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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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A simple model of trees for unicellular maps
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Abstract. We consider unicellular maps, or polygon gluings, of fixed genus. In FPSAC ’09 the first author gave a
recursive bijection transforming unicellular maps into trees, explaining the presence of Catalan numbers in counting
formulas for these objects. In this paper, we give another bijection that explicitly describes the “recursive part” of
the first bijection. As a result we obtain a very simple description of unicellular maps as pairs made by a plane
tree and a permutation-like structure. All the previously known formulas follow as an immediate corollary or easy
exercise, thus giving a bijective proof for each of them, in a unified way. For some of these formulas, this is the first
bijective proof, e.g. the Harer-Zagier recurrence formula, or the Lehman-Walsh/Goupil-Schaeffer formulas. Thanks
to previous work of the second author this also leads us to a new expression for Stanley character polynomials, which
evaluate irreducible characters of the symmetric group.

Résumé. Nous considérons des cartes orientées à une face de genre fixé. À SFCA’09 le premier auteur a introduit une
bijection récursive envoyant une carte unicellulaire vers un arbre, ce qui permet d’obtenir des formules énumératives
pour les cartes à une face (et en particulier la présence des nombres de Catalan). Dans l’article ici présent, et en
nous appuyant sur la bijection ci-dessus, nous obtenons une incarnation très simple des cartes à une face comme des
paires formées d’un arbre plan et d’une permutation d’un certain type. Toutes les formules précédemment connues
découlent aisément de cette nouvelle incarnation, donnant des preuves bijectives dans un cadre unifié. Pour certaines
de ces formules, telles que la récurrence de Harer-Zagier ou les formules de Lehman-Walsh/Goupil-Schaeffer, nous
obtenons la première preuve bijective connue. Par ailleurs, en combinant notre approche avec des travaux du second
auteur, nous obtenons une nouvelle expression pour les polynômes de Stanley qui donnent certaines évaluations des
caractères du groupe symétrique.

Keywords: one-face map, Stanley character polynomial, bijection, Harer-Zagier formula, Rémy’s bijection.

1 Introduction
A unicellular map is a connected graph embedded in a surface in such a way that the complement of
the graph is a topological disk. These objects have appeared frequently in combinatorics in the last forty
years, in relation with the general theory of map enumeration, but also with the representation theory of
the symmetric group, the study of permutation factorizations, or the study of moduli spaces of curves. All
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these connections have turned the enumeration of unicellular maps into an important research field (for
the many connections with other areas, see [9] and references therein; for an overview of the results see
the introductions of the papers [3, 1]). The main results in the domain can be roughly separated in two
families.

The first family deals with colored maps (maps endowed with an application from its vertex set to a set
of q colors). This implies “summation” enumeration formulas (see [8, 14, 11] or paragraph 3.4 below).
These formulas are often elegant, and different combinatorial proofs for them have been given in the past
few years [10, 6, 14, 11, 1]. The issue is that some important topological information, such as the genus
of the surface, is not apparent in these constructions.

Formulas of the second family keep track explicitly of the genus of the surface. This includes induc-
tive relations (like the Harer-Zagier recurrence formula [8]) or explict (but quite involved) closed forms
(Lehman-Walsh [15] and Goupil-Schaeffer [7] formulas). From a combinatorial point of view, these for-
mulas are harder to understand. A step in this direction was done by the first author in [3] (this construction
is explained in subsection 2.2), which led to new inductions relations and to new formulas. However the
link with other formulas in the second family remained mysterious, and [3] left open the problem of
finding combinatorial proofs of these formulas.

The goal of this paper is to present a new bijection between unicellular maps and surprisingly simple
objects which we call C-decorated trees (these are merely plane trees equipped with a certain kind of
permutation on their vertices). This bijection is based on the previous work of the first author [3]: we
explicitly describe the “recursive part” appearing in this work. As a consequence, not only can we reprove
all the aforementioned formulas in a bijective way, thus giving the first bijective proof for several of them,
but we do that in unified way. Indeed, C-decorated trees are so simple combinatorial objects that all
formulas follow from our bijection as an immediate corollary or easy exercise.

Another interesting application of this bijection is a new explicit way of computing the so-called Stan-
ley character polynomials, which are nothing but the evaluation of irreducible characters of the symmetric
groups, properly normalized and parametrized. Indeed, in a previous work [4], the second author ex-
pressed these polynomials as a generating function of (properly weighted) unicellular maps. Although
we do not obtain a “closed form” expression (there is no reason to believe that such a form exists!), we
express Stanley character polynomials as the result of a term-substitution in free cumulants, which are
another meaningful quantity in representation theory of symmetric groups.

