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Abstract. The study of enumeration degrees appears prima facie to
be far removed from topology. Work by Miller, and subsequently recent
work by Kihara and the author has revealed that actually, there is a
strong connection: Substructures of the enumeration degrees correspond
to σ-homeomorphism types of second-countable topological spaces. Here,
a gentle introduction to the area is attempted.

1 Enumeration reducibility

Enumeration reducibility is a computability-theoretic reducibility for subsets of
N introduced by Friedberg and Rogers [10].

Definition 1. A ≤e B iff there is a c.e.-set W such that:

A = {n ∈ N | ∃k ∈ N ∃m0, . . . ,mk ∈ B 〈n,m0, . . . ,mk〉 ∈W}

where 〈 〉 : N∗ → N is some standard coding for tuples of arbitrary length. We
write E for the collection of enumeration degrees.

The intuitive idea is that the elements of W are rules, that upon observing the
presence of some finite collection of numbers in B let us conclude the presence of
some number in A. Contrasted to Turing reducibility, we note that the symmetry
between presence and absence is broken: We only receive positive information
about B, and only need to provide position information about A.

Looking at individual sets, we find that enumeration reducibility and Tur-
ing reducibility appear very different: For any combination of enumeration and
Turing reductions between A and B, we can construct sets realizing that combi-
nation. On the level of the degree structures, both E and the Turing degrees (to
be denoted by T ) are join-semilattices with the usual tupling function ⊕ acting
as join. We can make the following observation:

Observation 2 The map A 7→ A⊕AC induces a join-semilattice embedding of
T into E.

A different intuitive interpretation of what enumeration reducibility is about
is connected to this observation: Using the usual oracle Turing machines, we



obtain a reducibility not only between total functions, but between partial func-
tions, too (e.g. [7, Section 11.3]). We obtain the degree structure E like that, and
the embedding just becomes the natural inclusion of the total functions into the
partial functions.

A third notion of reducibility relevant for us is Medvedev reducibility. Rather
than being about subsets of N, we are dealing with subsets of 2N or NN here. We
recall that computability for functions of type F :⊆ 2N → 2N can be defined via
Type-2 Turing machines (which run forever, and have a write-once-only output
tape), or equivalently via Turing functionals. In the latter case, we consider an
oracle Turing machine M . We say that M computes F , if given oracle access to
p ∈ 2N, it computes n 7→ F (p)(n).

Definition 3. A ≤M B if there is a computable F : B → A. We denote the
collection of Medvedev degrees by M.

Both the Turing degrees and the enumeration degrees embed in natural ways
into the Medvedev degrees: For the former, map p ∈ 2N to {p} ⊆ 2N. For the
latter, map A ⊆ N to {p ∈ NN | ∀n ∈ N n ∈ A ⇔ ∃k ∈ N p(k) = n + 1}.1 In
words, to embed an enumeration degree into the Medvedev degrees, we move
from a set A ⊆ N to the set of all enumerations of A. If we start with a Turing
degree, embed it as enumeration degree, and then embed that as a Medvedev
degree, we obtain the same degree (although not the same set) as when we move
from Turing degrees directly to Medvedev degrees.

2 Represented spaces and generalized Turing reductions

If we wish to delve deeper into the idea that the difference between Turing
reducibility and enumeration reducibility is about having different information
about the sets available, we are led to the notion of a represented space. Repre-
sented spaces are the means by which we introduce computability to the spaces
of interest in computable analysis [44].

Definition 4. A represented space is a set X together with a partial surjection
δX :⊆ NN → X.

A function between represented spaces X = (X, δX) and Y = (Y, δY) is just
a set-theoretic function on the underlying sets. We say that F :⊆ NN → NN is a
realizer of f :⊆ X→ Y, if δY(F (p)) = f(δX(p)) for all p ∈ dom(f ◦δX). We then
call a function between represented spaces computable, if it has a computable
realizer. More on the theory of represented spaces is presented in [35].

A potential way to introduce Turing reducibility is to say that for p, q ∈ NN

we have p ≤T q if there is a computable F :⊆ NN → NN with F (q) = p. Not only
does this approach align well with our embedding of T into M, it immediately
suggests a generalization. Given that we have available to us a notion of partial
computable functions between represented spaces in general, we can introduce:

1 Using p(k) = n+ 1 rather than p(k) = n is necessary to deal with the empty set in
a uniform way.



Definition 5 (Kihara & P. [24]). For represented spaces X, Y, and elements
x ∈ X, y ∈ Y, say that x is reducible to y (written xX ≤T yY), if there is a
computable F :⊆ Y → X with F (y) = x.

