
On the Expressive Power of Quasiperiodic SFT∗

Bruno Durand1 and Andrei Romashchenko2

1 Univ. Montpellier & LIRMM, Montpellier, France
2 CNRS, Paris, France & LIRMM, Montpellier, France

on leave from IITP RAS, Moscow, Russia

Abstract
In this paper we study the shifts, which are the shift-invariant and topologically closed sets of
configurations over a finite alphabet in Zd. The minimal shifts are those shifts in which all
configurations contain exactly the same patterns. Two classes of shifts play a prominent role in
symbolic dynamics, in language theory and in the theory of computability: the shifts of finite
type (obtained by forbidding a finite number of finite patterns) and the effective shifts (obtained
by forbidding a computably enumerable set of finite patterns). We prove that every effective
minimal shift can be represented as a factor of a projective subdynamics on a minimal shift of
finite type in a bigger (by 1) dimension. This result transfers to the class of minimal shifts a
theorem by M. Hochman known for the class of all effective shifts and thus answers an open
question by E. Jeandel. We prove a similar result for quasiperiodic shifts and also show that
there exists a quasiperiodic shift of finite type for which Kolmogorov complexity of all patterns
of size n× n is Ω(n).

1998 ACM Subject Classification F.4.1 Computability theory, G.2.0 Discrete mathematics,
G.2.1 Combinatorics

Keywords and phrases minimal SFT, tilings, quasiperiodicity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.5

1 Introduction

The study of symbolic dynamics was initially motivated as a discretization of classic dynamical
systems, [9]. Later, the focus of attention in this area shifted towards the questions related
to computability theory. The central notion of symbolic dynamics is a shift (a.k.a. subshift),
which is a set of configurations in Zd over a finite alphabet, defined by a set of forbidden
patterns. Two major notions – two classes of shifts – play now a crucial role in symbolic
dynamics: shifts of finite type (SFT, the shift defined by a finite set of forbidden patterns)
and effective shifts (a.k.a. effectively closed – shifts with an enumerable set of forbidden
patterns). These classes are distinct: every SFT is effective, but in general the reverse
implication does not hold. However, the differences between these classes is surprisingly
subtle. It is known that every effective shift can be simulated in some sense by an SFT of
higher dimension. More precisely, every effective shift in Zd can be represented as a factor of
the projective subdynamics of an SFT of dimension increased by 1, see [10, 6, 1].

Usually, the proofs of computability results in symbolic dynamics involve sophisticated
algorithmic gadgets embedded in dynamical systems. The resulting constructions are typically
intricate and somewhat artificial. So, even if the shifts (effective or SFT) in general are proven
to have a certain algorithmic property, the known proof may be inappropriate for “natural”

∗ Supported by ANR-15-CE40-0016-01 RaCAF grant

© Bruno Durand and Andrei Romashchenko;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/141727353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


5:2 On the Expressive Power of Quasiperiodic SFT

dynamical systems. Thus, it is interesting to understand the limits of the known algorithmic
techniques and find out whether the remarkable properties of algorithmic complexity can be
extended to “simple” and mathematically “natural” types of shifts.

One of the classic natural types of dynamical systems is the class of minimal shifts.
Minimal shifts are those containing no proper shift, or equivalently the shifts where all
configurations have exactly the same patterns. The role minimal shifts play in symbolic
dynamics is similar to the role simple groups play in group theory (in particular every
nonempty shift contains a nonempty minimal shift, see a discussion in [4]). Notice that all
minimal shifts are quasiperiodic (but the converse is not true). Intuitively it seems that
the structure of a minimal shift must be simple (in terms of dynamical systems). Besides,
minimal shifts cannot be “too complex” in algorithmic terms. Indeed, it is known that every
effective minimal shift has a computable language of patterns, and it contains at least one
computable configuration [10] (which is in general not the case for effective shifts and even for
SFT). Nevertheless, minimal shifts can have quite nontrivial algorithmic properties [13, 11].

We have mentioned above that every effective shift S can be represented as a factor of a
projective subdynamics of an SFT S ′ (of higher dimension). In the previously known proofs
of this result [10, 6, 1], even if S is minimal, the structure of the corresponding SFT S ′ (that
simulates by its projective subdynamics the given S) can be very sophisticated (and far from
being minimal). So, a natural question arises (E. Jeandel, [12]): is it true that every effective
minimal (or quasiperiodic) shift can be represented as a factor of a projective subdynamics
on a minimal (respectively, quasiperiodic) SFT of higher dimension? In this paper we give a
positive answer to that questions.

