11,857 research outputs found

    Converting between quadrilateral and standard solution sets in normal surface theory

    Get PDF
    The enumeration of normal surfaces is a crucial but very slow operation in algorithmic 3-manifold topology. At the heart of this operation is a polytope vertex enumeration in a high-dimensional space (standard coordinates). Tollefson's Q-theory speeds up this operation by using a much smaller space (quadrilateral coordinates), at the cost of a reduced solution set that might not always be sufficient for our needs. In this paper we present algorithms for converting between solution sets in quadrilateral and standard coordinates. As a consequence we obtain a new algorithm for enumerating all standard vertex normal surfaces, yielding both the speed of quadrilateral coordinates and the wider applicability of standard coordinates. Experimentation with the software package Regina shows this new algorithm to be extremely fast in practice, improving speed for large cases by factors from thousands up to millions.Comment: 55 pages, 10 figures; v2: minor fixes only, plus a reformat for the journal styl

    Census of Planar Maps: From the One-Matrix Model Solution to a Combinatorial Proof

    Full text link
    We consider the problem of enumeration of planar maps and revisit its one-matrix model solution in the light of recent combinatorial techniques involving conjugated trees. We adapt and generalize these techniques so as to give an alternative and purely combinatorial solution to the problem of counting arbitrary planar maps with prescribed vertex degrees.Comment: 29 pages, 14 figures, tex, harvmac, eps

    Combinatorics of bicubic maps with hard particles

    Get PDF
    We present a purely combinatorial solution of the problem of enumerating planar bicubic maps with hard particles. This is done by use of a bijection with a particular class of blossom trees with particles, obtained by an appropriate cutting of the maps. Although these trees have no simple local characterization, we prove that their enumeration may be performed upon introducing a larger class of "admissible" trees with possibly doubly-occupied edges and summing them with appropriate signed weights. The proof relies on an extension of the cutting procedure allowing for the presence on the maps of special non-sectile edges. The admissible trees are characterized by simple local rules, allowing eventually for an exact enumeration of planar bicubic maps with hard particles. We also discuss generalizations for maps with particles subject to more general exclusion rules and show how to re-derive the enumeration of quartic maps with Ising spins in the present framework of admissible trees. We finally comment on a possible interpretation in terms of branching processes.Comment: 41 pages, 19 figures, tex, lanlmac, hyperbasics, epsf. Introduction and discussion/conclusion extended, minor corrections, references adde

    Combinatorics of Hard Particles on Planar Graphs

    Full text link
    We revisit the problem of hard particles on planar random tetravalent graphs in view of recent combinatorial techniques relating planar diagrams to decorated trees. We show how to recover the two-matrix model solution to this problem in this purely combinatorial language.Comment: 35 pages, 20 figures, tex, harvmac, eps

    A simple model of trees for unicellular maps

    Get PDF
    We consider unicellular maps, or polygon gluings, of fixed genus. A few years ago the first author gave a recursive bijection transforming unicellular maps into trees, explaining the presence of Catalan numbers in counting formulas for these objects. In this paper, we give another bijection that explicitly describes the "recursive part" of the first bijection. As a result we obtain a very simple description of unicellular maps as pairs made by a plane tree and a permutation-like structure. All the previously known formulas follow as an immediate corollary or easy exercise, thus giving a bijective proof for each of them, in a unified way. For some of these formulas, this is the first bijective proof, e.g. the Harer-Zagier recurrence formula, the Lehman-Walsh formula and the Goupil-Schaeffer formula. We also discuss several applications of our construction: we obtain a new proof of an identity related to covered maps due to Bernardi and the first author, and thanks to previous work of the second author, we give a new expression for Stanley character polynomials, which evaluate irreducible characters of the symmetric group. Finally, we show that our techniques apply partially to unicellular 3-constellations and to related objects that we call quasi-constellations.Comment: v5: minor revision after reviewers comments, 33 pages, added a refinement by degree of the Harer-Zagier formula and more details in some proof

    Relating ordinary and fully simple maps via monotone Hurwitz numbers

    Full text link
    A direct relation between the enumeration of ordinary maps and that of fully simple maps first appeared in the work of the first and last authors. The relation is via monotone Hurwitz numbers and was originally proved using Weingarten calculus for matrix integrals. The goal of this paper is to present two independent proofs that are purely combinatorial and generalise in various directions, such as to the setting of stuffed maps and hypermaps. The main motivation to understand the relation between ordinary and fully simple maps is the fact that it could shed light on fundamental, yet still not well-understood, problems in free probability and topological recursion.Comment: 19 pages, 7 figure
    • …
    corecore