based on the normalized
Laplacian rescaled to the unit circle. C1 represents the class of interest, where labels
are available, and C2 the novelties, composed of other classes. The spectral orthogonal
subspace projection (SOSP) distance is represented by the colored isolines.

the rows to unit norm: vi ← vi
‖vi‖2 . Thus, the embedded samples V T are concentrated

around points on the unit-hypersphere representing their cluster. Figure 10.2 illustrates
this spectral embedding for k = 2 dimensions. The inner product between pair of samples
is equivalent to the cosine of their angle θ, which represent their correlation. Ideally,
for a graph having k disconnected components, the embedded samples are exactly lying
on k distinct points in Rk. These k vector points representing the different clusters
are orthogonal between each other. Therefore, two samples from different clusters are
orthogonal (θ = 90◦) and have zero correlation since their cosine is null. The k cluster
points are not aligned with the basis formed by the eigenvectors, but correspond to a
rotation of them. This rotation ambiguity justifies the use of k-means [Ng et al., 2002] or
the need to find the appropriate rotation matrix [Yu and Shi, 2003] to assign the cluster
labels.

10.3.1 Spectral orthogonal subspace projection

In the spectral embedding represented in Figure 10.2, the orthogonal distance to the
subspace representing the class C1 provides a measure on how dissimilar a sample is from
C1. With this distance measure, the most dissimilar point on the hypersphere from C1

is the one in the direction representing C2 orthogonal to the direction of C1. The point
on the unit hypersphere representing the subspace of class C1 can be identified based
on the labeled samples of the class of interest, denoted vl. Let us define p the principal
eigenvector of vl representing the subspace of C1. The span of the subspace C1 is pp†,
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10.3. One-class constrained spectral clustering

therefore the orthogonal projection operator is p⊥ = I− pp†, with I the identity matrix.
The spectral orthogonal subspace projection distance is

dsosp(i) = ‖vip⊥‖2 (10.3)

where samples belonging to the class of interest will have a lower distance than the others.

10.3.2 Spectral learning

The spectral embedding may not be optimal for the class of interest, since not exploiting
the labeled information. A straightforward approach enforcing class constraints is to
modify the affinity matrixW [Kamvar et al., 2003]. The affinities between labeled samples
of the same class are set to 1, while affinities of labeled samples from different classes are
set to 0. In the context of one-class classification only affinities between the same class
can be modified in the absence of negative class information. Therefore, we modify the
affinity matrix as follows

Wi,j =

{
+1 if i,j are both labeled

Wi,j otherwise left unchanged
(10.4)

Notice that the weights matrix W is normalized in order to have Wi,j ∈ [0, 1] prior to
modifying the weights. The spectral embedding is obtained from the eigendecomposition
of the normalized graph Laplacian of the modified weights matrixW . Finally, the spectral
orthogonal subspace projection distance can be used as described in Section 10.3.1.

10.3.3 Constrained spectral clustering

The class labels available can be used to establish contraints and allow to find an
embedding dedicated to the class of interest which respects the graph structure. In the
constrained clustering with multiple classes, the two main ingredients are the Laplacian
matrix L reflecting the graph structure and the constraint matrix Q [Wang et al., 2012a].
The N × N matrix Q contains the class constraints, i.e. a positive value for samples
i, j from the same class and a negative value for samples i, j from different classes. The
values Qi,j represent the strength of the link belief. A large absolute value will be a
strong constraint, while a value close to zero is a weak constraint. The unconstrained
spectral clustering is recovered for Q = I.

Must-link constraints In our one-class classification situation, the assignment of the
matrix Q is ill-posed. As for spectral learning in Section 10.3.2, only must-link constraints
can be set based on the class of interest. The cannot-link constraints cannot be set in the
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absence of a negative class. In this situation, the matrix Q is defined as

Qij =

{
+1 if i,j are both labeled

0 otherwise
(10.5)

The matrix Q can be normalized as: Q̄ = D−1/2QD−1/2. Then the constrained spectral
clustering [Wang et al., 2012a] solves the following problem

min
v∈RN

vTLv,

s.t. vT Q̄v ≥ β, vTv = 1, v 6= D1/21 (10.6)

where vTLv is the graph cut to be minimized and vT Q̄v ≥ β is the lower bound on the
constraints satisfied. The two other constraints are here to normalize the embedding and
avoid trivial solutions.

This problem can be solved by the following generalized eigenvalue problem

Lv = λ(Q̄− βI)v (10.7)

The solutions of (10.7) corresponding to positive eigenvalues λi are kept and normalized
such that vTv = 1. These are the ones satisfying the constraints vT Q̄v ≥ β. Hence,
among the feasible set of solutions the one minimizing the cost of the cut vTLv is
retained. It represents the solution satisfying sufficiently the constraints according to β
and respecting at best the graph structure.