Unraveling the definitions, we see that xX ≤T yY is just a fancy way of saying
δ−1X (x) ≤M δ−1Y (y). Considering the degree structure for arbitrary represented
spaces just gives back M again. However, we do gain two advantages: On the
one hand, we can now deal with the degrees of meaningful mathematical objects,
rather than faceless subsets of Baire space. On the other hand, we can look at
the degrees of all points in more restricted classes of represented spaces than all
of them at once, and investigate which degrees are present in those.

Two particular classes of represented spaces have received significant atten-
tion, computable metric spaces and countably-based spaces2. In both, represen-
tations can be constructed in a canonical way from other data about the space:

Definition 6. A computable metric space is a metric space (X, d) together with
a dense sequence (ai)i∈N such that (i, j) 7→ d(ai, aj) : N2 → R is computable. Its
associated representation is defined via δ(p) = x iff ∀i ∈ N d(x, ap(i)) < 2−i.

Definition 7. Given an enumeration (Bn)n∈N of a basis of a T0 topological
space, its induced representation is given by δ(p) = x iff:

{n | x ∈ Bn} = {n | ∃i p(i) = n}

In effective descriptive set theory [32], a slightly different effectivization of
metric spaces is used, namely recursively presented metric spaces. The difference
disappears if we add a completeness-requirement and forget the specific choice of
metric [14]. We then arrive at computable Polish spaces. The complete version
of countably-based T0 spaces are the quasi-Polish spaces [4].

The generalized reducibility restricted to computable metric spaces was stud-
ied by Miller [30]. He showed that there are indeed degrees of points in com-
putable metric spaces (he called these continuous degrees) that are not Turing
degrees, and obtained many results about them. Since there are universal Polish
spaces (for example, the Hilbert cube [0, 1]ω or the space of continuous functions
C([0, 1], [0, 1])), we can in particular define:

Definition 8. We call Spec([0, 1]
ω

) the continuous degrees.

For countably-based spaces, we find that there too exists a universal space.
LetO(N) be the space of open subsets of N, i.e. of all subsets of N represented via
ψ(p) = {n | ∃i p(i) = n+1}. Alternatively, O(N) can be seen as derived from the
countably-based topology generated by the subbasis {{U ⊆ N | n ∈ U} | n ∈ N},
i.e. carrying the Scott topology.

2 There are some variations here regarding what aspects are required to be effective.
Typical names used in the literature are effective topological space, computable topo-
logical space or effectively enumerable topological space, see e.g. [25,45]. These details
do not matter for our purposes.



Observation 9 Spec(O(N) = E

Thus, we see that the enumeration degrees are the degrees of points in
countably-based spaces.

3 σ-homeomorphisms

While we have seen that enumeration degrees can naturally be conceived of as
the degrees of points in countably-based spaces, we have not yet discussed how
topological properties of a space interact with the degrees of its points. The
relevant notion here is that of a σ-homeomorphism. We have both a computable
and a continuous version of σ-homeomorphism.

Definition 10. A represented space X σ-embeds into a represented space Y, if
there is a countable partition X =

⋃
i∈N Xi such that any Xi embeds into Y. 3

If X σ-embeds into Y and vice versa, we call X and Y σ-homeomorphic.

Definition 11 (Kihara & P. [24]). For a represented space X, let Spec(X)
be the set of degrees of points in X.

Theorem 12 (Kihara & P. [24]). The following are equivalent for represented
spaces X, Y:

1. Spec(X) ⊆ Spec(Y)
2. X computably σ-embeds into Y

Thus, we see that the degrees present in a space (above some oracle) just char-
acterize its σ-homeomorphism type. For Polish spaces, the question of their σ-
homeomorphism types has received significant attention. Here, the partition of X
in Definition 10 can even be chosen to be Π0

2 . Intricate arguments from descrip-
tive set theory [13, 33, 38] then show that for Polish spaces, σ-homeomorphism
agrees with second-level Borel isomorphism. Jayne had explored second-level
Borel isomorphism of Polish spaces in 1974 [20] motivated by applications in
Banach space theory. While it is well-known that 2N and [0, 1]ω are not σ-
homeomorphic4, it remained open whether there were more σ-homeomorphism
types of uncountable Polish spaces. This question was reraised by Motto-Ros [33]
and by Motto-Ros, Schlicht and Selivanov [34]. The context of [34] is the gener-
alization of Wadge degrees. The question was answered using recursion-theoretic
methods by Kihara and P., yielding:

Theorem 13 (Kihara & P. [24]). The poset (ω≤ω1 ,⊆) of countable subsets of
the first uncountable ordinal ω1 ordered by set-inclusion embeds into the poset of
uncountable Polish spaces ordered by σ-embeddability.
3 We have slightly deviated from the usual definition here. In topology, we would

typically demand that the Xi can be disjointly embedded into Y. The difference
can be removed by replacing Y with Y×N. The results we need from topology hold
for either version, and the present one makes the connection to degree theory more
elegant.