2 The main bijection
2.1 Unicellular maps and C-decorated trees
A map M of genus g ≥ 0 is a connected graph G embedded on a closed compact oriented surface S
of genus g, such that S\G is a collection of topological disks, which are called the faces of M . Loops
and multiple edges are allowed. The graph G is called the underlying graph of M and S its underlying
surface. Two maps that differ only by an oriented homeomorphism between the underlying surfaces are
considered the same. A corner of M is the angular sector between two consecutive edges around a vertex.
A rooted map is a map with a marked corner, called the root; the vertex incident to the root is called
the root-vertex. From now on, all maps are assumed to be rooted (note that the underlying graph of a
rooted map is naturally vertex-rooted). A unicellular map is a map with a unique face. The classical Euler
relation |V | − |E|+ |F | = 2− 2g ensures that a unicellular map with n edges has n+ 1− 2g vertices. A
plane tree is a unicellular map of genus 0.
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Fig. 1:
(a) A C-permutation σ.
(b) A plane tree T .
(c) The C-decorated

tree (T, σ).
(d) The underlying

graph of (T, σ).

A rotation system on a connected graph G consists in a cyclic ordering of the half-edges of G around
each vertex. Given a map M , its underlying graph G is naturally equipped with a rotation system given
by the clockwise ordering of half-edges on the surface in a vicinity of each vertex. It is well-known that
this correspondence is 1-to-1, i.e. a map can be considered as a connected graph equipped with a rotation
system (thus, as a purely combinatorial object). We will take this viewpoint from now on.

A cycle-signed permutation is a permutation where each cycle carries a sign, either + or −. A C-
permutation is a cycle-signed permutation where all cycles have odd length, see Figure 1(a). For each
C-permutation σ on n elements, the rank of σ is defined as r(σ) = n − `(σ), where `(σ) is the number
of cycles of σ. Note that r(σ) is even since all cycles have odd length. The genus of σ is defined as
r(σ)/2. A C-decorated tree on n edges is a pair γ = (T, σ) where T is a plane tree with n edges and
σ is a C-permutation of n + 1 elements. The genus of γ is defined to be the genus of σ. Note that the
n+ 1 vertices of T can be canonically numbered from 1 to n+ 1 (e.g., following a left-to-right depth-first
traversal), hence σ can be seen as a permutation of the vertices of T , see Figure 1(c). The underlying
graph of γ is the (vertex-rooted) graph G obtained from T by merging into a single vertex the vertices in
each cycle of σ (so that the vertices of G correspond to the cycles of σ), see Figure 1(d).

Definition 1 For n, g nonnegative integers, denote by Eg(n) the set of unicellular maps of genus g with n
edges; and denote by Tg(n) the set of C-decorated trees of genus g with n edges.

ForA a finite set, kA denotes the set made of k disjoint copies ofA. For two finite setsA and B, we write
A ' B if there is a bijection between A and B. Our main result will be to show that 2n+1Eg(n) ' Tg(n),
with a bijection which preserves the underlying graphs of the objects.

2.2 Recursive decomposition of unicellular maps
In this section, we briefly recall a combinatorial method developed in [3] to decompose unicellular maps.

Proposition 1 (Chapuy [3]) For k ≥ 1, denote by E(2k+1)
g (n) the set of maps from Eg(n) in which a set

of 2k + 1 vertices is distinguished. Then for g > 0 and n ≥ 0,

2gEg(n) ' E(3)g−1(n) + E(5)g−2(n) + E(7)g−3(n) + · · ·+ E(2g+1)
0 (n). (1)

In addition, if M and (M ′, S′) are in correspondence, then the underlying graph of M is obtained from
the underlying graph of M ′ by merging the vertices in S′ into a single vertex.

We now sketch briefly the construction of [3]. Although this is not really needed for the sequel, we believe
that it gives a good insight into the objects we are dealing with (readers in a hurry may take Proposition 1
for granted and jump directly to subsection 2.3). We refer to [3] for proofs and details.
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1 2

3 4

7

5

6
9 10

11

13

17

20

21

19
15

181622

12

8
14

root

(a) (b)

c′
c

τ

slicing

vertex v1

vertex v2

c1 c3

c2

vertex v3

vertex v

(c)

slicing
etc...

if c3 has minimum label in v3: stop.
else: - c3 is a trisection of the new map.

- apply the slicing to c3.

c3

Fig. 2: (a) A unicellular map of genus 2 equipped with its corner la-
belling. Labels corresponding to trisections are boxed. (b) Given a tri-
section τ , two other corners of interest c and c′ are canonically defined
(see text). “Slicing the trisection” then gives rise to three new vertices
v1, v2, v3, with distinguished corners c1, c2, c3. (c) The recursive pro-
cedure of [3]: if c3 is the minimum corner of v3, then stop; else, as
shown in [3], c3 is a trisection of the new map M ′: in this case, iterate
the slicing operation on (M ′, c3).

