A Note on the Stability of Toeplitz Matrix Inversion Formulas

You-Wei Wen, Michael K. Ng and Wai-Ki Ching
Department of Mathematics, The University of Hong Kong
Pokfulam Road, Hong Kong
Hong LiU
Institute of Geology and Geophysics, Chinese Academy of Sciences
Beijing, P.R. China

(Received February 2003, revised and accepted November 2003)

Abstract

In this paper, we consider the stability of the algorithms emerging from Toeplitz matrix inversion formulas. We show that if the Toeplitz matrix is nonsingular and well-conditioned, then they are numerically forward stable. (c) 2004 Elsevier Litd. All rights reserved.

Keywords-Toeplitz matrix, Inversion formulas, Stability, Forward stable.

1. INTRODUCTION

In this paper, we consider Toeplitz matrix inversion formulas. Toeplitz systems occur in a variety of applications in applied science and engineering, see [1,2]. In these applications, one would like to construct the inverse of a Toeplitz matrix. By exploiting the structure of Toeplitz matrices T_{n}, Trench [3] and Gohberg and Semencul [4] used the first and last columns of the inverse of a Toeplitz matrix to reconstruct the whole inverse if $\left[T_{n}\right]_{0,0}^{-1} \neq 0$. In [5], an inversion formula was exhibited for every nonsingular Toeplitz matrix. The method requires the solution of two linear systems of equations (the so-called fundamental equations). In [6], Ben-Artzi and Shalom proved that three columns of the inverse of a Toeplitz matrix, when properly chosen, are always enough to reconstruct the inverse. Labahn and Shalom [7], and Ng, Rost and Wen [8] presented modifications of this result. Others' formulas using circulant type matrices were also presented in literature, see for instance [9]. The main aim of this note is to study the stability of the formulas presented in $[6-8]$. Our results show that they are numerically forward stable.

2. TOEPLITZ INVERSION FORMULAS

In this section, we review the formulas given in [6-8].
Theorem 1. (See [6].) Let $T_{n}=\left(t_{p-q}\right)_{p, q=0}^{n-1}$ be a Toeplitz matrix. If each of the systems of equations

$$
\begin{equation*}
T_{n} \mathbf{x}=\mathbf{e}_{0}, \quad T_{n} \mathbf{y}=\mathbf{e}_{k}, \quad \text { and } \quad T_{n} \mathbf{z}=\mathbf{e}_{k+1} \tag{1}
\end{equation*}
$$

[^0]are solvable and $x_{n-1-k} \neq 0$ for an integer $k(0 \leq k \leq n-1)$, where
$$
\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)^{t}, \quad \mathbf{y}=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)^{t}, \quad \mathbf{z}=\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)^{t},
$$
then T_{n} is nonsingular and
\[

$$
\begin{equation*}
T_{n}^{-1}=\frac{1}{x_{n-k-1}}\left(L_{1} U_{1}+L_{2} U_{2}\right), \tag{2}
\end{equation*}
$$

\]

where

$$
\begin{aligned}
& L_{\mathbf{1}}=\left(\begin{array}{cccc}
x_{0} & 0 & \cdots & 0 \\
x_{1} & x_{0} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
x_{n-1} & \cdots & x_{1} & x_{0}
\end{array}\right), \quad U_{1}=\left(\begin{array}{cccc}
y_{n-1} & y_{n-2}-z_{n-1} & \cdots & y_{0}-z_{1} \\
0 & y_{n-1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & y_{n-2}-z_{n-1} \\
0 & \cdots & 0 & y_{n-1}
\end{array}\right), \\
& L_{2}=\left(\begin{array}{cccc}
z_{0} & 0 & \cdots & 0 \\
z_{1}-y_{0} & z_{0} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
z_{n-1}-y_{n-2} & \cdots & z_{1}-y_{0} & z_{0}
\end{array}\right) \quad \text { and } \quad U_{2}=\left(\begin{array}{cccc}
0 & x_{n-1} & \cdots & x_{1} \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & x_{n-1} \\
0 & \cdots & 0 & 0
\end{array}\right) .
\end{aligned}
$$

This result was improved by Labahn and Shalom, [7]. In [8], the displacement equation is used to obtain similar results.