Must-link constraints from label propagation The matrix Q solely based on the
few class labels is sparse (most entries are zeros) leading to instabilities [Basu et al., 2008].
Wang et al. [2012b] proposed an alternative to this issue. First the labels are propagated
on the graph and then constraints are defined based on the propagated information. The
matrix of constraints Q is defined as

Qij = exp

(
−‖yi − yj‖

2

2σ2

)
(10.8)

where σ is the bandwidth defining the similarity among the propagated labels yi. The
labels can be propagated using either GFHF or LLGC. Notice that matrix Q is a
kernel matrix between the vertices in the semi-supervised embedding induced by the
propagated labels. In this case, the normalization of Q is Q̄ = D

−1/2
Q QD

−1/2
Q , where

DQ = diag

(∑
i

Qi,1, ..,
∑
i

Qi,N

)
. The embedding is obtained by solving the generalized

eigenvalue problem (10.7) for β = 0. After removing the eigenvectors corresponding to
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null eigenvalues, the embedding that best satisfies the constraints is

v∗ = max
v

vT Q̄v (10.9)

10.4 One-class classifier with graph-based regularization

Within the SSL context, standard classifiers can be regularized by the graph Lapla-
cian [Belkin et al., 2006] thus enforcing to maintain the structure of the data manifold.
For one-class classification, the semi-supervised SVDD (S3VDD) introduced in Sec-
tion 4.4.3 allows to provide a better class description using the data manifold geometry
embedded in the graph Laplacian. The SVDD is trained with a kernel between labeled
samples distorted by the graph Laplacian which contains information on both labeled
and unlabeled samples. The details on the kernel distortion are presented in (4.15) of
Section 4.4.3.

10.5 Experiments

The experiments aim at studying the detection performance of a class of interest based
on different graphs built on the data and few labeled samples.

10.5.1 Experimental setup

In the experiments we compare four different types of graphs build on the data: the
standard k −NN graph with k = 7, the KLRSC, the KLRSSC with λ = 10−6 and the
KSSC, introduced in Chapter 9. As a reminder, λ is balancing the trade-off between
the low-rank and the sparse representation, meaning a weight matrix W that is between
being block-diagonal and being sparse with only few non-zero weights present in each
column.

We compare the following different approaches:

• GFHF and LLGC: label propagation where the diffusion parameter for LLGC is
α = 0.5 [Wang et al., 2012b].

• SOSP: the SOSP distance in the standard spectral embedding [Ng et al., 2002].

• SL: the SOSP distance in the embedding of spectral learning [Kamvar et al., 2003].

• CSC: constrained spectral clustering with must-link constraints from labeled sam-
ples.

• CSC+GFHF/LLGC: constrained spectral clustering with must-link constraints
from label propagation and the bandwidth σ set to the mean value in the matrix Q.
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GFHF LLGC SOSP CSC CSC+GFHF CSC+LLGC S3VDD

k
-N

N

.95± .03 .81± .07 .94± .02 .80± .00 .86± .07 .97± .01 .97± .01

K
L
R
SC

.55± .01 .97± .00 .93± .02 .84± .02 .80± .00 .97± .01 .97± .01

K
L
R
SS

C

.68± .01 .98± .00 .95± .01 .73± .01 .80± .00 .98± .01 .97± .01

K
SS

C

.74± .02 .97± .01 .86± .01 .69± .06 .77± .00 .96± .00 .97± .01

Table 10.1: The AUC results for Pavia DFC averaged over all classes for 10 labeled
samples. Each row is a different graph: k-NN, KLRSSC and KSSC

• S3VDD: the SVDD distorted by the graph Laplacian with the distortion ε parameter
searched in the range ε = [0, ..., 1000]. The regularization λ is set to 0, for fair
comparison and avoiding the extensive use of cross-validation.

The hyperspectral datasets Pavia DFC and Pavia center are used with each of the
thematic class from their available groundtruth alternatively considered as the class of
interest. The datasets are presented in Appendix B.2. The different graphs are built
based on a subset of samples from the images, of size 1000 with 200 samples from the
class of interest in Pavia DFC and of size 990 with 110 samples from the class of interest
in Pavia center, in the same way than in Chapter 9. Five random runs, where labels of
the class of interest are randomly selected, are performed for each fixed number of labels
and for each specific class.

The detection performances are evaluated using the ROC curve and the area under the
ROC (AUC), as well as the Cohen’s κ statistic. The higher the AUC, the better the class
detection.

10.5.2 Results

In Tables 10.1 and 10.2 are reported the average AUC over all the classes and fives
random runs for ten labeled samples and different types of graphs in Pavia DFC and
Pavia center, respectively.

First of all, we observed that the SOSP distance with the standard spectral embedding
always outperformed the SOSP distance in the embedding of spectral learning with
must-link constraints only. The spectral learning with must-link constraints only and in
small number cannot provide a very different embedding. Therefore, we only report the
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GFHF LLGC SOSP CSC CSC+GFHF CSC+LLGC S3VDD
k
-N

N

.86± .07 .85± .01 .88± .01 .79± .05 .78± .06 .91± .08 .98± .01

K
L
R
SC

.57± .01 .96± .01 .88± .02 .95± .01 .73± .00 .95± .03 .98± .01

K
L
R
SS

C

.69± .02 .99± .01 .91± .02 .70± .13 .77± .02 .96± .03 .97± .01

K
SS

C

.73± .06 .99± .00 .95± .00 .70± .05 .77± .00 .97± .03 .98± .01

Table 10.2: The AUC results for Pavia center averaged over all classes for 10 labeled
samples. Each row is a different graph: k-NN, KLRSC, KLRSSC and KSSC

results for the SOSP with the standard spectral embedding in the two Tables.

