We consider unicellular maps, or polygon gluings, of fixed genus. A few years
ago the first author gave a recursive bijection transforming unicellular maps
into trees, explaining the presence of Catalan numbers in counting formulas for
these objects. In this paper, we give another bijection that explicitly
describes the "recursive part" of the first bijection. As a result we obtain a
very simple description of unicellular maps as pairs made by a plane tree and a
permutation-like structure. All the previously known formulas follow as an
immediate corollary or easy exercise, thus giving a bijective proof for each of
them, in a unified way. For some of these formulas, this is the first bijective
proof, e.g. the Harer-Zagier recurrence formula, the Lehman-Walsh formula and
the Goupil-Schaeffer formula. We also discuss several applications of our
construction: we obtain a new proof of an identity related to covered maps due
to Bernardi and the first author, and thanks to previous work of the second
author, we give a new expression for Stanley character polynomials, which
evaluate irreducible characters of the symmetric group. Finally, we show that
our techniques apply partially to unicellular 3-constellations and to related
objects that we call quasi-constellations.Comment: v5: minor revision after reviewers comments, 33 pages, added a
refinement by degree of the Harer-Zagier formula and more details in some
proof