The full proof of the main result of this paper is rather cumbersome for the following
reason: we use the technique of self-simulating tilings (e.g., [6, 7, 16]) combined with some
combinatorial lemmas on quasiperiodic configurations. Unfortunately, there is no clean
separation between the generic technique of self-simulating tilings and the supplementary
features embedded in this type of tilings, so we cannot use the (previously known) technique
of self-simulation as a “black box”. We have to re-explain the core techniques of fixed-
point programming embedded in tilings and adjust the supplementary features within the
construction. While explaining the proofs, we have to balance clarity with formality, and
given the usual space limits of the conference paper we have to sketch some standard parts
of the proof. An extended version of this paper is published on arXiv:1705.01876.

1.1 Notation and basic definitions
Let Σ be a finite set (an alphabet). Fix an integer d > 0. A Σ-configuration is a mapping
f : Zd → Σ. A Zd-shift (or just a shift if d is clear from the context) is a set of configuration
that is (i) shift-invariant (with respect to the translations along each coordinate axis), and
(ii) closed in Cantor’s topology.

A pattern is a mapping from a finite subset in Zd to Σ (a coloring of a finite set of Zd).
Every shift can be defined by a set of forbidden finite patterns F (a configuration belongs to
the shift if and only if it does not contain any pattern from F ). A shift is called effective (or
effectively closed) if it can be defined by a computably enumerable set of forbidden patterns.
A shift is called a shift of finite type (SFT), if it can be defined by a finite set of forbidden
patterns.

A special class of a 2-dimensional SFT is defined in terms of Wang tiles. In this case we
interpret the alphabet Σ as a set of tiles – unite squares with colored sides, assuming that all
colors belong to some finite set C (we assign one color to each side of a tile, so technically Σ
is a subset of C4). A (valid) tiling is a set of all configurations where every two neighboring



B. Durand and A. Romashchenko 5:3

tiles match, i.e., share the same color on the adjacent sides. Wang tiles are powerful enough
to simulate any SFT in a very strong sense: for each SFT S there exists a set of Wang tiles
τ such that the set of all τ -tilings is isomorphic to S. In this paper we focus on tilings since
Wang tiles perfectly suit the technique of self-simulation.

A shift S (in the full shift ΣZd) can be interpreted as a dynamical system. There are d
shifts along each of the coordinates, and each of these shifts map S to itself. So, the group
Zd naturally acts on S.

For any shift S on Zd and for any k-dimensional sublattice L in Zd, the L-projective
subdynamics SL of S is the set of configurations of S restricted on L. The L-projective
subdynamics of a Zd-shift can be understood as a Zk-shift (notice that L naturally acts on
SL). In particular, for every d′ < d we have a standard Zd′-projective subdynamics on the
shift S generated by the lattice spanned on the first d′ coordinate axis. In the proofs of
Theorems 1-2 we deal with the standard Z(d−1)-projective subdynamics on Zd-shifts.

A configuration ω is called recurrent if every pattern that appears in ω at least once, must
then appear in this configuration infinitely often. A configuration ω is called quasiperiodic (or
uniformly recurrent) if every pattern P that appears in ω at least once, must appear in every
pattern Q large enough in ω. Notice that every periodic configuration is also quasiperiodic.
It is easy to see that if a shift S is minimal, then every ω ∈ S is quasiperiodic.

For a quasiperiodic configuration ω, its function of a quasiperiodicity is a mapping
ϕ : N → N such that every finite pattern of diameter n either never appears in ω, or it
appears in every pattern of size ϕ(n) in ω, see [4]. Similarly, a shift S has a function of
quasiperiodicity ϕ, if ϕ is a function of a quasiperiodicity for every configuration in S.

If a shift S is minimal, then all configurations in S have exactly the same finite patterns.
For every minimal shift S, the function of quasiperiodicity is finite (for every n) and even
computable. Moreover, for an effective minimal shift, the set of all finite patterns (that can
appear in any configuration) is computable, see [10, 3]. From this fact it follows that every
effective and minimal shift contains a computable configuration.

1.2 The main results
Our first theorem claims that every effective quasiperiodic Zd-shift can be simulated by a
quasiperiodic SFT in Zd+1.

I Theorem 1. Let A be an effective quasiperiodic Zd-shift over some alphabet ΣA. Then
there exists a quasiperiodic SFT B (over another alphabet ΣB) of dimension d+ 1 such that
A is isomorphic to a factor of a d-dimensional projective subdynamics on B.

A similar result holds for effective minimal shifts:

I Theorem 2. For every effective minimal Zd-shift A there exists a minimal SFT B in Zd+1

such that A is isomorphic to a factor of a d-dimensional projective subdynamics on B.

Theorem 1 implies the following somewhat surprising corollary (a quasiperiodic Z2-SFT can
have highly “complex” languages of patterns):

I Corollary 3. There exists a quasiperiodic SFT A of dimension 2 such that Kolmogorov
complexity of every (N ×N)-pattern in every configuration of A is Ω(N).