We first explain where the factor 2g comes from in (1). Let M be a rooted unicellular map of genus
g with n edges. Then M has 2n corners, and we label them from 1 to 2n incrementally, starting from
the root, and going clockwise around the (unique) face of M (Figure 2). Let v be a vertex of M , let
k be its degree, and let (a1, a2, . . . , ak) be the sequence of the labels of corners incident to it, read in
counterclockwise direction around v starting from the minimal label a1 = min ai. If for some j ∈
J1, k − 1K, we have aj+1 < aj , we say that the corner of v labelled by aj+1 is a trisection of M .
Figure 2(a) shows a map of genus two having four trisections. More generally we have:

Lemma 2 ([3]) A unicellular map of genus g contains exactly 2g trisections. In other words, the set of
unicellular maps of genus g with n edges and a marked trisection is isomorphic to 2gEg(n).

Now, let τ be a trisection of M of label l(τ), and let v the vertex its belongs to. We denote c the corner
of v with minimum label and c′ the corner with minimum label among those which appear between c and
τ clockwise around v and whose label is greater than l(τ). By definition of a trisection, c′ is well defined.
We then construct a new map M ′, by slicing the vertex v into three new vertices using the three corners
c, c′, τ as on Figure 2(b). We say that the map M ′ is obtained from M by slicing the trisection τ . As
shown in [3], the new map M ′ is a unicellular map of genus g − 1. We can thus relabel the 2n corners
of M ′ from 1 to 2n, according to the procedure we already used for M . Among these corners, three of
them, say c1, c2, c3 are naturally inherited from the slicing of v, as on Figure 2(b). Let v1, v2, v3 be the
vertices they belong to, respectively. Then the following is true [3]: In the map M ′, the corner ci has the
smallest label around the vertex vi, for i ∈ {1, 2}. For i = 3, either the same is true, or c3 is a trisection
of the map M ′.

We now finally describe the bijection promised in Proposition 1. It is defined recursively on the genus,
as follows. Given a map M ∈ Eg(n) with a marked trisection τ , let M ′ be obtained from M by the
slicing of τ , and let ci, vi be defined as above for i ∈ {1, 2, 3}. If c3 has the minimum label in v3, set
Ψ(M, τ) := (M ′, {v1, v2, v3}), which is an element of E(3)g−1(n). Else, let (M ′′, S) = Ψ(M ′, c3), and
set Ψ(M, τ) := (M ′′, S ∪ {v1, v2}). Note that this recursive algorithm necessarily stops, since the genus
of the map decreases and since there are no trisections in unicellular maps of genus 0 (plane trees). Thus
this procedure yields recursively a mapping that associates to a mapM with a marked trisection τ another
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map M ′′ of a smaller genus, with a set S′′ of marked vertices (namely the set of vertices which have been
involved in a slicing at some point of the procedure). The set S′′ of marked vertices necessarily has odd
cardinality, as easily seen by induction. Moreover, it is clear that the underlying graph of M coincides
with the underlying graph of M ′′ in which the vertices of S′′ have been identified together into a single
vertex. One can show that Ψ is a bijection by constructing explicitly the inverse mapping [3].

2.3 Recursive decomposition of C-decorated trees
We now propose a recursive method to decompose C-decorated trees, which can be seen as parallel to the
decomposition of unicellular maps given in the previous section. Denote by C(n) (resp. Cg(n)) the set of
C-permutations on n elements (resp. on n elements and of genus g). A signed sequence of integers is a
pair (ε, S) where S is an integer sequence and ε is a sign, either + or −.

Lemma 3 Let X be a finite non-empty set of positive integers. Then there is a bijection between signed
sequences of distinct integers from X —all elements of X being present in the sequence— and C-
permutations on the set X . In addition the C-permutation has one cycle if and only if the signed sequence
has odd length and starts with its minimal element.

Proof: Let γ be a signed sequence, e.g. γ =+(4731562). If γ has odd length and starts with its minimal
element, return γ seen as a unicyclic C-permutation (where the unique cycle is written sequentially).
Otherwise cut γ as γ = γ1γ2, where γ2 starts with the minimal element in γ (in our example, γ1 =+(473)
and γ2 = (1562)). If γ2 has odd length, then “produce” the signed cycle +γ2. If γ2 has even length, move
the second element of γ2 to the end of γ1, and “produce” the signed cycle −γ2. Then (in both cases), restart
the same process on γ = γ1, producing one (signed) cycle at each step, until γ is odd and starts with its
minimal element, in which case one produces γ as the last signed cycle. (In our example, the signed
cycles successively produced are −(162), −(3), and +(475).) The process clearly yields a collection of
signed cycles of odd lengths, i.e., yields a C-permutation. The mapping is easy to invert (we omit details
in this extended abstract), so it gives a bijection. 2