In both datasets, we observe that the GFHF works only with the k-NN graph. It requires
a graph with few connections that are mostly reliable, which the k-NN provides. In
opposition, the KLRSC graph has many non-zero edge weights among which may be
erroneous but weak edges. The LLGC provides good performances for our three graphs,
that outperform the standard k-NN graph.

The SOSP distance is performing well across the different graphs with its best performances
using the KLRSSC in Pavia DFC and the KSSC in Pavia center. The latter having more
classes potentially lying closer to each other, the fewer connections present in the KSSC
graph could help in discriminating certain classes.

The CSC produces lower performances in general than the other methods. The use of
only few labels from the class of interest produces a very sparse matrix of constraints with
only must-link constraints. This seems insufficient to detect accurately a class of interest.
Moreover, we observe that CSC requires densely connected graphs like the KLRSC, or at
least not as sparse as the KSSC. The additional graph connections allows to get a certain
flexibility in the embedding to more easily satisfy the constraints. A graph like k-NN or
KSSC with very few connected edges cannot provide a rich enough spectral embedding
that would satisfy the constraints. The constraints derived from GFHF improve slightly
the performances except with KLRSC where it decreases. This is due to the propagated
labels on wrongly connected edges that impose erroneous constraints. On the contrary,
CSC with the constraints from LLGC propagation provides among the best performances,
more specifically with our proposed graphs. In this case, the diffusion parameter allows
to control the amount of propagation and thus the shape of the constraints matrix.

The S3VDD provides performances among the best which are stable across the different
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graphs. In comparison to the other methods, it exploits the original data through the
kernel matrix, while the CSC and label propagation approaches only rely on the graph
and the labels.

In Figure 10.3, the κ statistic for the S3VDD for each class to be detected, various number
of labeled samples and different graphs is presented. We notice that the accuracy increases
faster with the increasing number of labels for KLRSC and KSSC than the standard
k-NN. As an example, the vegetation class (green line) is only around 0.5 κ for ten labels
using the k-NN graph, while already at 0.7 for the KSSC and 0.8 for the KLRSC.

In Figure 10.4, we can better see the impacts of propagating the labels on the graph
and using them as constraints. For LLGC alone, the AUC results are stabilized from 10

labels and above, while CSC needs 20 labeled samples (= 10% of the class samples in the
graph). When both are combined in the form of constraints from propagated labels, the
performances are already stabilized from 3 labeled samples.

In Figure 10.5, the ROC curves using the KLRSSC graph and some of the different
methods are presented. In general we observe some common difficulties in detecting
certain classes across all methods. In Pavia DFC, the classes roads and building have the
lower AUC since sharing some of their spectral characteristics. The CSC and CSC+GFHF
are only performing well for few classes: the vegetation class in Pavia DFC and the
shadows in Pavia center. The LLGC propagation provides very sharp transition, with the
best AUC for Pavia center. Its usage as constraints together with the CSC are providing
among the best performances along with the S3VDD. We can also observe the limitations
of the SOSP, which performances are decreased in Pavia center due to the larger number
of classes in the image.

Finally, detection maps with the S3VDD and the KLRSSC for different classes of interest
in the two datasets are presented in Figure 10.6. The maps present the decision function
of the S3VDD at every pixel where the pixels belonging to the class have positive values
and the pixels detected as novelties, i.e. from different classes, have negative values. We
can clearly observe the relationships between the classes: the class roads in Pavia DFC
has values that are close to 0 for certain building regions and the class building has also
positive values for regions over roads.

We see that this problem of semi-supervised one-class classification or novelty detection can
be tackled from different perspectives having some advantages and disadvantages. Among
the compared methods, we retain the constrained spectral clustering using propagated
labels as constraints (CSC+LLGC) which provided very good performances and relies
only on solving general eigenvalue problems based on the data graph and labels. Also the
S3VDD provided among the best performances. In terms of computations, distorting the
kernel of the S3VDD is approximately similar to solving the general eigenvalue problem if
implemented using the efficient Nyström method. Finally, the training of the S3VDD
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Figure 10.3: κ statistic for the different graphs and number of labeled samples in Pavia
DFC.
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Figure 10.4: AUC for different methods with the graph KLRSSC averaged over 5 runs
and for different number of labeled samples in Pavia DFC.

would need to compare with finding the embedding maximizing the constraints, which is
typically done in a much faster way.