I Remark. A standalone pattern of size N ×N over an alphabet Σ (with at least two letters)
can have a Kolmogorov complexity up to Θ(N2). However, this density of information cannot
be enforced by local rules, because in every SFT in Z2 there exists a configuration such that
Kolmogorov complexity of all N × N -patterns is bounded by O(N), [5]. Thus, the lower
bound Ω(N) in Corollary 3 is optimal in the class of all SFT.

MFCS 2017



5:4 On the Expressive Power of Quasiperiodic SFT

Universal
Turing
machine

program

Figure 1 The structure of a macro-tile.

I Remark. Every effective (effectively-closed) minimal shift A is computable (given a pattern,
we can algorithmically decide whether it belongs to the configurations of the shift). Patterns
of high Kolmogorov complexity cannot be found algorithmically. So Corollary 3 cannot be
extended to the class of minimal SFT.

To simplify notation and make the argument more visual, in what follows we focus on
the case d = 1. The proofs extend to any d > 1 in a straightforward way, mutatis mutandis.

2 The general framework of self-simulating SFT

In what follows we extensively use the technique of self-simulating tilesets from [6] (this
technique goes back to [8]). We use the idea of self-simulation to enforce a kind of self-similar
structure in a tiling. In this section we remind the reader of the principal ingredients of this
construction.

Let τ be a tileset and N > 1 be an integer. We call a τ -macro-tile an N × N square
correctly tiled by tiles from τ . Every side of a τ -macro-tile contains a sequence of N colors
(of tiles from τ); we refer to this sequence as a macro-color. A tileset τ simulates another
tileset ρ, if there exists a set of τ -macro-tiles T such that

there is one-to-one correspondence between ρ and T (the colors of two tiles from ρ match
if and only if the macro-colors of the corresponding macro-tiles from T match),
for every τ -tiling there exists a unique lattice of vertical and horizontal lines that splits
this tiling into N ×N macro-tiles from T , i.e., every τ -tiling represents a unique ρ-tiling.

For a large class of sufficiently “well-behaved” sequence of integers Nk we can construct a
family of tilesets τk (i = 0, 1, . . .) such that each τk−1 simulates the next τk with the zoom
Nk (and, therefore, τ0 simulates every τk with the zoom Lk = N1 ·N2 · · ·Nk).

If a k-level macro-tile M is a “cell” in a (k + 1)-level macro-tile M ′, we refer to M ′ as a
father of M ; we call the (k + 1)-level macro-tiles neighboring M ′ uncles of M .

In our construction each tile of τk “knows” its coordinates modulo Nk in the tiling: the
colors on the left and on the bottom sides should involve (i, j), the color on the right side
should involve (i+ 1 mod Nk, j), and the color on the top side, respectively, involves (i, j+ 1
mod Nk). So every τk-tiling can be uniquely split into blocks (macro-tiles) of size Nk ×Nk,
where the coordinates of cells range from (0, 0) in the bottom-left corner to (N − 1, N − 1) in
top-right corner. Intuitively, each tile “knows” its position in the corresponding macro-tile.

In addition to the coordinates, each tile in τk has some supplementary information encoded
in the colors on its sides (the size of the supplementary information is always bounded by
O(1)). In the middle of each side of a macro-tile we allocate sk � Nk positions where an



B. Durand and A. Romashchenko 5:5

array of sk bits represents a color of a tile from τk+1 (these sk bits are embedded in colors on
the sides of sk tiles of a macro-tile, one bit per a cell). We fix some cells in a macro-tile that
serve as “communication wires” and then require that these tiles carry the same (transferred)
bit on two sides (so the bits of “macro-colors” are transferred from the sides of macro-color
towards its central part). The central part of a macro-tile (of size, say mk ×mk, where
mk = poly(logNk)) is a computation zone; it represents a space-time diagram of a universal
Turing machine (the tape is horizontal, time goes up), see Fig. 1.

The first line of the computation zone contains the following fields of the input data:
(i) the program of a Turing machine π that verifies that a quadruple of macro-colors

correspond to one valid macro-color,
(ii) the binary expansion of the integer rank k of this macro-tile,
(iii) the bits encoding the macro-colors – the position inside the “father” macro-tile of rank

(k + 1) (two coordinates modulo Nk+1) and O(1) bits of the supplementary information
assigned to the macro-colors.

We require that the simulated computation terminates in an accepting state (if not, no
correct tiling can be formed). The simulated computation guarantees that macro-tiles of
level k are isomorphic to the tiles of τk+1. Notice that on each level k of the hierarchy we
simulate in macro-tiles a computation of one and the same Turing machine π. Only the
inputs for this machine (including the binary expansion of the rank number k) varies on
different levels of the hierarchy.