An element of a C-permutation is called non-minimal if it is not the minimum in its cycle. Non-minimal
elements play the same role for C-permutations (and C-decorated trees) as trisections for unicellular maps.
Indeed, a C-permutation of genus g has 2g non-minimal elements (compare with Lemma 2), and moreover
we have the following analogue of Proposition 1:

Proposition 4 For k ≥ 1, denote by T (2k+1)
g (n) the set of C-decorated trees from Tg(n) in which a set

of 2k + 1 cycles is distinguished. Then for g > 0 and n ≥ 0,

2gTg(n) ' T (3)
g−1 + T (5)

g−2 + T (7)
g−3 + · · · .

In addition, if γ and (γ′, S′) are in correspondence, then the underlying graph of γ is obtained from the
underlying graph of γ′ by merging the vertices corresponding to cycles from S′ into a single vertex.

Proof: For k ≥ 1 let C(2k+1)
g (n) be the set of C-permutations from Cg(n) where a subset of 2k + 1

cycles are marked. Let C◦g (n) be the set of C-permutations from Cg(n) where a non-minimal element
is marked. Note that C◦g (n) ' 2g Cg(n) since a C-permutation in Cg(n) has 2g non-minimal elements.

Moreover C◦g (n) '
∑
k≥1 C

(2k+1)
g−k (n) (apply Lemma 3 to the cycle —represented as a signed sequence—
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containing the marked non-minimal element; this produces a collection of (2k + 1) ≥ 3 signed cycles of
odd length, which we take as the marked cycles). Hence 2gCg(n) '

∑
k≥1 C

(2k+1)
g−k (n). Since Tg(n) =

E0(n) × Cg(n + 1), we conclude that 2g Tg(n) '
∑
k≥1 T

(2k+1)
g−k (n). The statement on the underlying

graph just follows from the fact that the procedure in Lemma 3 merges the marked cycles into a unique
cycle. 2

2.4 The main result
Theorem 5 For each non-negative integers n and g we have

2n+1Eg(n) ' Tg(n).

In addition the cycles of a C-decorated tree naturally correspond to the vertices of the associated unicel-
lular map, in such a way that the respective underlying graphs are the same.

Proof: The proof is a simple induction on g, whereas n is fixed. The case g = 0 is obvious. Let g > 0. The
induction hypothesis ensures that for each g′ < g, 2n+1E(2k+1)

g′ (n) ' T (2k+1)
g′ (n), where the underlying

graphs (taking marked vertices vertices into account) of corresponding objects are the same. Hence, by
Propositions 1 and 4, we have 2g2n+1Eg(n) ' 2gTg(n), where the underlying graphs of corresponding
objects are the same. Finally, one can extract from this 2g-to-2g correspondence a 1-to-1 correspondence,
which still preserves underlying graphs: think of extracting a perfect matching from a 2g-regular bipartite
graph, which is possible according to Hall’s marriage theorem. Hence 2n+1Eg(n) ' Tg(n). 2

2.5 A fractional, or stochastic, formulation
Even if this does not hinder enumerative applications to be detailed in the next section, we do not know of
an effective (polynomial-time) way to implement the bijection of Theorem 5; indeed the last step of the
proof is to extract a perfect matching from a 2g-regular bipartite graph whose size is exponential in n.

What can be done effectively is a fractional formulation of the bijection. For a finite set X , let C〈X〉
be the set of linear combinations of the form

∑
x∈X ux · x, where the x ∈ X are seen as independent

formal vectors, and the coefficients ux are in C. Let R+
1 〈X〉 ⊂ C〈X〉 be the subset of linear combinations

where the coefficients are nonnegative and add up to 1. Denote by 1X the vector
∑
x∈X x. For two finite

sets X and Y , a fractional mapping from X to Y is a linear mapping ϕ from C〈X〉 to C〈Y 〉 such that
the image of each x ∈ X is in R+

1 〈Y 〉; the subset of elements of Y with strictly positive coefficients in
ϕ(x) is called the image-support of x. Note that ϕ(x) identifies to a probability distribution on Y ; a “call
to ϕ(x)” is meant as picking up y ∈ Y under this distribution. A fractional mapping is bijective if 1X
is mapped to 1Y , and is deterministic if each x ∈ X is mapped to some y ∈ Y . Note that, if there is a
fractional bijection from X to Y , then |X| = |Y | (indeed in that case the matrix of ϕ is bistochastic).