10.6 Conclusions

In this Chapter, we have investigated the problem of semi-supervised one-class classifica-
tion using a graph representing the data structure and few class labels. The comparisons
between label propagation, unconstrained and constrained spectral clustering satisfying
both the graph structure and the labeled constraints, as well as a one-class classifier
regularized by the graph provided insights on the different approaches and the benefit of
different graph structures. The constrained spectral clustering using propagated labels
from LLGC as constraints, the semi-supervised support vector data description and
the simple label propagation provided the best performances and using the different
graphs proposed in Chapter 9, which better retrieve the data structure. The use of
these particular graph in semi-supervised learning could be probably even enhanced by
considering certain transformations of the graph weights as suggested in Zhang et al.
[2013b].
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Pavia center
CSC AUC: 0.70 ± 0.13

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LLGC AUC: 0.99 ± 0.01

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

SOSP AUC: 0.91 ± 0.07

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

CSC+GFHF AUC: 0.77 ± 0.15

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

CSC+LLGC AUC: 0.96 ± 0.04

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S3VDD AUC: 0.97 ± 0.02

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 
 

water

trees

meadows

bitumen

bare soil

asphalt

tiles

bricks

shadows

Figure 10.5: ROC curves for Pavia DFC and Pavia center averaged over 5 different sets
for 10 labeled samples and using KLRSSC graph.
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Pavia DFC
roads water

vegetation shadows
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Figure 10.6: Detection maps for classes in Pavia DFC and Pavia center using the S3VDD
with the KLRSSC graph and 10 labeled samples. The color legend corresponds to the
decision function which is positive for the class of interest and negative for novelties.
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Conclusions

Towards more realistic detection approaches

The problems of detection and classification with a very low level of supervision is at the
forefront of research. It is of prime importance in order to meet the requirements of a
broad range of real applications based on the automatic processing of massive data. In
these situations, better assumptions on the data are required in order to alleviate the
lack of supervision. The success of kernel methods for pattern recognition problems and
classification, particularly in remote sensing is partially due to their adaptation to the
data structure and their inherent robustness to noise and complex high-dimensional data.

In this Thesis, we have investigated the ability of kernel methods to handle the detection
of unknown classes with partial or none supervision, under two different data structure
assumptions. We demonstrated the appropriateness of the approaches for novelty detection
in remote sensing, taking the form of novelty detection, unsupervised classification or one-
class classification. In these challenging settings, the assumptions on the data structure
are primordial. We have investigated two particular assumptions on the data structure,
motivated by remote sensing applications.

The first assumption, investigated in Part II of the Thesis, is that the data is made of
overlapping clusters. These clusters are made of core samples separated by regions of low
density populated by outlier samples representing mixed or outlier samples. In remote
sensing, this assumption is verified with medium resolution multispectral images where
mixed pixels are present. Based on this assumption, we developed a clustering system
aiming at retrieving changed and unchanged regions in multi-temporal datasets. We also
developed a semi-supervised approach detecting changes based solely on the annotation
of some unchanged regions. This is more realistic for post-catastrophe situations where
the access to the affected region is often impossible, as for example after flooding or fire
events.

The second assumption, investigated in Part III of the Thesis, is that the data is made
of multiple low dimensional manifolds. These manifolds represent different thematic
classes and can be identified by building a graph of the data structure and retrieving
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the disconnected components. In high-dimensional data, such as hyperspectral images,
the retrieval of these manifolds is challenging. We developed a new graph representation
exploiting this assumption based on recent convex optimization tools, allowing to retrieve
low-rank and sparse properties in the representation of the data. Finally, we have
studied the semi-supervised situation with different approaches for combining a graph
representation of the data with few labels from one class.

The computational considerations are important when dealing with automatic methods
that should provide early detection warnings. In Part II of the Thesis, we have provided
approaches that accommodate with the data and are faster than the state-of-the-art.
The entire solution path algorithms allows to derive solutions much faster than standard
optimization procedure. In the semi-supervised setting, the selection of parameters is not
more costly when done automatically compared to using cross-validation. However, in the
completely unsupervised case the support vector clustering algorithm remains extremely
costly to compute and this bottleneck should be further addressed. In Part III of the
Thesis, the construction of the graph representing the data structure is computationally
intensive and directly relates to the subset of the data used and the number of iterations
performed. We proposed an out-of-sample extension, which allows to classify the samples
in an online fashion and avoid manipulating a large set of data at once.

In all the experiments, the developed approaches provided more accurate results while
respecting the partial or complete lack of supervision. This encourages to continue
the investigation in these directions towards the real application of automatic image
processing for change detection and classification problems. This methods could provide
early detection to the user, which then could refine the result depending on its needs.
It is important to keep in mind that user is in the processing loop sooner or later. The
proposed approaches are extremely useful as first approximations of changes, and detect
changes that are highly trusted, which provide very few false detection.

Contributions

The principal contributions of the Thesis, more or less independently of their context,
can be summarized as follows:

• The introduction of truly hierarchical kernel-based clustering methods dealing
with overlapping clusters of arbitrary shapes, namely the Nested Support Vector
Clustering (NSVC).

• The development of a cluster validity measure handling hierarchical clusters of
arbitrary shape for the unsupervised selection of hyperparameters.

• The development of a cluster merging system which groups clusters that overlaps
in order to obtain fewer groups closer to the user needs.
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• The introduction of hierarchical entire solution path algorithms for lower computa-
tional burden in both clustering and semi-supervised novelty detection.