4 We now realize that this means that there are continuous degrees which are not
Turing degrees!



4 Non-total continuous degrees

Miller had observed in [30] that all continuous degrees share a peculiar property,
namely being almost-total (the name was coined later, in [2]). The name is
explained by noting that an enumeration degree is called total, if it is in the
range of the embedding of the Turing degrees.

Definition 14. An enumeration degree d is almost-total, if for every total degree
p with p �e d we find that p⊕ d is total.

The question of existence of non-total almost-total degrees prima facie is
purely recursion-theoretic question. Miller’s result shows that the existence of
continuous degrees which are not Turing degrees gives a positive answer. Miller’s
proof of the existence of continuous non-total degrees in [30] proceeds by con-
structing a multi-valued function on [0, 1]ω whose fixed-points are non-total, and
invoking a generalization of Brouwer’s fixed point theorem to conclude existence.
It is, in particular, relying heavily on topological arguments.

A different proof follows from the observation by Day and Miller [8] that
Levin’s neutral measures from [27] (see also [11]) have non-total continuous de-
grees. A measure µ is called weakly neutral, if every point is µ-random – this in
particular requires every point computable from µ to have positive measure. The
existence of neutral measures is obtained via the Kakutani fixed point theorem.

We already mentioned that by Theorem 12 the existence of non-total contin-
uous degrees is equivalent to saying that 2N and [0, 1]ω are not σ-homeomorphic.
This is in turn a consequence of a classic result in topological dimension the-
ory [19]: A Polish space is countably-dimensional iff it is σ-homeomorphic to 2N

– and the Hilbert cube is not countably-dimensional. We thus have three dif-
ferent proofs of the existence of the recursion-theoretic theorem that non-total
almost-total degrees exist – and all of them invoke classic topological theorems.

That the existence of non-total almost-total degrees is proven via a seeming
detour through the continuous degrees is not accident: Andrews, Igusa, Miller
and Soskova proved that the almost-total degrees are exactly the continuous
degrees [2]. Their proof proceeds via a number of characterizations, essentially
showing that every almost-total degree has a certain representative, and that the
collection of these representatives forms an effective regular topological space.
Schröder’s effective metrization theorem [16,39] then enables the conclusion that
all these representatives have continuous degree.

5 Gδ-spaces and cototal degrees

That enumeration degrees correspond to countably-based spaces, and Turing
degrees to Cantor space, or more generally, countably-dimensional spaces could
still be put aside as a superficial resemblance. We shall thus present further
examples of topological spaces and substructures of the enumeration degrees
both studied in their own right, and explain how they link up.



The total enumeration degrees can be characterized as having a representa-
tive A ⊆ N such that AC ≤e A. We can dualize this to get the cototal enumer-
ation degrees as those having a representative such that A ≤e AC . Every total
degree is cototal, but not vice versa. McCarthy [29] revealed various characteri-
zations of the cototal degrees: They are the degrees of complements of maximal
antichains in N<ω, of (uniformly) e-pointed trees and of the languages of min-
imal subshifts. Here, a (uniformly) e-pointed tree is an infinite binary tree T
such that every infinite path through T is (uniformly) ≤e-above T . For more
on degrees and minimal subshifts, see [21]. The cototal enumeration degrees are
further studied in [1, 31].

A topological space is a Gδ-space, if every closed subset can be written as a
countable intersection of open sets. If we consider only countably-based spaces,
this is equivalent to saying that every closed subset is equal to the intersection of
all open sets containing it. Every Polish space is Gδ, while neither the Sierpiński
space S nor O(N) are.

Theorem 15 (Kihara, Ng and P. [23]). The degrees of points in countably-
based Gδ-spaces are exactly the co-total degrees.

In particular, we can conceive of the space of complements of maximal antichains
in N<ω or the space of languages of minimal subshifts to be a universal Gδ-space,
taking into account McCarthy’s results.

6 Graph-cototal degrees and the cofinite topology

Call an enumeration degree graph-cototal, if it contains a representative of the
form Graph(f)C for some f : N → N. Graph-cototal enumeration degrees were
studied by Solon [42]5 in the context of quasi-minimal enumeration degrees6.

To find their topological counterpart, we turn to the cofinite topology on N.
Here, a subset of N is open iff it is empty or cofinite. As a representation, we find
that δcof(p) = n iff {p(i) | i ∈ N} = N \ {n} produces the desired represented
space Ncof . The space Ncof is perhaps the simplest example of a topological
space satisfying the T1 separation axiom (every singleton is closed), but not the
T2 separation axiom (being Hausdorff, i.e. every two points are separated by
disjoint open sets).

