3,106 research outputs found

    GW method with the self-consistent Sternheimer equation

    Full text link
    We propose a novel approach to quasiparticle GW calculations which does not require the computation of unoccupied electronic states. In our approach the screened Coulomb interaction is evaluated by solving self-consistent linear-response Sternheimer equations, and the noninteracting Green's function is evaluated by solving inhomogeneous linear systems. The frequency-dependence of the screened Coulomb interaction is explicitly taken into account. In order to avoid the singularities of the screened Coulomb interaction the calculations are performed along the imaginary axis, and the results are analytically continued to the real axis through Pade' approximants. As a proof of concept we implemented the proposed methodology within the empirical pseudopotential formalism and we validated our implementation using silicon as a test case. We examine the advantages and limitations of our method and describe promising future directions.Comment: 18 pages, 6 figure

    Controllability and Fraction of Leaders in Infinite Network

    Full text link
    In this paper, we study controllability of a network of linear single-integrator agents when the network size goes to infinity. We first investigate the effect of increasing size by injecting an input at every node and requiring that network controllability Gramian remain well-conditioned with the increasing dimension. We provide theoretical justification to the intuition that high degree nodes pose a challenge to network controllability. In particular, the controllability Gramian for the networks with bounded maximum degrees is shown to remain well-conditioned even as the network size goes to infinity. In the canonical cases of star, chain and ring networks, we also provide closed-form expressions which bound the condition number of the controllability Gramian in terms of the network size. We next consider the effect of the choice and number of leader nodes by actuating only a subset of nodes and considering the least eigenvalue of the Gramian as the network size increases. Accordingly, while a directed star topology can never be made controllable for all sizes by injecting an input just at a fraction f<1f<1 of nodes; for path or cycle networks, the designer can actuate a non-zero fraction of nodes and spread them throughout the network in such way that the least eigenvalue of the Gramians remain bounded away from zero with the increasing size. The results offer interesting insights on the challenges of control in large networks and with high-degree nodes.Comment: 6 pages, 3 figures, to appear in 2014 IEEE CD

    Finite size scaling for quantum criticality using the finite-element method

    Full text link
    Finite size scaling for the Schr\"{o}dinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite element method was shown to be a powerful numerical method for ab initio electronic structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, density functional theory under the local density approximation, and an "exact"' formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.Comment: 15 pages, 19 figures, revision based on suggestions by referee, accepted in Phys. Rev.

    Provably convergent Newton-Raphson methods for recovering primitive variables with applications to physical-constraint-preserving Hermite WENO schemes for relativistic hydrodynamics

    Full text link
    The relativistic hydrodynamics (RHD) equations have three crucial intrinsic physical constraints on the primitive variables: positivity of pressure and density, and subluminal fluid velocity. However, numerical simulations can violate these constraints, leading to nonphysical results or even simulation failure. Designing genuinely physical-constraint-preserving (PCP) schemes is very difficult, as the primitive variables cannot be explicitly reformulated using conservative variables due to relativistic effects. In this paper, we propose three efficient Newton--Raphson (NR) methods for robustly recovering primitive variables from conservative variables. Importantly, we rigorously prove that these NR methods are always convergent and PCP, meaning they preserve the physical constraints throughout the NR iterations. The discovery of these robust NR methods and their PCP convergence analyses are highly nontrivial and technical. As an application, we apply the proposed NR methods to design PCP finite volume Hermite weighted essentially non-oscillatory (HWENO) schemes for solving the RHD equations. Our PCP HWENO schemes incorporate high-order HWENO reconstruction, a PCP limiter, and strong-stability-preserving time discretization. We rigorously prove the PCP property of the fully discrete schemes using convex decomposition techniques. Moreover, we suggest the characteristic decomposition with rescaled eigenvectors and scale-invariant nonlinear weights to enhance the performance of the HWENO schemes in simulating large-scale RHD problems. Several demanding numerical tests are conducted to demonstrate the robustness, accuracy, and high resolution of the proposed PCP HWENO schemes and to validate the efficiency of our NR methods.Comment: 49 page

    An adaptive fixed-mesh ALE method for free surface flows

    Get PDF
    In this work we present a Fixed-Mesh ALE method for the numerical simulation of free surface flows capable of using an adaptive finite element mesh covering a background domain. This mesh is successively refined and unrefined at each time step in order to focus the computational effort on the spatial regions where it is required. Some of the main ingredients of the formulation are the use of an Arbitrary-Lagrangian–Eulerian formulation for computing temporal derivatives, the use of stabilization terms for stabilizing convection, stabilizing the lack of compatibility between velocity and pressure interpolation spaces, and stabilizing the ill-conditioning introduced by the cuts on the background finite element mesh, and the coupling of the algorithm with an adaptive mesh refinement procedure suitable for running on distributed memory environments. Algorithmic steps for the projection between meshes are presented together with the algebraic fractional step approach used for improving the condition number of the linear systems to be solved. The method is tested in several numerical examples. The expected convergence rates both in space and time are observed. Smooth solution fields for both velocity and pressure are obtained (as a result of the contribution of the stabilization terms). Finally, a good agreement between the numerical results and the reference experimental data is obtained.Postprint (published version

    Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization

    Get PDF
    Interior point methods provide an attractive class of approaches for solving linear, quadratic and nonlinear programming problems, due to their excellent efficiency and wide applicability. In this paper, we consider PDE-constrained optimization problems with bound constraints on the state and control variables, and their representation on the discrete level as quadratic programming problems. To tackle complex problems and achieve high accuracy in the solution, one is required to solve matrix systems of huge scale resulting from Newton iteration, and hence fast and robust methods for these systems are required. We present preconditioned iterative techniques for solving a number of these problems using Krylov subspace methods, considering in what circumstances one may predict rapid convergence of the solvers in theory, as well as the solutions observed from practical computations

    Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs

    Full text link
    We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors attached to the body. Since the problem is heavily under-constrained, previous methods either use a large number of sensors, which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework to fit the model to orientation and acceleration measurements over multiple frames. The resulting tracker Sparse Inertial Poser (SIP) enables 3D human pose estimation using only 6 sensors (attached to the wrists, lower legs, back and head) and works for arbitrary human motions. Experiments on the recently released TNT15 dataset show that, using the same number of sensors, SIP achieves higher accuracy than the dataset baseline without using any video data. We further demonstrate the effectiveness of SIP on newly recorded challenging motions in outdoor scenarios such as climbing or jumping over a wall.Comment: 12 pages, Accepted at Eurographics 201

    Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    Get PDF
    We present a theoretical analysis of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Our analysis places no restrictions on the length scales of the viscous and thermal boundary layer thicknesses δs\delta_\mathrm{s} and δt\delta_\mathrm{t} relative to the particle radius aa, but it assumes the particle to be small in comparison to the acoustic wavelength λ\lambda. This is the limit relevant to scattering of sound and ultrasound waves from micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. This phenomenon may possibly be exploited in handling of submicrometer-sized particles such as bacteria and vira in lab-on-a-chip systems.Comment: Revtex, 23 pages, 4 eps figure
    • …
    corecore