This construction of a tileset can be implemented using the standard technique of self-
referential programming, similar to the Kleene recursion theorem, as it is shown in [6]. The
construction works if the size of a macro-tile (the zoom factor Nk) is large enough. First,
we need enough space in a macro-tile to “communicate” sk bits from each macro-colors to
the computation zone; second, we need a large enough computation zone, so all accepting
computations terminate in time mk and on space mk. In what follows we assume that
Nk = 3Ck for some large enough k.

3 Embedding a bi-infinite sequence into a self-simulating tiling

In this section we adapt the technique from [6] and explain how to “encode” in a self-
simulating tiling a bi-infinite sequence, and provide to the computation zones of macro-tiles
of all ranks an access to the letters of the embedded sequences.

We are going to embed in our tiling a bi-infinite sequence x = (xi) over an alphabet Σ.
To this end we assume that each τ -tile “keeps” a letter from Σ that propagates without
change in the vertical direction. Formally speaking, a letter from Σ should be a part of the
top and bottom colors of every τ -tile (the letters assigned to both sides of a tile must be
equal to each other). We want to guarantee that a Σ-sequence can be embedded in a τ -tiling,
if and only if it belongs to some fixed effective A (so far quasiperiodicity is not assumed).

We want to “delegate” the factors of the embedded sequence to the computation zones of
macro-tiles, where these factors will be validated (that is, we will check that they do not
contain any forbidden subwords). While using tilings with growing zoom factor, we can
guarantee that the size of the computation zone of a k-rank macro-tile grows with the rank
k. So we have at our disposal the computational resources suitable to run all necessary
validation tests on the embedded sequence. It remains to organize the propagation of the
letters of the embedded sequence to the “conscious memory” (the computation zones) of
macro-tiles of all ranks. In what follows we explain how this propagation is organized.

MFCS 2017



5:6 On the Expressive Power of Quasiperiodic SFT

· · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·· · ·

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

· · ·· · ·

Figure 2 The zone of responsibility (the grey vertical stripe) for a macro-tile (the red square) is
3 times wider than the macro-tile itself.

Zone of responsibility of macro-tiles. In our construction, a macro-tile of level k is a
square of size Lk × Lk, with Lk = N1 ·N2 · . . . ·Nk (where Ni is the zoom factor on level
i of the hierarchy of macro-tiles). We say that a k-level macro-tile is responsible for the
letters of the embedded sequence x assigned to the columns of (ground level) tiles of this
macro-tile as well as to the columns of macro-tiles of the same rank on its left and on its
right. That is, the zone of responsibility of a k-level macro-tile is a factor of length 3Lk

from the embedded sequence, see Fig. 2. (The zones of responsibility of any two horizontally
neighboring macro-tiles overlap.)

Letters assignment: The computation zone of a k-level macro-tile (of size mk ×mk) is too
small to contain all letters from its zone of responsibility. So we require that the computation
zone obtains as an input a (short enough) chunk of letters from its zone of responsibility. Let
us say, that it is a factor of length lk = log logLk from the stripe of 3Lk columns constituting
the zone of responsibility of this macro-tile. We say that this chunk is assigned to this
macro-tile.

The infinite stripe of vertically aligned k-level macro-tiles share the same zone of respons-
ibility. However, different macro-tiles in such a stripe will obtain different assigned chunks.
The choice of the assigned chunk varies from 0 to (3Lk − lk). We need to choose a position
of a factor of length lk in a word of length Lk. Let us say for certainty that for a macro-tile
M of rank k the first position of the assigned chunk (in the stripe of length 3Lk) is defined
as the vertical position of M in the bigger macro-tile of rank (k + 1) (modulo (3Lk − lk)).

I Remark. We have chosen the zoom factors Nk so that Nk+1 � 3Lk. Hence, every chunk of
length lk from a stripe of width 3Lk is assigned to some of the macro-tiles “responsible” for
these 3Lk letters. Since the zones of responsibility of neighboring k-level macro-tiles overlap
by more than lk, every finite factor of length lk in the embedded sequence x is assigned to
some k-level macro-tile (even if it involves columns of two macro-tiles of rank k).