One can now formulate by induction on the genus an effective (the cost of a call is O(gn)) fractional
bijection from 2n+1Eg(n) to Tg(n), and similarly from Tg(n) to 2n+1Eg(n). The crucial property is that,
for k ≥ 1 and E, F finite sets, if there is a fractional bijection Φ from kE to kF then one can effectively
derive from it a fractional bijection from E to F : map each x ∈ E to 1

k (ι(Φ(x1)) + · · · + ι(Φ(xk))),
where x1, . . . , xk are the representatives of x in kE, and where ι is the projection from kF to F . Hence
by induction on g, Propositions 1 and 4 (where the stated combinatorial isomorphisms are effective)
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ensure that there is an effective fractional bijection from 2n+1Eg(n) to Tg(n) and similarly from Tg(n)
to 2n+1Eg(n), such that if γ′ is in the image-support of γ then the underlying graphs of γ and γ′ are the
same.

Note that, given an effective fractional bijection between two sets X and Y , and a uniform random
sampling algorithm on the set X , one obtains immediately a uniform random sampling algorithm for the
set Y . In the next section, we will use our bijection to prove several enumerative formulas for unicellular
maps, starting from elementary results on the enumeration of trees or permutations. In all cases, we will
also be granted with a uniform random sampling algorithm for the corresponding unicellular maps, though
we will not emphasize this point in the rest of the paper.

3 Counting formulas for unicellular maps
It is quite clear that C-decorated trees are much simpler combinatorial objects than unicellular maps.
In this section, we use them to give bijective proofs of several known formulas concerning unicellular
maps. We focus on the Lehman-Walsh and Goupil-Schaeffer formulas, and the Harer-Zagier recurrence,
of which bijective proofs were long-awaited. We also sketch a bijective proof of the Harer-Zagier sum-
mation formula (prototype for a family of formulas for which bijective proofs were already known). We
insist on the fact that all these proofs are elementary consequences of our main bijection (Theorem 5).

3.1 Two immediate corollaries
The set Tg(n) = E0(n) × Cg(n + 1) is the product of two sets that are easy to count. Precisely, let
εg(n) = |Eg(n)| and cg(n) = |Cg(n)|. Recall that ε0(n) = Cat(n), where Cat(n) := (2n)!

n!(n+1)! is the nth
Catalan number. Therefore Theorem 5 gives εg(n) = 2−n−1Cat(n)cg(n+ 1).

It is immediate to give for cg(n + 1) a closed form (by summing over all possible cycle types) or an
explicit generating series. This yields two classical results for the enumeration of unicellular maps.

For γ = (γ1, . . . , γ`) = 1m1 . . . kmk a partition of g, the number aγ(n + 1) of permutations of n+ 1
elements with cycle-type equal to 1n+1−2g−`3m1 . . . (2k + 1)mk is classically given by the quotient
aγ(n+ 1) = (n+ 1)!/((n+ 1− 2g − `)!

∏
imi!(2i+ 1)mi), and the number of C-permutations with

this cycle-type is just aγ(n + 1)2n+1−2g (since each cycle has 2 possible signs). Hence, we get the
equality cg(n+ 1) = 2n+1−2g∑

γ`g aγ(n+ 1). We thus recover:

Proposition 6 (Walsh and Lehman [15]) The number εg(n) is given by

εg(n) =
(2n)!

n!(n+ 1− 2g)!22g

∑
γ`g

(n+ 1− 2g)`∏
imi!(2i+ 1)mi

,

where (x)k =
∏k−1
j=0 (x− j), ` is the number of parts of γ, and mi is the number of parts of length i in γ.

The exponential generating function C(x, y) :=
∑
n,g

1
(n+1)!cg(n + 1)yn+1xn+1−2g of signed cycles

of odd length (y marks the number of elements, which are labelled, and x marks the number of cycles) is

C(x, y) = exp
(

2x
∑
k≥1

y2k+1

2k + 1

)
− 1 = exp

(
x log

(1 + y

1− y

))
− 1 =

(1 + y

1− y

)x
− 1.

Since c0(1) = 2 and 1
(n+1)!cg(n+ 1) = 2n+1n!

(2n)! εg(n) = 2
(2n−1)!!εg(n) for n ≥ 1, we recover:
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(1) (2)

Fig. 3: Rémy’s procedure gives
two ways to obtain a plane tree
with n edges and a marked ver-
tex v from a plane tree with
n − 1 edges and a marked cor-
ner: (1) in the first way v is a
leaf, (2) in the second way v is
a non-leaf.

Proposition 7 (Harer-Zagier series formula [8, 9]) The generating function

E(x, y) := 1 + 2xy + 2
∑

g≥0,n>0

εg(n)

(2n− 1)!!
yn+1xn+1−2g is given by E(x, y) =

(1 + y

1− y

)x
.