Theorem 2. (See [7].) The Toeplitz matrix $T_{n}=\left(t_{p-q}\right)_{p, q=0}^{n-1}$ is invertible if the systems of equations $T_{n} \mathbf{x}=\mathbf{e}_{0}$ and $T_{n} \mathbf{z}=\mathbf{e}_{n-l+1}$ are solvable, where l is such that $x_{l-1} \neq 0$ and $x_{q}=0$, for all $q \geq l$. The inverse of T_{n} is then given by (2), where $k=n-l$ and

$$
\begin{equation*}
\mathbf{y}=\left(Z_{n}-\mathbf{x}\left[t_{-1}, t_{-2}, \ldots, t_{1-n}, 0\right]\right)^{n-t} \mathbf{x}, \tag{3}
\end{equation*}
$$

where $Z_{n}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathrm{e}_{n-1}, 0\right)$.
Theorem 3. (See [8].) Let $T_{n}=\left(t_{p-q}\right)_{p, q=0}^{n-1}$ be a nonsingular Toeplitz matrix and $J_{n}=$ ($\mathbf{e}_{n-1}, \mathbf{e}_{n-2}, \ldots, \mathbf{e}_{0}$) be the $n \times n$ anti-identity matrix. Let \mathbf{x}, \mathbf{y} be the solution of the following equations $T_{n} \mathbf{x}=\mathbf{e}_{0}$ and $T_{n} \mathbf{y}=\mathbf{e}_{n-l-1}$ where $l(0<l \leq n-2)$ is the smallest positive integer such that $x_{l} \neq 0$ and $x_{q}=0$, for all $q<l$. Then the inverse of T_{n} is given by (2), where

$$
\begin{equation*}
\mathbf{z}=\frac{1}{\mu} J_{n}\left[\left(Z_{n}^{t}-\frac{1}{\mu}\left[t_{1}, t_{2}, \ldots, t_{n-1}, 0\right]^{t} \mathbf{x}^{t} Z_{n} J_{n}\right)^{l-1}\right]^{t} J_{n} Z_{n}^{t} \mathbf{x} \tag{4}
\end{equation*}
$$

$k=n-l-1$ and $\mu=\left[0, t_{n-1}, t_{n-2}, \ldots, t_{1}\right] \mathbf{x}$.

3. STABILITY ANALYSIS

In this section, we show that the Toeplitz inversion formulas presented in Section 2 are evaluation forward stable. An algorithm is called forward stable if for all well-conditioned problems, the computed solution $\tilde{\mathbf{x}}$ is close to the true solution \mathbf{x} in the sense that the relative error $\|\mathbf{x}-\tilde{\mathbf{x}}\|_{2} /\|\mathbf{x}\|_{2}$ is small. In the matrix computation, roundoff errors occur. Let $A, B \in \mathbb{C}^{n, n}$, and $\alpha \in \mathbb{C}$, if we neglect the $O\left(\varepsilon^{2}\right)$ terms, then for any floating-point arithmetic with machineprecision ε, there are

$$
\begin{aligned}
\mathrm{fl}(\alpha A) & =\alpha A+E, & & \|E\|_{F} \leq \varepsilon|\alpha|\|A\|_{2} \leq \varepsilon \sqrt{n}|\alpha|\|A\|_{2}, \\
\mathrm{fl}(A+B) & =A+B+E, & & \|E\|_{F} \leq \varepsilon\|A+B\|_{2} \leq \varepsilon \sqrt{n}\|A+B\|_{2}, \\
\mathrm{f}(A B) & =A B+E, & & \|E\|_{F} \leq \varepsilon n\|A\|_{F}\|B\|_{F},
\end{aligned}
$$

see [10]. According to the floating-point arithmetic, we have the following bound.

Lemma 1. Let $A \in \mathbb{C}^{n, n}$ and k is a positive integer. If we neglect the $O\left(\varepsilon^{2}\right)$ terms, then for any floating-point arithmetic with machine-precision ε, there are

$$
\begin{equation*}
\mathrm{fl}\left(A^{k}\right)=A^{k}+E, \quad\|E\|_{F} \leq k n \varepsilon\|A\|_{F}^{k} . \tag{5}
\end{equation*}
$$

Theorem 4. Let T_{n} be a nonsingular Toeplitz matrix and be well conditioned, then formula (2) presented in Theorems 1-3 is forward stable.
Proof. Assume that we have computed the solutions $\tilde{\mathbf{x}}, \tilde{\mathbf{y}}$, and $\tilde{\mathbf{z}}$ in (1) which are perturbed by the norm-wise relative errors bounded by $\tilde{\varepsilon}$

$$
\|\tilde{\mathbf{x}}\|_{2} \leq\|\mathbf{x}\|_{2}(1+\tilde{\varepsilon}), \quad\|\tilde{\mathbf{y}}\|_{2} \leq\|\mathbf{y}\|_{2}(1+\tilde{\varepsilon}), \quad\|\tilde{\mathbf{z}}\|_{2} \leq\|\mathbf{z}\|_{2}(1+\tilde{\varepsilon})
$$