Implementing the letters assignment by self-simulation. In the letters assignment para-
graph above we presented some requirements – how the data must be propagated from the
ground level (individual tiles) to k-level macro-tiles. Technically, for each k-level macro-tile
M we specified which chunk of the embedded sequence should be a part of the data fields on
the computation zone ofM. So far we have not explained how the assigned chunks arrive



B. Durand and A. Romashchenko 5:7

to the high-level data fields. Now, we are going to explain how to implement the desired
scheme of letter assignment in a self-simulating tiling. Technically, we append to the input
data of the computation zones of macro-tiles some supplementary data fields:
(v) the block of lk letters from the embedded sequence assigned to this macro-tile,
(vi) three blocks of bits of lk+1 letters of the embedded sequence assigned to this “father”

macro-tile, and two “uncle” macro-tiles (the left and the right neighbors of the “father”),
(vii) the coordinates of the “father” macro-tile in the “grandfather” (of rank (k + 2)).
Informally, each k-level macro-tile must check that the data in the fields (iv), (v) and (vi)
is consistent. That is, if some letters from the fields (iv) and (v) correspond to the same
vertical column (in the zone of responsibility), then these letters must be equal to each other.
Also, if a k-level macro-tile plays the role of cell in the computation zone of the (k + 1)-level
father, it should check the consistency of its (v) and (vi) with the bits displayed in father’s
computation zone. Finally, we must ensure the coherence of the fields (v) and (vi) for each
pair of neighboring k-level macro-tiles; so this data should make a part of the macro-colors.

Notice that the data from “uncles” macro-tiles is necessary to deal with the letters from
the columns that physically belong to the neighboring macro-tiles. So the consistency of
the fields (v) is imposed also on neighboring k-level macro-tiles that belong to different
(k + 1)-level fathers (the boarder line between these k-level macro-tiles is also the boarder
line between their fathers).

The computations verifying the coherence of the new fields can be performed in polynomial
time, and the required update of the construction fits the constraints on the parameter. See
a more detailed discussion on “letter delegation” in [6, Section 7].

Final remarks: testing against forbidden factors. To guarantee that the embedded se-
quence x contains no forbidden patterns, each k-level macro-tile should allocate some part
of its computation zone to enumerate (within the limits of available space and time) the
forbidden pattern, and verify that the block of lk letters assigned to this macro-tile contains
none of the found forbidden factors.

The time and space allocated to enumerating the forbidden words grow as a function of
k. To ensure that the embedded sequence contains no forbidden patterns, it is enough to
guarantee that each forbidden pattern is found by macro-tiles of high enough rank, and every
factor of the embedded sequence is compared (on some level of the hierarchy) with every
forbidden factor. Thus, we have a general construction of a 2D tiling that simulates a given,
effective 1D shift. In the next sections we explain how to make these tilings quasiperiodic in
the case when the simulated 1D shift is also quasiperiodic.

4 Combinatorial lemmas: the direct product of quasiperiodic and
periodic sequences

The technique from [6] allows to embed in a self-similar tiling a 1-dimensional sequence
and handle factors of this sequence. However, the previously known constructions cannot
guarantee minimality or even quasiperiodicity of the resulting tiling, even if the embedded
sequences have very simple combinatorial structure. To achieve the property of quasiperiod-
icity we will need some new techniques. The new parts of the argument begins with two
simple combinatorial lemmas concerning quasiperiodic sequences.

I Lemma 4. (see [2, 15]) Let x be a bi-infinite recurrent sequence, w be a finite factor in x,
and q be a positive integer number. Then there exists an integer t > 0 such that another copy
of w appears in x with a shift q · t. In other words, there exists another instance of the same

MFCS 2017



5:8 On the Expressive Power of Quasiperiodic SFT

factor w with a shift divisible by q. Moreover, if x is quasiperiodic, then the gap q · t between
neighboring appearances of w is bounded by some number L that depends on x and w (but
not on a specific instance of the factor x in the sequence).

Notation: For a configuration x (over some finite alphabet) we denote with S(x) the shift
that consists of all configurations x′ containing only patterns from x. If a shift T is minimal,
then S(x) = T for all configurations x ∈ T .

I Lemma 5. (a) Let T be an effective minimal shift. Then for every x = (xi) from T and
every periodic configuration y = (yi) the direct product x⊗y (the bi-infinite sequence of pairs
(xi, yi) for i ∈ Z) generates a minimal shift, i.e., S(x⊗ y) is minimal. (b) If in addition the
sequence x are computable, then the set of patterns in S(x⊗ y) is also computable.

I Remark. In general, different configurations x ∈ T in the product with one and the same
periodic y can result in different shifts S(x⊗ y).

Lemma 5 can be deduced from the fact that for every effective minimal shift the function
of quasiperiodicity is computable, [10], and Lemma 4.

5 Towards quasiperiodic SFT

In this section we combine the combinatorial lemmas from the previous section with the
technique of enforcing quasiperiodicity from [7], and prove our main results.

