21 research outputs found

    Around the Domino Problem – Combinatorial Structures and Algebraic Tools

    Get PDF
    Given a finite set of square tiles, the domino problem is the question of whether is it possible to tile the plane using these tiles. This problem is known to be undecidable in the planar case, and is strongly linked to the question of the periodicity of the tiling. In this thesis we look at this problem in two different ways: first, we look at the particular case of low complexity tilings and second we generalize it to more general structures than the plane, groups. A tiling of the plane is said of low complexity if there are at most mn rectangles of size m × n appearing in it. Nivat conjectured in 1997 that any such tiling must be periodic, with the consequence that the domino problem would be decidable for low complexity tilings. Using algebraic tools introduced by Kari and Szabados, we prove a generalized version of Nivat’s conjecture for a particular class of tilings (a subclass of what is called of algebraic subshifts). We also manage to prove that Nivat’s conjecture holds for uniformly recurrent tilings, with the consequence that the domino problem is indeed decidable for low-complexity tilings. The domino problem can be formulated in the more general context of Cayley graphs of groups. In this thesis, we develop new techniques allowing to relate the Cayley graph of some groups with graphs of substitutions on words. A first technique allows us to show that there exists both strongly periodic and weakly-but-not-strongly aperiodic tilings of the Baumslag-Solitar groups BS(1, n). A second technique is used to show that the domino problem is undecidable for surface groups. Which provides yet another class of groups verifying the conjecture saying that the domino problem of a group is decidable if and only if the group is virtually free

    On the Expressive Power of Quasiperiodic SFT

    Get PDF
    In this paper we study the shifts, which are the shift-invariant and topologically closed sets of configurations over a finite alphabet in Z^d. The minimal shifts are those shifts in which all configurations contain exactly the same patterns. Two classes of shifts play a prominent role in symbolic dynamics, in language theory and in the theory of computability: the shifts of finite type (obtained by forbidding a finite number of finite patterns) and the effective shifts (obtained by forbidding a computably enumerable set of finite patterns). We prove that every effective minimal shift can be represented as a factor of a projective subdynamics on a minimal shift of finite type in a bigger (by 1) dimension. This result transfers to the class of minimal shifts a theorem by M.Hochman known for the class of all effective shifts and thus answers an open question by E. Jeandel. We prove a similar result for quasiperiodic shifts and also show that there exists a quasiperiodic shift of finite type for which Kolmogorov complexity of all patterns of size ntimes n is Omega(n)

    Proceedings of the Sixth Russian-Finnish Symposium on Discrete Mathematics

    Get PDF

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore