695 research outputs found

    Bounds on the Automata Size for Presburger Arithmetic

    Full text link
    Automata provide a decision procedure for Presburger arithmetic. However, until now only crude lower and upper bounds were known on the sizes of the automata produced by this approach. In this paper, we prove an upper bound on the the number of states of the minimal deterministic automaton for a Presburger arithmetic formula. This bound depends on the length of the formula and the quantifiers occurring in the formula. The upper bound is established by comparing the automata for Presburger arithmetic formulas with the formulas produced by a quantifier elimination method. We also show that our bound is tight, even for nondeterministic automata. Moreover, we provide optimal automata constructions for linear equations and inequations

    Elliptic divisibility sequences and undecidable problems about rational points

    Full text link
    Julia Robinson has given a first-order definition of the rational integers Z in the rational numbers Q by a formula (\forall \exists \forall \exists)(F=0) where the \forall-quantifiers run over a total of 8 variables, and where F is a polynomial. This implies that the \Sigma_5-theory of Q is undecidable. We prove that a conjecture about elliptic curves provides an interpretation of Z in Q with quantifier complexity \forall \exists, involving only one universally quantified variable. This improves the complexity of defining Z in Q in two ways, and implies that the \Sigma_3-theory, and even the \Pi_2-theory, of Q is undecidable (recall that Hilbert's Tenth Problem for Q is the question whether the \Sigma_1-theory of Q is undecidable). In short, granting the conjecture, there is a one-parameter family of hypersurfaces over Q for which one cannot decide whether or not they all have a rational point. The conjecture is related to properties of elliptic divisibility sequences on an elliptic curve and its image under rational 2-descent, namely existence of primitive divisors in suitable residue classes, and we discuss how to prove weaker-in-density versions of the conjecture and present some heuristics.Comment: 39 pages, uses calrsfs. 3rd version: many small changes, change of titl

    Tree-width for first order formulae

    Get PDF
    We introduce tree-width for first order formulae \phi, fotw(\phi). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we show that on classes of formulae of bounded fotw, model checking is fixed parameter tractable, with parameter the length of the formula. This is done by translating a formula \phi\ with fotw(\phi)<k into a formula of the k-variable fragment L^k of first order logic. For fixed k, the question whether a given first order formula is equivalent to an L^k formula is undecidable. In contrast, the classes of first order formulae with bounded fotw are fragments of first order logic for which the equivalence is decidable. Our notion of tree-width generalises tree-width of conjunctive queries to arbitrary formulae of first order logic by taking into account the quantifier interaction in a formula. Moreover, it is more powerful than the notion of elimination-width of quantified constraint formulae, defined by Chen and Dalmau (CSL 2005): for quantified constraint formulae, both bounded elimination-width and bounded fotw allow for model checking in polynomial time. We prove that fotw of a quantified constraint formula \phi\ is bounded by the elimination-width of \phi, and we exhibit a class of quantified constraint formulae with bounded fotw, that has unbounded elimination-width. A similar comparison holds for strict tree-width of non-recursive stratified datalog as defined by Flum, Frick, and Grohe (JACM 49, 2002). Finally, we show that fotw has a characterization in terms of a cops and robbers game without monotonicity cost

    Beyond Q-Resolution and Prenex Form: A Proof System for Quantified Constraint Satisfaction

    Get PDF
    We consider the quantified constraint satisfaction problem (QCSP) which is to decide, given a structure and a first-order sentence (not assumed here to be in prenex form) built from conjunction and quantification, whether or not the sentence is true on the structure. We present a proof system for certifying the falsity of QCSP instances and develop its basic theory; for instance, we provide an algorithmic interpretation of its behavior. Our proof system places the established Q-resolution proof system in a broader context, and also allows us to derive QCSP tractability results

    The First-Order Theory of Sets with Cardinality Constraints is Decidable

    Full text link
    We show that the decidability of the first-order theory of the language that combines Boolean algebras of sets of uninterpreted elements with Presburger arithmetic operations. We thereby disprove a recent conjecture that this theory is undecidable. Our language allows relating the cardinalities of sets to the values of integer variables, and can distinguish finite and infinite sets. We use quantifier elimination to show the decidability and obtain an elementary upper bound on the complexity. Precise program analyses can use our decidability result to verify representation invariants of data structures that use an integer field to represent the number of stored elements.Comment: 18 page
    corecore