5.1 When macro-tiles are clones of each other

To show that (some) self-simulating tilings enjoy the property of quasiperiodicity, we need
a tool to prove that every pattern in a tiling has “clones” (equal patterns) in each large
enough fragment of this tiling. In our tiling every finite pattern is covered by a block of (at
most) four macro-tiles of high enough rank, so we can focus on the search for “clones” in
macro-tiles. The following lemma gives a natural characterization of the equality of two
macro-tiles in a tiling: they must have the same information in their “conscious memory”
(the data written on the tape of the Turing machine in the computation zone) and the same
information hidden in their “deep subconscious” (the fragments of the embedded 1D sequence
corresponding to the responsibility zones of these macro-tiles must be identical).

I Lemma 6. Two macro-tiles of rank k are equal to each other if and only if they (a) contain
the same bits in the fields (i) - (vi) in the input data on the computation zone, and (b) the
factors of the encoded sequence corresponding to the zones of responsibility of these macro-tiles
(in the corresponding vertical stripes of width 3Nk) are equal to each other.

Proof. Induction by the rank k. For the macro-tile of rank 1 the statement follows directly
from the construction. For a pair of macro-tiles M1 and M2 of rank (k + 1) with identical
data in the fields (i) - (vi) we observe that the corresponding “cells” in M1 and M2 (which
are macro-tiles of rank k) contain the same data in their own fields (i) - (vi), since the
communication wires of M1 and M2 carry the same information bits, their computation
zones represent exactly the same computations, etc. If the factors (of length 3Lk) from the
encoded sequences in the zones of responsibility of M1 and M2 are also equal to each other,
we can apply the inductive assumption. J



B. Durand and A. Romashchenko 5:9

5.2 Supplementary features: constraints that can be imposed on the
self-simulating tiling

The tiles involved in our self-simulating tiles set (as well as all macro-tile of each rank) can
be classified into three types:
(a) the “skeleton” tiles that keep no information except for their coordinates in the father

macro-tile; these tiles work as building blocks of the hierarchical structure;
(b) the “communication wires” that transmit the bits of macro-colors from the border line

of the macro-tile to the computation zone;
(c) the tiles of the computation zone (intended to simulate the space-time diagram of the

Universal Turing machine).
Each pattern that includes only “skeleton” tiles (or “skeleton” macro-tiles of some rank k)
reappears infinitely often in all homologous position inside all macro-tiles of higher rank.
Unfortunately, this property is not true for the patterns that involve the “communication
zone” or the “communication wires”. Thus, the general construction of a fixed-point tiling
does not imply the property of quasiperiodicity. To overcome this difficulty we need some
new technical tricks.

We can enforce the following additional properties (p1) - (p4) of a tiling with only a
minor modification of the construction:
(p1) In each macro-tile, the size of the computation zone mk is much less than the size of

the macro-tile N . In what follows we need to reserve free space in a macro-tile to insert
O(1) (some constant number) of copies of each 2× 2 pattern from the computation zone
(of this macro-tile), right above the computation zone. This requirement is easy to meet.
We assume that the size of a computation zone in a k-level macro-tile of size Nk ×Nk is
only mk = poly(logNk). So we can reserve an area of size Ω(mk) above the computation
zone, which is free of “communication wires” or any other functional gadgets (so far this
area consisted of only skeleton tiles).

(p2) We require that the tiling inside the computation zone satisfies the property of 2× 2-
determinacy. If we know all the colors on the borderline of a 2 × 2-pattern inside of
the computation zone (i.e., a tuple of 8 colors), then we can uniquely reconstruct the
4 tiles of this pattern. Again, to implement this property we do not need new ideas;
this requirement is met if we represent the space-time diagram of a Turing machine in a
natural way.

(p3) The communication channels in a macro-tile (the wires that transmit the information
from the macro-color on the borderline of this macro-tile to the bottom line of its
computation zone) must be isolated from each other. The distance between every
two wires must be greater than 2. That is, each 2 × 2-pattern can touch at most
one communication wire. Since the width of the wires in a k-level macro-tile is only
O(logNk+1), we have enough free space to lay the “communication cables”, so this
requirement is easy to satisfy.

I Remark. Property (p3) is a new feature, it was not used in [7] or any other preceding
constructions of self-simulating tilings.

(p4) In our construction the macro-colors of a k-level macro-tile are encoded by bit strings
of some length rk = O(logNk+1). We assumed that this encoding is natural in some way.
So far the choice of encoding was of small importance; we only required that some natural
manipulations with macro-colors can be implemented in polynomial time. Now, we add
another (seemingly artificial) requirement: that each of rk bits encoding the macro-colors
(on the top, bottom, left and right sides of a macro-color) was equal to 0 and to 1 for quite
a lot of macro-tiles (so the fact that some bit of some macro-color has this or that value,

MFCS 2017



5:10 On the Expressive Power of Quasiperiodic SFT

must not be unique in a tiling). Technically, we require an even stronger property: at
every position s = 1, . . . , rk and for every i = 0, . . . , Nk+1 − 1 there must exist j0, j1 such
that the s-th bit in the top, the left and the right macro-colors of the k-level macro-tile
at the positions (i, j0) and (i, j1) in the (k + 1)-level father macro-tile is equal to 0 and 1
respectively.