• The development of a low density criterion in unbalanced classification for the
unsupervised selection of hyperparameters.

• The development of a kernel-based subspace clustering method that exploits sparsity
and low-rank properties to identify multiple low-dimensional manifolds in the data.
It allowed the clustering of objects or faces of different subjects and the unsupervised
classification of hyperspectral images.

• The introduction of appropriate measures for the unsupervised selection of hyper-
parameters in non-linear subspace clustering.

• The study of semi-supervised classification, constrained spectral clustering and label
propagation in the context of one-class classification exploiting a graph of the data
structure.

Future perspectives

The further perspectives of this research are mostly on the interaction with the user, the
incorporation of more information from the data and the use of more complex sources of
data. Here are briefly presented the main points that would need to be further investigated
in order to overcome the present issues for novelty detection problems dealing with images
and the more specific challenges regarding remote sensing applications.

• Active learning strategies The interaction with the user is extremely important
in the applications. We have presented automatic and semi-automatic methods,
which provide an early detection results to a user. At that point the user might
be interested to interact with the machine to provide few but relevant information.
The machine selects ambiguous data where the information from the user would
impact the most the result. Among our proposed methods for parameter selection,
most of them can be exploited in an active learning fashion. In Chapter 6, the
samples identified as outliers between clusters and used for merging could be given
to the user in order to either confirm the merging or avoid the merging of the
clusters and refine their boundaries. In Chapter 7, our low density criterion selects
an initial solution, which can be refined by giving the user the samples used in
the criterion (samples along the boundary) and asking if they are from the same
class or not. This could allow to refine the selection of the appropriate parameter
defining the boundary. In Chapter 9, the user could interact during the iterations of
the optimization to confirm certain coefficients retrieved. If the coefficients are not
enough sparse, the sample is potentially an outlier or at the intersection between
classes. The user could help by forcing certain connections between samples to
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be removed. The out-of-sample strategy based on the residual of a collaborative
representation is a direct indicator of the ambiguity and novelty of the test sample,
which could be unveiled by the user.

• Image data considered as tensor In high dimensional images the spatial in-
formation should be incorporated in the clustering/classification process. The
spatial regularization can be either imposed by combining spatial and spectral
kernels [Camps-Valls et al., 2008] or by a spatial graph Laplacian regulariza-
tion [Camps-Valls et al., 2007]. The latter would allow more particular forms
of regularization such as non-local similarities [Buades et al., 2010]. More precisely,
in the collaborative representation used to extend our graph to new test samples,
the coefficients could be spatially smoothed based on the following

minCt‖Ct‖22 + ‖Φ(Xt)− Φ(X)Ct‖22 + CT
t LCt

where Ct are the retrieved coefficients and L is the spatial laplacian, which enforces
a smooth representation.

• Multi-modal sources The available sources of data for a given problem are very
often multiples. In remote sensing, a variety of sensors is covering the Earth and
could provide a valuable source of information if combined. This brings the challenge
of fusing sources with potentially different spatial and spectral resolutions, or even
different modalities (radar and optical). A multi-modal system would overcome the
limitations of each single modality, e.g. the cloud coverage in optical sensors and the
speckle noise in radar, allowing a more frequent coverage. The kernel methods can
help handling different sources via the kernels addition or product (concatenation
in feature space) [Camps-Valls et al., 2008], the projection in a common subspace
via kernel CCA [Chaudhuri et al., 2009, Volpi et al., 2013], a consensus among the
views [Bickel and Scheffer, 2004, Kumar et al., 2011], the multi-modal joint sparse
representation [Nguyen et al., 2011] or tensor analysis [Kolda and Bader, 2009]
which finds a joint optimal subspace.

• Alleviating co-registration One of the major limit about change detection is the
need for very accurate co-registration of the multi-temporal images. This provides
a pixel correspondence in time on which relies most of the algorithms. In the
case of non-registered images, the match between the different samples has to be
performed based on other assumptions. Some recent attempts have considered this
issue in remote sensing [Theiler and Wohlberg, 2012] which could benefit from graph
matching and domain adaptation methodologies [Tuia et al., 2013] to overcome
such issue.
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A Appendix A

A.1 Accuracy evaluation metrics

In order to evaluate the quality of a classification or detection result and to compare the
performances of different approaches, we can use different metrics providing a comple-
mentary view. They all rely on measuring the agreement between the predicted and the
true labels, but by different means.

Confusion matrix The Confusion matrix, also called Contingency table, is a matrix
where the correspondences between the predicted classes and the true labels (the ground
truth) are reported. It is of size nclass × nclass where the ground truth labels are in
columns and the predictions in rows. In the case of perfect predictions, the matrix is
diagonal. In this Thesis and in general for detection problems, the Confusion matrix is a
2× 2 matrix with a positive and a negative class defined as in Table A.1.

Truth

P
r
ed

ic
ti
o
n

Class 1 2 User acc.