Therefore, we have $\left\|L_{1}\right\|_{F} \leq \sqrt{n}\|\mathbf{x}\|_{2},\left\|L_{2}\right\|_{F} \leq \sqrt{n}\left(\|\mathbf{y}\|_{2}+\|\mathbf{z}\|_{2}\right),\left\|U_{1}\right\|_{F} \leq \sqrt{n}\left(\|\mathbf{y}\|_{2}+\|\mathbf{z}\|_{2}\right)$, and $\left\|U_{2}\right\|_{F} \leq \sqrt{n}\|\mathbf{x}\|_{2}$. Using the perturbed solutions $\tilde{\mathbf{x}}, \tilde{\mathbf{y}}$, and $\tilde{\mathbf{z}}$, the inversion formula (2) can be expressed as

$$
\begin{align*}
\tilde{T}_{n}^{-1} & =\mathrm{fl}\left(\frac{1}{x_{n-k-1}}\left(\tilde{L}_{1} \tilde{U}_{1}+\tilde{L}_{2} \tilde{U}_{2}\right)\right) \\
& =\mathrm{fl}\left(\frac{1}{x_{n-k-1}}\left(\left(L_{1}+\Delta L_{1}\right)\left(U_{1}+\Delta U_{1}\right)+\left(L_{2}+\Delta L_{2}\right)\left(U_{2}+\Delta U_{2}\right)\right)\right) \tag{6}\\
& =T_{n}^{-1}+\frac{1}{x_{n-k-1}}\left(\Delta L_{1} U_{1}+L_{1} \Delta U_{1}+\Delta L_{2} U_{2}+L_{2} \Delta U_{2}+E+F\right)+G
\end{align*}
$$

where E is the matrix containing the error which results from computing the matrix products, and F contains the error from subtracting the matrices, and G represents the error of the multiplication by $1 / x_{n-k-1}$. For the error matrices $\Delta L_{1}, \Delta U_{1}, \Delta L_{2}$, and ΔU_{2}, we have $\left\|\Delta U_{2}\right\|_{F} \leq\left\|\Delta L_{1}\right\|_{F} \leq \tilde{\varepsilon}\left\|L_{1}\right\|_{F} \leq \tilde{\varepsilon} \sqrt{n}\|\mathbf{x}\|_{2}$ and $\left\|\Delta U_{1}\right\|_{F} \leq \tilde{\varepsilon} \sqrt{n}\left(\|\mathbf{y}\|_{2}+\|\mathbf{z}\|_{2}\right)$ and $\left\|\Delta L_{2}\right\|_{F} \leq$ $\tilde{\varepsilon} \sqrt{n}\left(\|\mathbf{y}\|_{2}+\|\mathbf{z}\|_{2}\right)$. It follows that

$$
\begin{aligned}
& \|E\|_{2} \leq\|E\|_{F} \leq \varepsilon n\left(\left\|L_{1}\right\|_{F}\left\|U_{1}\right\|_{F}+\left\|L_{2}\right\|_{F}\left\|U_{2}\right\|_{F}\right) \leq 2 \varepsilon n^{2}\|\mathbf{x}\|_{2}\left(\|\mathbf{y}\|_{2}+\|\mathbf{z}\|_{2}\right) \\
& \|F\|_{2} \leq \varepsilon \sqrt{n}\left\|T_{n}^{-1}\right\|_{2}, \\
& \|G\|_{2} \leq\|G\|\left\|_{F} \leq \varepsilon \frac{1}{x_{n-k-1}}\left(\left\|L_{1}\right\|\left\|_{F} \mid U_{1}\right\|_{F}+\left\|L_{2}\right\|_{F}\left\|U_{2}\right\|_{F}\right) \leq \frac{2 \varepsilon n}{x_{n-k-1}}\right\| \mathbf{x} \|_{2}\left(\|\mathbf{y}\|_{2}+\|\mathbf{z}\|_{2}\right)
\end{aligned}
$$

Adding all these error bounds, we have

$$
\begin{equation*}
\left\|\tilde{T}_{n}^{-1}-T_{n}^{-1}\right\|_{2} \leq \frac{4 \tilde{\varepsilon} n+2 \varepsilon n+2 \varepsilon n^{2}}{x_{n-k-1}}\|\mathbf{x}\|_{2}\left(\|\mathbf{y}\|_{2}+\|\mathbf{z}\|_{2}\right)+\frac{\varepsilon \sqrt{n}}{x_{n-k-1}}\left\|T_{n}^{-1}\right\|_{2} \tag{7}
\end{equation*}
$$

Note that $T_{n} \mathbf{x}=\mathbf{e}_{0}$, then $\|\mathbf{x}\|_{2} \leq\left\|T_{n}^{-1}\right\|_{2}$, thus, the relative error is

$$
\begin{equation*}
\frac{\left\|\tilde{T}_{n}^{-1}-T_{n}^{-1}\right\|_{2}}{\left\|T_{n}^{-1}\right\|_{2}} \leq \frac{4 \tilde{\varepsilon} n+2 \varepsilon n+2 \varepsilon n^{2}}{x_{n-k-1}}\left(\|\mathbf{y}\|_{2}+\|\mathbf{z}\|_{2}\right)+\frac{\varepsilon \sqrt{n}}{x_{n-k-1}} \tag{8}
\end{equation*}
$$

As $\|\mathbf{y}\|_{2} \leq\left\|T_{n}^{-1}\right\|_{2},\|\mathbf{z}\|_{2} \leq\left\|T_{n}^{-1}\right\|_{2}$, and T_{n} are well conditioned, thus, $\|\mathbf{y}\|_{2}$ and $\|\mathbf{z}\|_{2}$ are finite. The formula presented in Theorem 1 is forward stable.

For Theorem 2, we first let $\mathbf{v}=\left(t_{-1}, t_{-2}, \ldots, t_{1-n}, 0\right)^{t}$. Then, we have

$$
\begin{aligned}
\mathrm{f}(\tilde{\mathbf{y}})=\mathrm{fl}\left[\left(Z_{n}-\tilde{\mathbf{x}} \mathbf{v}^{t}\right)^{n-l} \tilde{\mathbf{x}}\right] & =\mathrm{fl}\left\{\mathrm{f}\left[\left(Z_{n}-\tilde{\mathbf{x}} \mathbf{v}^{t}\right)^{n-l}\right] \tilde{\mathbf{x}}\right\} \\
& =\mathrm{ff}\left\{\left[\left(Z_{n}-\mathbf{x} \mathbf{v}^{t}\right)^{n-l}+E\right](\mathbf{x}+\Delta \mathbf{x})\right\} \\
& =\mathbf{y}+E \mathbf{x}+\left(Z_{n}-\mathbf{x} \mathbf{v}^{t}\right)^{n-l} \Delta \mathbf{x}+F,
\end{aligned}
$$

where E represents the error results from computing the matrix products $\left(Z_{n}-\mathbf{x} \mathbf{v}^{t}\right)^{n-l}, F$ contains the error from the products $\left(Z_{n}-\mathbf{x} \mathbf{v}^{t}\right)^{n-l}$ and \mathbf{x}. According to (5), we get

$$
\|E\|_{2} \leq\|E\|_{F} \leq(n-l) n \varepsilon\left(\left\|Z_{n}\right\|_{F}+\|\mathbf{x}\|_{2}\|\mathbf{v}\|_{2}\right)^{n-l} \leq(n-l) n \varepsilon\left(\sqrt{n}+\|\mathbf{x}\|_{2}\|\mathbf{v}\|_{2}\right)^{n-l}
$$

and

$$
\|F\|_{2} \leq\|F\|_{F} \leq n \varepsilon\left\|\left(Z_{n}-\mathbf{x v}^{t}\right)^{n-l}\right\|_{2}\|\mathbf{x}\|_{2} \leq n \varepsilon\left(\sqrt{n}+\|\mathbf{x}\|_{2}\|\mathbf{v}\|_{2}\right)^{n-l}\|\mathbf{x}\|_{2}
$$