There are many (more or less artificial) ways to realize this constraint. For example, we
may subdivide the array of rk bits in three equal zones of size rk/3 and require that for each
macro-tile only one of these three zones contains the “meaningful” bits, and two other zones
contain only zeros and ones respectively; we require then that the “roles” of these three zones
cyclically exchange as we go upwards along a column of macro-tiles.

5.3 Enforcing quasiperiodicity
To achieve the property of quasiperiodicity, we should guarantee that every finite pattern
that appears once in a tiling, must appear in each large enough square. If a tileset τ is
self-similar, then in every τ -tiling each finite pattern can be covered by at most 4 macro-tiles
(by a 2× 2-pattern) of an appropriate rank. Thus, it is enough to show that every 2× 2-block
of macro-tiles of any rank k that appears in at least one τ -tiling, actually appears in this
tiling in every large enough square.

Case 1: skeleton tiles. For a 2 × 2-block of four “skeleton” macro-tiles of level k this is
easy. Indeed, we have exactly the same blocks with every vertical shift multiple of Lk+1 (we
have there a similar block of k-level “skeleton” macro-tiles within another macro-tile of rank
(k + 1)). A vertical shift does not change the embedded letters in the zone of responsibility,
so we can apply Lemma 6.

To find a similar block of k-level “skeleton” macro-tiles with a different abscissa coordinate,
we need a horizontal shift Q which is divisible by Lk+1 (to preserve the position in the
father macro-tile) and at the same time does not change the letters embedded in the zone of
responsibility. This is possible due to Lemma 4, if the embedded sequence is quasiperiodic.
Given a suitable horizontal shift, we can again apply Lemma 6.

Case 2: communication wires. Let us consider the case when a 2 × 2-block of k-level
macro-tiles involves a part of a communication wire. Due to the property (p3) we may
assume that only one wire is involved. The bit transmitted by this wire is either 0 or 1;
in both cases, due to the property (p4) we can find another similar 2 × 2-block of k-level
macro-tiles (at the same position within the father macro-tile of rank (k + 1) and with the
same bit included in the communication wire) in every macro-tile of level (k + 2). In this
case we need a vertical shift longer than in Case 1: we can find a duplicate of the given block
with a vertical shift of size O(Lk+2).

As in Case 1, any vertical shift does not change the letters embedded in the zone of
responsibility of the involved macro-tiles, and we can apply Lemma 6 immediately. If we are
looking for a horizontal shift, we again use quasiperiodicity of the simulated shift and apply
Lemma 4: there exists a horizontal shift that is divisible by Lk+2 and does not change the
letters embedded in the zone of responsibility. Then we again apply Lemma 6.

Case 3: computation zone. Now we consider the most difficult case: when a 2× 2-block of
k-level macro-tiles touches the computation zone. In this case we cannot obtain the property
of quasiperiodicity for free, and we have to make one more (the last one) modification of our
general construction of a self-simulating tiling.



B. Durand and A. Romashchenko 5:11

Universal
Turing
machine

program

Figure 3 Positions of the slots for patterns from the computation zone.

(i, j)

(i, j + 1)

(i, j) (i, j + 1)

(i+ 1, j)

(s, t)

(i+ 1, j) (i+ 2, j)

(i+ 2, j)

(s+ 1, t)

(i+ 2, j) (i+ 3, j)

(i+ 3, j)

(i+ 3, j + 1)

(i+ 3, j) (i+ 4, j)

(i, j + 1)

(i, j + 2)

(i, j + 1) (s, t)

(s, t)

(s, t+ 1)

(s, t) (s+ 1, t)

(s+ 1, t)

(s+ 1, t+ 1)

(s+ 1, t) (s+ 2, t)

(i+ 3, j + 1)

(i+ 3, j + 2)

(s+ 2, t) (i+ 4, j + 1)

(i, j + 2)

(i, j + 3)

(i, j + 2) (s, t+ 1)

(s, t+ 1)

(s, t+ 2)

(s, t+ 1) (s+ 1, t+ 1)

(s+ 1, t+ 1)

(s+ 1, t+ 2)

(s+ 1, t+ 1) (s+ 2, t+ 1)

(i+ 3, j + 2)

(i+ 3, j + 3)

(s+ 2, t+ 1) (i+ 4, j + 2)

(i, j + 3)

(i, j + 4)

(i, j + 3) (i+ 1, j + 3)

(s, t+ 2)

(i+ 1, j + 4)

(i+ 1, j + 3) (i+ 2, j + 3)

(s+ 1, t+ 2)

(i+ 2, j + 4)

(i+ 2, j + 3) (i+ 3, j + 3)

(i+ 3, j + 3)

(i+ 3, j + 4)

(i+ 3, j + 3) (i+ 4, j + 3)

Figure 4 A slot for a 2 × 2-pattern from the computation zone.