1 n11 n12 n11/
∑

j n1j

2 n21 n22 n22/
∑

j n2j

Producer acc. n11/
∑

j nj1 n22/
∑

j nj1

Table A.1: Confusion table: correspondences between predicted and true labels in the
case of two classes.

False Alarm Rate (FAR) corresponds to the percentage of samples from class 1

detected as class 2, called error of “ ‘Type I”.

Missed Alarm Rate (MAR) corresponds to the percentage of samples from class 2

detected as class 1, called error of “Type II”. In change detection, the FAR relates to
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wrongly detected changes, while MAR relates to the missed changes.

Overall accuracy (OA) The Overall Accuracy (OA) is defined as the number of
correct predictions divided by the total number of samples:

OA =

∑
j njj

n
(A.1)

where n is the total number of predicted samples. This is the sum of the matrix diagonal
over the total number of samples. The OA is biased towards more frequent classes, which
may be problematic when assessing the performances in unbalanced class situations.

Missrate (MR) The missrate (MR) is the number of incorrectly classified samples
divided by the total number of samples. It is 1−OA, the opposite of OA.

Kappa statistic (κ) The Cohen’s Kappa statistic [Foody and Mathur, 2004] is used to
evaluate the number of samples correctly classified with respect to the number of samples
potentially classified correctly by chance.

κ =
p(k)− p(r)

1− p(r)
(A.2)

where p(k) is the agreement rate, corresponding to OA, and p(r) is the agreement due
to chance, corresponding to the sum of the product between the fractions of correctly
detected classes and the product between the fractions of correctly predicted classes.
Compared to OA, the κ measure allows to better cope with unbalanced classes.

F-score The F-score measure considers both the precision p = n22
(n22+n21) and the recall

r = n22
(n22+n12) of the predictions to compute the score. The F-score or balanced F-score

(F1 score) is the harmonic mean of precision and recall which can be interpreted as a
weighted average.

F − score = 2 · p · r
p+ r

(A.3)

F-score ranges between 0 and 1, with its best score at 1.

Receiver Operating Curve (ROC) The ROC curve is useful to evaluate a model in
detection problems. The curve is formed by the True Positive Rate (TPR) and the False
Positive Rate (FPR). The curve is connected at (TPR,FPR)=0 and (TPR,FPR)=1. The
perfect curve would be a TPR=1 for any FPR> 0. A curve where TPR linearly grows
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A.1. Accuracy evaluation metrics

with FPR is associated to a random prediction. A concave curve would mean a model
which performs worse than random (the prediction opposite to the model would be more
relevant).

Identifying clusters In clustering problems the results are the association of a cluster
identity Ω = {ω1, .., ωN} to each data sample. However, for better interpretation of the
result we often want to match these cluster indices to class labels Y = {y1, .., yN} from a
predefined groundtruth map. The Hungarian method [Kuhn, 1955] aims at converting
the cluster indices into the class labels by finding the best match possible between the
two. This assignment method tries to find the best match between nodes of a bipartite
graph. For the problem of cluster matching, the cost of the graph edges are inversely
related to the entries of a contingency table made between the two assignments.

Once the identification performed, the clustering purity is obtained as for the OA.

Normalized mutual information (NMI) The NMI [Yao, 2003] is used to evaluate
a clustering quality. NMI is defined as the mutual information between the cluster
assignments and the labeling of the dataset normalized by the arithmetic mean of the
maximum possible entropies of the empirical marginals.

NMI =
MI(Ω, Y )

(H(Ω) +H(Y ))/2
(A.4)

On the contrary to cluster purity, the normalization of the Mutual Information avoids to
increase when the number of clusters increases. NMI lies in the range [0, 1] such that the
higher the value, the better the clustering quality.

Adjusted rand index (aRI) The aRI [Hubert and Arabie, 1985] is a clustering quality
measure which is adjusted for the chance of grouping elements. It ranges between [−1, 1]

and is maximum for two exactly similar clustering solutions.

aRI =

∑
i,j −

(∑
i

(
ai
2

)∑
j

(bj
2

))
/
(
N
2

)
1
2

(∑
i

(
ai
2

)
+
∑

j

(bj
2

))
−
(∑

i

(
ai
2

)∑
j

(bj
2

))
/
(
N
2

) (A.5)

where ai =
∑

i nij and bj =
∑

j nij .
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B Appendix B

B.1 Landsat

B.1.1 Bastrop fires

In september 2011, the most important wildfires of Texas started near Bastrop, Texas,
USA. Strong winds and dry conditions caused the most destructive wildfire in Texas
history. The fire killed two people, destroyed over 1600 homes, and caused over 325

million in property damage.

The Bastrop fires and Bastrop fires 2010/11 image datasets consist in Landsat 5 TM
images having 6 spectral bands (from 450 nm to 2350 nm) at a spatial resolution of 30m
acquired near Bastrop in Texas, USA. Both datasets use an image taken a week after the
fire (11/09/2011) and differ in the image used as reference:

• Bastrop fires: the reference image has been acquired few days before (26/08/2011)
the fire. The considered subset is of size 785×929 pixels. A (MidInfraRed-Green-
Blue) composition representing well the fire is presented in Figure B.1.