It follows that

$$
\begin{aligned}
\|\tilde{\mathbf{y}}-\mathbf{y}\|_{2} \leq & \left\|E \mathbf{x}+\left(Z_{n}-\mathbf{x v}^{t}\right)^{n-l} \Delta \mathbf{x}+F\right\|_{2} \\
\leq & \|E\|_{2}\|\mathbf{x}\|_{2}+\left\|\left(Z_{n}-\mathbf{x}^{t}\right)^{n-l}\right\|\left\|_{2}\right\| \Delta \mathbf{x}\left\|_{2}+\right\| F \|_{2} \\
\leq & (n-l) n \varepsilon\left(\sqrt{n}+\|\mathbf{x}\|_{2}\|\mathbf{v}\|_{2}\right)^{n-l}\|\mathbf{x}\|_{2}+\tilde{\varepsilon}\left(\sqrt{n}+\|\mathbf{x}\|_{2}\|\mathbf{v}\|_{2}\right)^{n-l}\|\mathbf{x}\|_{2} \\
& +n \varepsilon\left(\sqrt{n}+\|\mathbf{x}\|_{2}\|\mathbf{v}\|_{2}\right)^{n-l}\|\mathbf{x}\|_{2} \\
= & ((n-l+1) n \varepsilon+\tilde{\varepsilon})\left(\sqrt{n}+\|\mathbf{x}\|_{2}\|\mathbf{v}\|_{2}\right)^{n-l}\|\mathbf{x}\|_{2}
\end{aligned}
$$

It is easy to show that $\|\mathbf{v}\|_{2} \leq\left\|T_{n}\right\|_{2}$. Since $T_{n} \mathbf{x}=\mathbf{e}_{0}$ and $\|\mathbf{x}\|_{2} \leq\left\|T_{n}^{-1}\right\|_{2}$, both $\|\mathbf{x}\|_{2}$ and $\|\mathbf{v}\|_{2}$ are bounded by the condition number $\kappa\left(T_{n}\right)$ of T_{n}. We obtain

$$
\|\tilde{\mathbf{y}}-\mathbf{y}\|_{2} \leq((n-l+1) n \varepsilon+\tilde{\varepsilon})\left(\sqrt{n}+\kappa\left(T_{n}\right)\right)^{n-l}\|\mathbf{x}\|_{2}
$$

For the error matrices ΔU_{1} and ΔL_{2} in (6), we have

$$
\left\|\Delta U_{1}\right\|_{F} \leq \sqrt{n}((n-l+1) n \varepsilon+\tilde{\varepsilon})\left(\sqrt{n}+\kappa\left(T_{n}\right)\right)^{n-l}\|\mathbf{x}\|_{2}+\tilde{\varepsilon} \sqrt{n}\|\mathbf{z}\|_{2}
$$

and

$$
\left\|\Delta L_{2}\right\|_{F} \leq \sqrt{n}((n-l+1) n \varepsilon+\tilde{\varepsilon})\left(\sqrt{n}+\kappa\left(T_{n}\right)\right)^{n-l}\|\mathbf{x}\|_{2}+\tilde{\varepsilon} \sqrt{n}\|\mathbf{z}\|_{2}
$$

Adding all error bounds in (6), we show that the formula presented in Theorem 2 is also forward stable.

Finally, for Theorem 3, we let

$$
\mathbf{w}=\frac{1}{\mu} J_{n} Z_{n}^{t} \mathbf{x} \quad \text { and } \quad \mathbf{u}=\left[t_{1}, t_{2}, \ldots, t_{n-1}, 0\right]^{t}
$$

Then we have $\mathbf{z}=J_{n}\left[\left(Z_{n}^{t}-\mathbf{u w}^{t}\right)^{l-1}\right]^{t} \mathbf{w}$ with $\mu=\left[0, t_{n-1}, t_{n-2}, \ldots, t_{1}\right] \mathbf{x}$ and $|\tilde{\mu}-\mu|=|f(\mu)-\mu| \leq$ $\tilde{\varepsilon} n\|u\|_{2}\|\mathbf{x}\|_{2}$. Next, we compute