3.2 Harer-Zagier recurrence formula
Elementary algebraic manipulations on the expression of E(x, y) yield a very simple recurrence satisfied
by εg(n), known as the Harer-Zagier recurrence formula (stated in Proposition 10 hereafter). We now
show that the model of C-decorated trees makes it possible to derive this recurrence directly from a
combinatorial isomorphism, that generalizes Rémy’s beautiful bijection for plane trees [13].

It is convenient here to consider C-decorated trees as unlabelled structures: precisely we see a C-
decorated tree as a plane tree where the vertices are partitioned into parts of odd size, where each part
carries a sign + or −, and such that the vertices in each part are cyclically ordered (the C-permutation
can be recovered by numbering the vertices of the tree according to a left-to-right depth-first traversal),
think of Figure 1(c) where the labels have been taken out. We denote by P(n) = E0(n) the set of plane
trees with n edges, and by Pv(n) (resp. Pc(n)) the set of plane trees with n edges where a vertex (resp. a
corner) is marked. Rémy’s procedure, shown in Figure 3, realizes the isomorphism Pv(n) ' 2Pc(n−1),
or equivalently

(n+ 1)P(n) ' 2(2n− 1)P(n− 1). (2)

Let T v
g (n) be the set of C-decorated trees from Tg(n) where a vertex is marked. Let A (resp. B) be the

subset of objects in T v
g (n) where the signed cycle containing the marked vertex has length 1 (resp. length

greater than 1). Let γ ∈ T v
g (n), with n ≥ 1. If γ ∈ A, record the sign of the 1-cycle containing v and then

apply the Rémy’s procedure to the plane tree with respect to v (so as to delete v). This reduction, which
does not change the genus, yields A ' 2 · 2(2n − 1)Tg(n − 1). If γ ∈ B, let c be the cycle containing
the marked vertex v; c is of the form (v, v1, v2, . . . , v2k) for some k ≥ 1. Move v1 and v2 out of c (the
successor of v becomes the former successor of v2). Then apply the Rémy’s procedure twice, firstly with
respect to v1 (on a plane tree with n edges), secondly with respect to v2 (on a plane tree with n−1 edges).
This reduction, which decreases the genus by 1, yields B ' 2(2n − 1)2(2n − 3)T v

g−1(n − 2), hence
B ' 4(n − 1)(2n − 1)(2n − 3)Tg−1(n − 2). Since T v

g (n) = A + B and T v
g (n) ' (n + 1)Tg(n), we

finally obtain the isomorphism

(n+ 1)Tg(n) ' 4(2n− 1)Tg(n− 1) + 4(n− 1)(2n− 1)(2n− 3)Tg−1(n− 2), (3)

which holds for any n ≥ 1 and g ≥ 0 (with the convention Tg(n) = ∅ if g or n is negative). Since
2n+1Eg(n) ' Tg(n), we recover:
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Proposition 8 (Harer-Zagier recurrence formula [8, 9]) The coefficients εg(n) satisfy the following re-
currence relation valid for any g ≥ 0 and n ≥ 1 (with ε0(0) = 1 and εg(n) = 0 if g < 0 or n < 0):

(n+ 1)εg(n) = 2(2n− 1)εg(n− 1) + (n− 1)(2n− 1)(2n− 3)εg−1(n− 2).

To the best of our knowledge this is the first proof of the Harer-Zagier recurrence formula that directly
follows from a combinatorial isomorphism. The isomorphism (3) also provides a natural extension to
arbitrary genus of Rémy’s isomorphism (2).

3.3 Refined enumeration of bipartite unicellular maps
In this paragraph, we explain how to recover a formula due to Goupil and Schaeffer [7, Theorem 2.1]
from our bijection. Let us first give a few definitions. A graph is bipartite if its vertices can be colored in
black and white such that each edge connects a black and a white vertices. If the graph has a root-vertex
v, then v is required to be black; and if the graph is also connected, then such a bicoloring of the vertices
is unique. From now on, a connected bipartite graph with a root-vertex is assumed to be endowed with
this canonical bicoloring.

The degree distribution of a map/graph is the sequence of the degrees of its vertices taken in decreasing
order (it is a partition of 2n, where n is the number of edges). If we consider a bipartite map/graph, we can
consider separately the white vertex degree distribution and the black vertex degree distribution, which
are two partitions of n.