• Bastrop fires 2010/11: the reference image has been acquired a year before
(03/10/2010) the fire. The considered subset is of size 780×1085 pixels. A (R-G-B)
composition is presented in Fig. B.2. It presents challenging additional vegetation
changes.
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(a) (b)

unchanged

changed

undefined

(c) (d)

Figure B.1: The Bastrop fires multitemporal dataset (a) a week before the fire and (b)
after the fire, (c) an official map1of the damages that helped setting (d) the groundtruth
map.

(a) (b)

Figure B.2: The Bastrop fires 2010/11 multitemporal dataset (a) a year before the fire
and (b) after the fire.

0Credits: Bastrop County Office of Emergency Management. Map can be downloaded at http:
//kut.org/wp-content/uploads/2011/09/BASTROP-MAP-2.jpg
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B.1. Landsat

B.1.2 Gloucester floods

The Gloucester floods dataset consists in two SPOT XS images acquired before and after
the floods in 2000 in the Gloucestershire in UK and made available in the context of the
2009 IEEE GRSS data fusion contest [Longbotham et al., 2012]. The considered subset
(around the city of Tewkesbury at the confluence of the Avon and Severn Rivers) is of size
800×1600 pixels with a spatial resolution of 20m and 3 spectral bands (NearInfraRed-
Red-Green). The two images are presented in Figure B.3. The groundtruth has been
established over the entire subset. The challenge in detecting the flood extent is due
to the noise in the post-flooding image, the limited information (only 3 bands) and the
various crop changes occurring on the ground.

unchanged

changed

undefined

(a) (b) (c)

(d) (e)

Figure B.3: The Gloucester floods multitemporal dataset from the Data Fusion Contest
(a) before and (b) after floods delimited in the groundtruth (c). The subset used in the
experiments is presented in (d) and (e).
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B.2 ROSIS

The Reflective Optics Spectrometric Imaging System (ROSIS) is an airborne spectrometer
in the multispectral region (430− 960 nm) with a spectral resolution of 4 nm per channel.
The spatial resolution is generally under the meter pixel-resolution. The following image
scene scenes over Pavia were provided by Prof. Paolo Gamba from the Telecommunications
and Remote Sensing Laboratory, Pavia university (Italy).

B.2.1 Pavia DFC

The Pavia DFC image was part of the GRSS Data Fusion Contest of 2008 [Licciardi
et al., 2009]. It is taken over the city of Pavia (Italy) with a spatial resolution of 1.3m.
Among the spectral bands, 102 are selected and used. The scene is 1400× 512 pixels and
contains 5 broad classes of interest (Buildings, Roads, Water, Vegetation and Shadows)
labeled over 206′009 pixels.

 
 

roads water vegetation shadows building

Figure B.4: The Pavia DFC hyperspectral dataset.
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B.2. ROSIS

B.2.2 Pavia center

The Pavia Center image2 over the city center of Pavia has the same spatial and spectral
resolution than Pavia DFC. The image subset is 731 × 328 pixels and has 9 classes
of interest, namely water, trees, meadows, bitumen, bare soil, asphalt, tiles, bricks and
shadows.

 
 

water

trees

meadows

bitumen

bare soil

asphalt

tiles

bricks

shadows

Figure B.5: The Pavia center hyperspectral dataset.

2The image can be downloaded from http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes
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B.3 Faces and objects databases

In this section, we present image samples from the different databases considered in some
of the experiments of Chapter 9: Yale B Extended, AR Faces, AT&T Faces, Sheffield
Faces, COIL-20 and USPS.

Yale B Extended The Yale B Extended face dataset contains frontal photos of 38

subjects under 64 different illuminations [Georghiades et al., 2001]. The cropped face
images of the first 10 persons, resized to 42× 48 pixels, are used. For this dataset, it has
been proven that the images of a single person lie close to a 9-D linear subspace [Basri
and Jacobs, 2003]. Image samples are presented in Figure B.6.

Figure B.6: Samples from the two first subjects in Yale B Extended face dataset [Georghi-
ades et al., 2001].

AR Faces The AR face database contains 4000 frontal images of 126 subjects. Each
subject is photographed in 26 images taken in two sessions [Martinez and Benavente, 1998].
In comparison to the Yale B Extended database, the AR database contains variations of
facial expressions, as well as of illumination. We consider the 20 first subjects and use
grayscale images cropped and resized to 55× 40 pixels. The images with occlusions (for
instance scarfs and sun glasses) have been left aside, resulting in 14 images per subject.
Image samples are presented in Figure B.7.

Figure B.7: Samples from the two first subjects in the AR Face database [Martinez and
Benavente, 1998]
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B.3. Faces and objects databases

AT&T Faces The AT&T (ex-ORL) database of faces contains 40 subjects in frontal
position with tolerance to certain movements [Samaria and Harter, 1994]. The images
contain 10 facial expressions and sometime show occlusions (for instance glasses). Images
of the 20 first subjects are used after being cropped and resized to 32× 32 pixels. Sample
of the images are presented in Figure B.8.