Observation 16 (Kihara, Lempp, Ng, P. [23]) Spec(Nωcof) contains exactly
the graph-cototal enumeration degrees.

The question has been raised7 whether all almost-total degrees are graph-
cototal. Via the aforementioned results and Theorem 12, we can rephrase this
question to a topological one:

5 Solon uses the name cototal instead of graph-cototal, which we have already used
for a different concept above.

6 An enumeration degree is quasi-minimal, if it is non-computable, but every total
degree below is computable.

7 This open question was brought to the author’s attention by Joe Miller.



Question 17. Does [0, 1]ω σ-embed into Nωcof?

What we can rule out easily is an actual embedding of [0, 1]ω into Nωcof , due
to the following:

Theorem 18 (Sierpiński, see e.g. [9, Theorem 6.1.27]). Let X be a con-
nected compact metric space. Then every continuous f : X→ Ncof is constant.

By a classic theorem from topological dimension theory (see [19]), the Hilbert
cube cannot be the countable union of disconnected spaces. At first glance, this
may appear to answer Question 17. However, there are connected metric spaces
containing no non-trivial connected subspaces. Spaces with the latter property
are called punctiform, and a construction of a connected punctiform space is
found as [26, Example 1.4.8]. For a further discussion of punctiform spaces and
additional references, see [28].

7 The lower reals and semirecursive sets

The lower reals R< are the real numbers, where x ∈ R is represented via an
increasing sequence (qi)i∈N of rationals with supi∈N qi = x. Equivalently, they
are the reals equipped with the (countably-based) topology {{y ∈ R | y < x} |
x ∈ R} ∪ {∅,R}. This spaces appears naturally when performing the Dedekind-
construction of the reals in a constructive setting, and has a central role in the
development of measure theory via valuations (e.g. [6, 37]).

Recall from [22] that a set A ⊆ N is called semirecursive, if there is a
computable function f : N × N → N such that for all n,m ∈ N we find
f(n,m) ∈ {n,m}, and if n ∈ A or m ∈ A, then f(n,m) ∈ A. Combining
results by Jockusch [22] and by Ganchev and Soskova [12] shows:

Theorem 19. The semirecursive enumeration degrees are precisely Spec(R<).

For most natural spaces, taking finite products does not change their σ-
homeomorphism type. In other words, the products of any two degrees of their
corresponding spectra will lie in the spectrum again. The situation is different
for semirecursive sets. It is readily seen that 2N does not embed into R<, whereas
R< × R> contains a copy of R (and thus of 2N). In degree language, almost all
semirecursive degrees are not total, whereas any total degree can be written as a
product of two semirecursive degrees. Using geometric reasoning, one can obtain
the following general result:

Theorem 20 (Kihara & P. [24]). Let X be uncountable, countably-based and
T1. Then the spectra of X× Rn< and Rn+1

< are incomparable.

One recursion-theoretic corollary is that for any n, there is a degree arising
as the product of n+1 semirecursive degrees, but not of n semirecursive degrees
and one graph-cototal degree, and vice versa. Studying the spectrum of spaces
X× R< also led to a generalization ( [24, Lemma 8.2]) of Arslanov, Kalimullin
and Cooper’s result [3] that if a real x is neither left-c.e. nor right-c.e., then
x ∈ R< is quasi-minimal.



8 And more. . .

In [23], several countably-based spaces from “Counterexamples in topology” [43]
had their spectra classified in recursion-theoretic terms, including the Arens
square, the Gandy-Harrington space, Roy’s space and the relatively-coprime
topology on the integers. One can lift the notion of quasi-minimality to spaces:
a non-computable point x ∈ X is called Y-quasi-minimal, if x computes no non-
computable point in Y. Various existence result for such quasi-minimal points
are provided in [23].

We can also leave behind the realm of enumeration degrees and countably-
based spaces, and study degrees in non-countably-based spaces. The spectrum
of O(NN) exceeds the enumeration degrees; we can show this by lifting a diag-
onalization argument from Hinman [17] from partial functions on 2N to partial
functions on O(N).

Non-countably-based spaces can be very resistant to the usual descriptive
set theoretic methods. Hoyrup [18] has shown that already the lowest levels of
the Borel hierarchy behave very differently for O(N) than their usual behaviour
on quasi-Polish spaces8. In [5, 41] various hierarchies of non-countably-based
represented topological spaces are explored. It is an open task to explore how
these align with hierarchies of spectra.

Two further approaches to non-countably-based spaces in sight are to gener-
ate examples via the sequential de Groot dual [15] (essentially, given a T1-space,
consider the space of singletons as a subspace of its space of closed subsets); or
via countably cs-networks. It was shown by Schröder that the existence of these
characterize the topological spaces than can be obtained as represented spaces
in [40].
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