Let `,m, n be positive integers such that n+1−`−m is even. Fix two partitions λ,µ of n of respective
lengths ` and m. We call Bi(λ, µ) the number of bipartite unicellular maps, with white (resp. black)
vertex degree distribution λ (resp. µ). The corresponding genus is g = (n + 1 − ` − m)/2. It will be
convenient to change a little bit the formulation of the problem and to consider labelled maps instead
of the usual non-labelled maps: we call a labelled map a map whose vertices are labelled with integers
1, 2, · · · . If the map is bipartite, we require instead that the white and black vertices are labelled separately
(with respective labels w1, w2, · · · and b1, b2, · · · ). The degree distribution(s) of a (bipartite) labelled map
with n edges can be seen as a composition of 2n (resp. two compositions of n). For I = (i1, · · · , i`)
and J = (j1, · · · , jm) two compositions of n, we denote by BiL(I,J) the number of labelled bipartite
unicellular maps with white (resp. black) vertex degree distribution I (resp. J ). The link between
Bi(λ, µ) and BiL(I,J) is straightforward: BiL(I,J) = m1(λ)!m2(λ)! · · ·m1(µ)!m2(µ)! · · ·Bi(λ, µ),
where λ and µ are the sorted versions of I and J . We now recover the following formula:

Proposition 9 (Goupil and Schaeffer [7, Theorem 2.1]) :

BiL(I,J) = 2−2g · n · (`+ 2g1 − 1)!(m+ 2g2 − 1)!

·
∑

g1+g2=g

∑
p1+···+p`=g1
q1+···+qm=g2

∏̀
r=1

1

2pr + 1

(
ir − 1

2pr

) m∏
r=1

1

2qr + 1

(
jr − 1

2qr

)
. (4)

Proof: For g = 0 the formula is simply

BiL(I,J) = n(`− 1)!(m− 1)!, (5)
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which can easily be established by a bivariate version of the cyclic lemma, see also [5, Theorem 2.2].
(Note, that in that case, the cardinality only depend on the lengths of I and J .)

We now prove the formula for arbitrary g. Consider some lists p = (p1, · · · , p`) and q = (q1, · · · , qm)
of nonnegative integers with total sum g: let g1 =

∑
pi and g2 =

∑
qi. We say that a composition H

refines I along p if H is of the form (h11, · · · , h
2p1+1
1 , · · · , h1` , · · · , h

2p`+1
` ), with

∑2pr+1
t=1 htr = ir for

all r between 1 and `. Clearly, there are
∏`
r=1

(
ir−1
2pr

)
such compositions H . One defines similarly a

composition K refining J along q.
Consider now the set of labelled bipartite plane trees of vertex degree distributions H and K, where

H (resp. K) refines I (resp. J ) along p (resp. q). By (5), there are n · (` + 2g1 − 1)!(m + 2g2 − 1)!
trees for each pair (H,K), so in total, with I , J , p and q fixed, the number of such trees is:

n · (`+ 2g1 − 1)!(m+ 2g2 − 1)!
∏̀
r=1

(
ir − 1

2pr

) m∏
r=1

(
jr − 1

2qr

)
. (6)

As the parts of H (resp. K) are naturally indexed by pairs of integers, we can see these trees as labelled
by the set {wtr; 1 ≤ r ≤ `, 1 ≤ t ≤ 2pr + 1} t {btr; 1 ≤ r ≤ m, 1 ≤ t ≤ 2qr + 1}. There is a canonical
permutation of the vertices of the trees with cycles of odd sizes and which preserves the bicoloring: just
send wtr to wt+1

r (resp. btr to bt+1
r ), where t+1 is meant modulo 2pr+1 (resp. 2qr+1). If we additionally

put a sign on each cycle, we get a C-decorated tree (with labelled cycles) that corresponds to a labelled
bipartite map with white (resp. black) vertex degree distribution I (resp. J ). Conversely, to recover a
labelled bipartite plane tree from such a C-decorated tree, one has to choose in each cycle which vertex
gets the label w1

r or b1r , and one has to forget the signs of the (n+ 1− g) cycles. This represents a factor

2n+1−2g
(∏`

r=1(2pr + 1)
∏m
r=1(2qr + 1)

)−1
.

Multiplying (6) by the above factor, and summing over all possible sequences p and q of total sum g,
we conclude that the number of C-decorated trees associated with labelled bipartite unicellular maps of
white (resp. black) vertex degree distibution I (resp. J ), is equal to 2n+1 times the right-hand side of (4).
By Theorem 5, this number is also equal to 2n+1BiL(I,J). This ends the proof of Proposition 9. 2

This is the first combinatorial proof of (4) (the proof by Goupil and Schaeffer involves representation
theory of the symmetric group). Moreover, the authors of [7] found surprising that “the two partitions
contribute independently to the genus”. With our approach, this is very natural, since the cycles are
carried independently by white and black vertices.

3.4 Summation formulas for colored maps
We now recover Harer-Zagier’s summation formula [8, 9] (which can also be very easily derived from
the expression of E(x, y)). In contrast to the formulas presented so far, this one has already been given
combinatorial proofs [10, 6, 1] using different bijective constructions, but we want to insist on the fact
that our construction gives bijective proofs for all the formulas in a unified way.