$$
\begin{aligned}
\|\mathrm{f}(\mathbf{w})-\mathbf{w}\|_{2}=\left\|\frac{1}{\tilde{\mu}} J_{n} Z_{n}^{t} \tilde{\mathbf{x}}-\frac{1}{\mu} J_{n} Z_{n}^{t} \mathbf{x}\right\|_{2} & =\left\|\frac{1}{\mu+\Delta \mu} J_{n} Z_{n}^{t}(\mathbf{x}+\Delta \mathbf{x})-\frac{1}{\mu} J_{n} Z_{n}^{t} \mathbf{x}\right\|_{2} \\
& =\left\|\frac{\Delta \mu}{(\mu+\Delta \mu) \mu} J_{n} Z_{N}^{t} \mathbf{x}+\frac{1}{\mu+\Delta \mu} J_{n} Z_{n}^{t} \Delta \mathbf{x}\right\|_{2} \\
& \leq\left\|\frac{\Delta \mu}{(\mu+\Delta \mu) \mu} J_{n} Z_{n}^{t} \mathbf{x}\right\|_{2}+\left\|\frac{1}{\mu+\Delta \mu} J_{n} Z_{n}^{t} \Delta \mathbf{x}\right\|_{2} \\
& \leq \frac{\Delta \mu}{(|\mu|-|\Delta \mu|)|\mu|} \left\lvert\, \mathbf{x}\left\|_{2}+\frac{\tilde{\varepsilon}}{|\mu|-|\Delta \mu|}\right\| \mathbf{x}\right. \|_{2} \\
& \leq \frac{\tilde{\varepsilon}|\mu|+\tilde{\varepsilon} n\|\mathbf{u}\|_{2}\|\mathbf{x}\|_{2}}{\left(|\mu|-\tilde{\varepsilon} n\|\mathbf{u}\|_{2}| | \mathbf{x} \mid \|_{2}\right)|\mu|}\|\mathbf{x}\|_{2}
\end{aligned}
$$

Using the fact that $\|\mathbf{w}\|_{2}=(1 /|\mu|)\|\mathbf{x}\|_{2},\|\mathbf{u}\|_{2} \leq\left\|T_{n}\right\|_{2}$, and $\|\mathbf{x}\|_{2} \leq\left\|T_{n}^{-1}\right\|_{2}$, we have

$$
\begin{aligned}
\|\tilde{\mathbf{z}}-\mathbf{z}\|_{2} & \leq\left(\ln \varepsilon\|\mathbf{w}\|_{2}+\frac{\tilde{\varepsilon}|\mu|+\bar{\varepsilon} n\|\mathbf{u}\|\|\mathbf{x}\|_{2}}{\left(|\mu|-\tilde{\varepsilon} n\|\mathbf{u}\|_{2}\|\mathbf{x}\|_{2}\right)|\mu|}\|\mathbf{x}\|_{2}\right)\left(\sqrt{n}+\|\mathbf{u}\|_{2}\|\mathbf{w}\|_{2}\right)^{l-1} \\
& \leq\left(\frac{\ln \varepsilon}{|\mu|}+\frac{\tilde{\varepsilon}|\mu|+\tilde{\varepsilon} n \kappa\left(T_{n}\right)}{\left(|\mu|-\tilde{\varepsilon} n \kappa\left(T_{n}\right)\right)|\mu|}\right)\left(\sqrt{n}+\frac{1}{|\mu|} \kappa\left(T_{n}\right)\right)^{l-1}\|\mathbf{x}\|_{2}
\end{aligned}
$$

We change the bounds for ΔU_{1} and ΔL_{2} in (6), the formula presented in Theorem 3 can be shown to be forward stable.

REFERENCES

1. R. Chan and M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Review 38, 427-482, (1996).
2. W. Ching, Iterative Methods for Queuing and Manufacturing Systems, Springer Mathematics Monograph, Springer, London, (2001).
3. W. Trench, An algorithm for the inversion of finite Toeplitz matrices, J. Soc. Indust. Appl. Math. 12, 515-522, (1964).
4. I. Gohberg and A. Semencul, On the inversion of finite Toeplitz matrices and their continuous analogs (in Russian), Math. Issled. 7 (2), 201-223, (1972).
5. G. Heinig and K. Rost, Algebraic methods for Toeplitz-like matrices and operators, In Operator Theory: Advances and Applications, Volume 13, Birkhäuser, Boston, MA, (1984).
6. A. Ben-Artzi and T. Shalom, On inversion of Toeplitz and close to Toeplitz matrices, Linear Algebra Appl. 75, 173-192, (1986).
7. G. Labahn and T. Shalom, Inversion of Toeplitz matrices with only two standard equations, Linear Algebra Appl. 175, 143-158, (1992).
8. M. Ng, K. Rost and Y. Wen, On inversion of Toeplitz matrices, Linear Algebra Appl. 348, 145-151, (2002).
9. G. Ammar and P. Gader, A variant of the Gohberg-Semencul formulas involving circulant matrices, SIAM J. Matrix Anal. Appl. 12, 534-540, (1991).
.0. G. Golub and C. van Loan, Matrix Computations, Second Edition, Johns Hopkins U.P., Baltimore, MD, (1989).

[^0]: Research supported by RGC Grant Nos. HKU7130/02P and HKU7046/03P.
 Research supported by GD-NSF Grant No. 032475 and CAS Grant No. KZC1-SW-18.