Figure B.8: Samples from the two first subjects in the AT&T (ex-ORL) database of
faces [Samaria and Harter, 1994]

Sheffield (ex-UMIST) The Sheffield (ex-UMIST) Face database contains 20 subjects
under poses from frontal to lateral (0 to 90◦) position [Graham and Allinson, 1998].
Each subject has between 19 and 48 images. The images are cropped and rescaled to
28 × 23 pixels. The database contains no occlusions nor variations in expressions or
illumination. This dataset presents non-linear characteristics with faces under varying
poses, as presented in Figure B.9 for the subject 1 and 5 of the database.

Figure B.9: Samples from subjects 1 and 5 in the Sheffield (ex-UMIST) Face
Database [Graham and Allinson, 1998].
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COIL Database The COIL-20 database [S. A. Nene and Murase, 1996] contains 1440

images of 20 objects rotated over 360◦. Each object is represented in 72 images. The
processed images are cropped and rescaled to 32× 32 pixels. The 20 objects and samples
of images for two objects are presented in Figure B.10.

Figure B.10: Top: the 20 objects in the COIL-20 database [S. A. Nene and Murase,
1996]. Bottom: image samples from objects 1 and 3.

USPS Digits The USPS hand-written digits recognition dataset are images of digits
from the US Postal Service [Hull, 1994]. We consider a subset composed of the digits 1

and 2, each one having 1100 samples, partially presented in Figure B.11.

Figure B.11: The first four rows illustrate samples of digit 1 and the following rows show
samples from digit 2 in the USPS hand-written digits dataset [Hull, 1994].
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C Appendix C

In this Appendix are presented some additional details on the results of the experiment 1

of Chapter 9.

C.1 Additional face & object clustering results

Trade-off between sparsity and low-rank properties The flexibility of our pro-
posed formulation has to adapt to the different types of subspaces. For dependent
subspaces, we observe a phase-transition phenomenon with subspace recovery starting
from a certain λ and above, as observed in [Wang et al., 2013a] and depicted in Figure C.1
(a). Indeed from λ = 1 and above, a low missrate (good clustering) is obtained. As
postulated, the best clustering is obtained for a certain trade-off between sparsity and
low-rankness, here at λ = 1. Interestingly, the phase transition phenomenon is reversed
when the representation error is more penalized (high αz), as observed in Figure C.1 (a).
A high penalty of the representation error would probably use too many samples with
some that are on a different subspace. In that situation, the low-rank constraint should
be preferred.

DB index and spectral gap sensitivity In Figure C.2 the spectral embeddings of
the subject 1 and 5 of the Sheffield Faces database (image samples in B.9) for different
σ values are presented. We clearly see the shrinkage of the clusters with σ decreasing.
The spread of the clusters is quantified by the DB index. Following the indication of
DB would lead to choose very small σ. Therefore, samples from different subspaces will
shrink onto similar clusters and it will be impossible to assign them correctly. The ideal
bandwidth should be around 0.4σ0 as observed in Figure C.3 where the missrate for all
the pairs of subjects in the Sheffield Faces dataset are represented for different RBF
kernel bandwidth.

In Figure C.1 (b), the 6 last eigenvalues can be observed for different σ. The eigenvalues
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Figure C.1: (a) Average missrate over all pairs of subjects for different values of λ in Yale
B Extended Faces. An inversed phase-transition phenomenon is observed, with the best
result obtained for αz = 2 and λ = 0.1. A large error should be tolerated to handle the
strong illuminations differences. (b) The 6 last eigenvalues for subject 1 and 5 in the
SHEFFIELD Faces database for different σ and λ = 10 and αz = µ2 = µ3 = 20.
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Figure C.2: The spectral embeddings of KLRSSC corresponding to different σ for λ = 10
and αz = µ2 = µ3 = 20. The clusters shrink with decreasing σ
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Figure C.3: Missrate of all the pairs of subjects in the SHEFFIELD Faces database for
different values of σ. The optimal σ value is around 0.4 · σ0.
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are the largest with σ = 0.4 · σ0 and decrease together with σ. This gives to the spectral
gap a bias towards large σ and prevents us from using it for parameter selection.

RBF and Polynomial kernels All the results with the RBF and the polynomial
kernel for the different datasets are presented in Figures C.4 and C.5. The RBF kernel
provides better results for all datasets and methods except the USPS digits dataset which
gets a slightly better missrate for the KLRSC and KLRSSC with the polynomial kernel.
The KSSC is on the contrary worse with the polynomial kernel.
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Figure C.4: Average missrate (the lower the better) over all pairs of subjects for various
number of random projections for 3 different datasets: Yale B Extended Faces, AR Faces
and AT&T Faces. The left column shows the results for the non-linear methods with the
RBF kernel. The right column shows the results for the non-linear methods with the
polynomial kernel.
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Figure C.5: Average missrate (the lower the better) over all pairs of subjects for various
number of random projections for 3 different datasets: Sheffield Faces, COIL-20 and
USPS-1&2. The left column shows the results for the non-linear methods with the RBF
kernel. The right column shows the results for the non-linear methods with the polynomial
kernel.
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