Proposition 10 (Harer-Zagier summation formula [8, 9]) LetA(v;n) be the number of unicellular maps
with n edges and v vertices. Then for n ≥ 1∑

v

A(v;n)xv = (2n− 1)!!
∑
r≥1

2r−1
(

n

r − 1

)(
x

r

)
.
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Proof: It suffices to prove that the number Ar(n) of unicellular maps with n edges, each vertex having a
color in [1..r], and each color in [1..r] being used at least once, is given byAr(n) = (2n−1)!!2r−1

(
n
r−1
)
.

Consider a C-decorated tree with n edges, where each (signed) cycle has a color in [1..r], and such that
each color in [1..r] is used by at least one cycle. Each of the r colors yields a (non-empty) C-permutation,
which can be represented as a signed sequence, according to Lemma 3. Then one can concatenate these
r signed sequences into a unique sequence S of length n+ 1, together with r signs and a subset of r − 1
elements among the n elements from position 2 to n + 1 in S (in order to recover from S the r signed
sequences). For instance if r = 3 and if the signed sequences corresponding respectively to colors 1, 2, 3
are +(3, 9, 4), −(5, 8, 6, 2), and −(1, 7), then the concatenated sequence is (3, 9, 4, 5, 8, 6, 2, 1, 7), together
with the 3 signs (+,−,−) and the two selected elements {5, 1}. Hence the number of such C-decorated
trees is (n+ 1)!2r

(
n
r−1
)
, and by Theorem 5,

Ar(n) = 2−n−1Cat(n)(n+ 1)!2r
(

n

r − 1

)
= (2n− 1)!!2r−1

(
n

r − 1

)
. 2

The papers [14, 11] contain other summation formulas, that deal with colored bipartite maps, taking the
number of colors or the degree distributions into account. They can all be recovered from our bijection.
The proofs follow roughly the same guideline, but are omitted here for brevity.

4 Computing Stanley character polynomials
We now consider the following enumerative problem. For n a fixed integer, we would like to compute
the generating series Fn(p1, p2, · · · ; q1, q2, · · · ) =

∑
wt(M,ϕ) of pairs (M,ϕ) where M is a rooted

bipartite unicellular map with n edges, and ϕ is a mapping from the vertex set VM of M to positive
integers, satisfying the following order condition: for each edge e of M , one has ϕ(be) ≥ ϕ(we), where
be and we are respectively the black and white extremities of e. The weight of such a pair is wt(M,ϕ) :=∏
v∈V ◦M

pϕ(i)
∏
v∈ V •M

qϕ(i), where V •M and V ◦M are respectively the sets of black (resp. white) vertices
of M .

Our motivation comes from representation theory of the symmetric group. This topic is linked to map
enumeration by the following formula [4]. Let p = p1, · · · , pr and q = q1, · · · , qr be two finite lists of
positive integers of the same length. Then the evaluation Fn(p1, · · · , pr, 0, · · · ; q1, · · · , qr, 0, · · · ) of the
generating series considered above is equal to L(L− 1) · · · (L− n+ 1)χ̂λ((1 2 · · · n)), where:
• λ is the partition with p1 parts equal to q1 + · · ·+ qr, p2 parts equal to q2 + · · ·+ qr, and so on. . .
• L =

∑
1≤i≤j≤r piqj is its number of boxes ;

• χ̂λ is the normalized character of the irreducible representation of SL associated to λ;
• (1 2 · · · n) is an n-th cycle seen as a permutation of SL (if n > L, it is not defined but, as the

numerical factor is 0, it is not a problem).
Our main bijection allows us to express the generating series Fn in terms of the corresponding generat-

ing series for plane trees. A. Rattan has proved [12] that this generating series is the n+1-th free cumulant
Rn+1 of the transition measure of λ (as λ depends on p and q, Rn+1 can be seen as a series in p and q).
Free cumulants have become in the last few years an important tool in (asymptotic) representation theory
of the symmetric groups, see for example the work of P. Biane [2].

Let us define an operator D by D(xk) :=
∑
g≥0 cg(k)xk−2g = k!

∑k
r=1 2r

(
k−1
r−1
)(
x
r

)
, D being ex-

tended multiplicatively to monomials in distinct variables, and then extended linearly to multivariate
polynomials and series (in particular, series in the variables p and q).
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Theorem 11 For any n ≥ 1, one has 2n+1Fn = D(Rn+1).

Proof: A pair (M,ϕ) as above corresponds by the bijection of Section 2 to a bipartite C-decorated tree
T , together with a function ϕ : VT → N which fulfills the order condition and such that all vertices in a
given cycle have the same image by ϕ. The result follows directly. 2

The free cumulant Rn+1 is the compositional inverse of an explicit series [12]. Hence Theorem 11
gives an efficient, easily implemented way of computing Stanley character polynomials Fn.
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