677 research outputs found

    A notion of graph likelihood and an infinite monkey theorem

    Full text link
    We play with a graph-theoretic analogue of the folklore infinite monkey theorem. We define a notion of graph likelihood as the probability that a given graph is constructed by a monkey in a number of time steps equal to the number of vertices. We present an algorithm to compute this graph invariant and closed formulas for some infinite classes. We have to leave the computational complexity of the likelihood as an open problem.Comment: 6 pages, 1 EPS figur

    Nonparametric Bayesian Image Segmentation

    Get PDF
    Image segmentation algorithms partition the set of pixels of an image into a specific number of different, spatially homogeneous groups. We propose a nonparametric Bayesian model for histogram clustering which automatically determines the number of segments when spatial smoothness constraints on the class assignments are enforced by a Markov Random Field. A Dirichlet process prior controls the level of resolution which corresponds to the number of clusters in data with a unique cluster structure. The resulting posterior is efficiently sampled by a variant of a conjugate-case sampling algorithm for Dirichlet process mixture models. Experimental results are provided for real-world gray value images, synthetic aperture radar images and magnetic resonance imaging dat

    Spectral Alignment of Networks

    Get PDF
    Network alignment refers to the problem of finding a bijective mapping across vertices of two or more graphs to maximize the number of overlapping edges and/or to minimize the number of mismatched interactions across networks. This paper introduces a network alignment algorithm inspired by eigenvector analysis which creates a simple relaxation for the underlying quadratic assignment problem. Our method relaxes binary assignment constraints along the leading eigenvector of an alignment matrix which captures the structure of matched and mismatched interactions across networks. Our proposed algorithm denoted by EigeAlign has two steps. First, it computes the Perron-Frobenius eigenvector of the alignment matrix. Second, it uses this eigenvector in a linear optimization framework of maximum weight bipartite matching to infer bijective mappings across vertices of two graphs. Unlike existing network alignment methods, EigenAlign considers both matched and mismatched interactions in its optimization and therefore, it is effective in aligning networks even with low similarity. We show that, when certain technical conditions hold, the relaxation given by EigenAlign is asymptotically exact over Erdos-Renyi graphs with high probability. Moreover, for modular network structures, we show that EigenAlign can be used to split the large quadratic assignment optimization into small subproblems, enabling the use of computationally expensive, but tight semidefinite relaxations over each subproblem. Through simulations, we show the effectiveness of the EigenAlign algorithm in aligning various network structures including Erdos-Renyi, power law, and stochastic block models, under different noise models. Finally, we apply EigenAlign to compare gene regulatory networks across human, fly and worm species which we infer by integrating genome-wide functional and physical genomics datasets from ENCODE and modENCODE consortia. EigenAlign infers conserved regulatory interactions across these species despite large evolutionary distances spanned. We find strong conservation of centrally-connected genes and some biological pathways, especially for human-fly comparisons

    Symbol acquisition for task-level planning

    Get PDF
    We consider the problem of how to plan efficiently in low-level, continuous state spaces with temporally abstract actions (or skills), by constructing abstract representations of the problem suitable for task-level planning.The central question this effort poses is which abstract representations are required to express and evaluate plans composed of sequences of skills. We show that classifiers can be used as a symbolic representation system, and that the ability to represent the preconditions and effects of an agent's skills is both necessary and sufficient for task-level planning.The resulting representations allow a reinforcement learning agent to acquire a symbolic representation appropriate for planning from experience

    Entropy-based parametric estimation of spike train statistics

    Full text link
    We consider the evolution of a network of neurons, focusing on the asymptotic behavior of spikes dynamics instead of membrane potential dynamics. The spike response is not sought as a deterministic response in this context, but as a conditional probability : "Reading out the code" consists of inferring such a probability. This probability is computed from empirical raster plots, by using the framework of thermodynamic formalism in ergodic theory. This gives us a parametric statistical model where the probability has the form of a Gibbs distribution. In this respect, this approach generalizes the seminal and profound work of Schneidman and collaborators. A minimal presentation of the formalism is reviewed here, while a general algorithmic estimation method is proposed yielding fast convergent implementations. It is also made explicit how several spike observables (entropy, rate, synchronizations, correlations) are given in closed-form from the parametric estimation. This paradigm does not only allow us to estimate the spike statistics, given a design choice, but also to compare different models, thus answering comparative questions about the neural code such as : "are correlations (or time synchrony or a given set of spike patterns, ..) significant with respect to rate coding only ?" A numerical validation of the method is proposed and the perspectives regarding spike-train code analysis are also discussed.Comment: 37 pages, 8 figures, submitte

    Towards a unified approach

    Get PDF
    "Decision-making in the presence of uncertainty is a pervasive computation. Latent variable decoding—inferring hidden causes underlying visible effects—is commonly observed in nature, and it is an unsolved challenge in modern machine learning. On many occasions, animals need to base their choices on uncertain evidence; for instance, when deciding whether to approach or avoid an obfuscated visual stimulus that could be either a prey or a predator. Yet, their strategies are, in general, poorly understood. In simple cases, these problems admit an optimal, explicit solution. However, in more complex real-life scenarios, it is difficult to determine the best possible behavior. The most common approach in modern machine learning relies on artificial neural networks—black boxes that map each input to an output. This input-output mapping depends on a large number of parameters, the weights of the synaptic connections, which are optimized during learning.(...)
    • …
    corecore