652 research outputs found

    A note on the stability of Toeplitz matrix inversion formulas

    Get PDF
    AbstractIn this paper, we consider the stability of the algorithms emerging from Toeplitz matrix inversion formulas. We show that if the Toeplitz matrix is nonsingular and well-conditioned, then they are numerically forward stable

    A weakly stable algorithm for general Toeplitz systems

    Full text link
    We show that a fast algorithm for the QR factorization of a Toeplitz or Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A. Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx = A^Tb, we obtain a weakly stable method for the solution of a nonsingular Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm

    Fast computation of the matrix exponential for a Toeplitz matrix

    Full text link
    The computation of the matrix exponential is a ubiquitous operation in numerical mathematics, and for a general, unstructured n×nn\times n matrix it can be computed in O(n3)\mathcal{O}(n^3) operations. An interesting problem arises if the input matrix is a Toeplitz matrix, for example as the result of discretizing integral equations with a time invariant kernel. In this case it is not obvious how to take advantage of the Toeplitz structure, as the exponential of a Toeplitz matrix is, in general, not a Toeplitz matrix itself. The main contribution of this work are fast algorithms for the computation of the Toeplitz matrix exponential. The algorithms have provable quadratic complexity if the spectrum is real, or sectorial, or more generally, if the imaginary parts of the rightmost eigenvalues do not vary too much. They may be efficient even outside these spectral constraints. They are based on the scaling and squaring framework, and their analysis connects classical results from rational approximation theory to matrices of low displacement rank. As an example, the developed methods are applied to Merton's jump-diffusion model for option pricing

    A Fast Algorithm for the Inversion of Quasiseparable Vandermonde-like Matrices

    Get PDF
    The results on Vandermonde-like matrices were introduced as a generalization of polynomial Vandermonde matrices, and the displacement structure of these matrices was used to derive an inversion formula. In this paper we first present a fast Gaussian elimination algorithm for the polynomial Vandermonde-like matrices. Later we use the said algorithm to derive fast inversion algorithms for quasiseparable, semiseparable and well-free Vandermonde-like matrices having O(n2)\mathcal{O}(n^2) complexity. To do so we identify structures of displacement operators in terms of generators and the recurrence relations(2-term and 3-term) between the columns of the basis transformation matrices for quasiseparable, semiseparable and well-free polynomials. Finally we present an O(n2)\mathcal{O}(n^2) algorithm to compute the inversion of quasiseparable Vandermonde-like matrices

    A Levinson-Galerkin algorithm for regularized trigonometric approximation

    Full text link
    Trigonometric polynomials are widely used for the approximation of a smooth function ff from a set of nonuniformly spaced samples {f(xj)}j=0N−1\{f(x_j)\}_{j=0}^{N-1}. If the samples are perturbed by noise, controlling the smoothness of the trigonometric approximation becomes an essential issue to avoid overfitting and underfitting of the data. Using the polynomial degree as regularization parameter we derive a multi-level algorithm that iteratively adapts to the least squares solution of optimal smoothness. The proposed algorithm computes the solution in at most O(NM+M2)\cal{O}(NM + M^2) operations (MM being the polynomial degree of the approximation) by solving a family of nested Toeplitz systems. It is shown how the presented method can be extended to multivariate trigonometric approximation. We demonstrate the performance of the algorithm by applying it in echocardiography to the recovery of the boundary of the Left Ventricle
    • …
    corecore