Notice that for each 2 × 2-window that touches the computation zone of a macro-tile
there exist only O(1) ways to tile them correctly. For each possible position of a 2×2-window
in the computation zone and for each possible filling of this window by tiles, we reserve
a special 2 × 2-slot in a macro-tile, which is essentially a block of size 2 × 2 in the “free”
zone of a macro-tile. It must be placed far away from the computation zone and from all
communication wires, but in the same vertical stripe as the “original” position of this block,
see Fig. 3. We have enough free space to place all necessary slots due to the property (p1).
We define the neighbors around this slot in such a way that only one specific 2× 2 pattern
can patch it (here we use the property (p2)).

In our construction the tiles around this slot “know” their real coordinates in the
bigger macro-tile, while the tiles inside the slot do not (they “believe” they are tiles in the
computation zone, while in fact they belong to an artificial isolated diversity preserving “slot”
far outside of any real computation), see Fig. 3 and Fig. 4. The frame of the slot consists
of 12 “skeleton” tiles (the white squares in Fig. 4), they form a slot a 2 × 2-pattern from
the computation zone (the grey squares in Fig. 4). In the picture we show the “coordinates”
encoded in the colors on the sides of each tile. Notice that the colors of the bold lines (the
blue lines between white and grey tiles and the bold black lines between grey tiles) should
contain some information beyond coordinates – these colors involve the bits used to simulate
a space-time diagram of the universal Turing machine. In this picture, the “real” coordinates
of the bottom-left corner of this slot are (i+ 1, j + 1), while the “natural” coordinates of the
pattern (when it appears in the computation zone) are (s, t).

We choose the positions of the “slots” in the macro-tile so that coordinates can be
computed with a short program in time polynomial in logN . We require that all slots are
isolated from each other in space, so they do not damage the general structure of “skeleton”
tiles building the macro-tiles.

MFCS 2017



5:12 On the Expressive Power of Quasiperiodic SFT

Through construction, each of these slots is aligned with the “natural” position of the
corresponding 2 × 2-block in the computation zone. This guarantees that the tiles in the
computation zone and their “sibling” in the artificial slots share the same bits of the embedded
sequences in the corresponding zone of responsibility. We have defined the slots so that the
“conscious memory” of the tiles in the computation zone and in the corresponding slots is the
same. Thus, we can apply Lemma 6 and conclude that a 2× 2-blocks in diversity preserving
slots are exactly equal to the corresponding 2× 2-patterns in the computation zone. For a
horizontal shift, similarly to the Cases 1–2 above, we use quasiperiodicity of the embedded
sequences and apply Lemma 4.

I Remark (Concluding Remark). Formally speaking, we proved Lemma 6 before we introduced
the last upgrades of our tileset. However, it is easy to verify that the updates of the main
construction discussed in this Section do not affect the proof of that lemma.

Thus, we constructed a tileset τ such that every Lk×Lk pattern that appears in a τ -tiling
must also appear in every large enough square in this tiling. So, the constructed tileset
satisfies the requirements of Theorem 1.

The proof of Corollary 3. To prove Corollary 3 we only need to combine Theorem 1 with a
fact from [14]: there exists a 1D shift S that is quasiperiodic, and for every configuration
x ∈ S the Kolmogorov complexity of all factors is linear, i.e., K(xixi+1 . . . xi+n) = Ω(n) for
all i. J

The proof of Theorem 2. First of all we notice that the proof of Theorem 1 discussed above
does not imply Theorem 2. If we take an effective minimal 1D-shift A and plug it into the
construction form the proof of Theorem 1, we obtain a tileset τ (simulating A) which is
quasiperiodic but not necessary minimal. The property of minimality can be lost even for a
periodic shift A. Indeed, assume that the minimal period t > 0 of the configurations in A is
a factor of the size Nk of k-level macro-tiles in our self-simulating tiling, then we can extract
from the resulting SFT τ nontrivial shifts Ti, i = 0, 1, . . . , t− 1 corresponding to the position
of the embedded 1D-configuration with respect to the grid of macro-tiles. To overcome this
obstacle we will superimpose some additional constraints on the embedding of the simulated
Z-shift in a Z2-tiling. Roughly speaking, we will enforce only “standard” positioning of the
embedded 1D sequences with respect to the grid of macro-tiles. This will not change the
class of configurations that can be simulated (we still get all configurations from a given
minimal shift A), but the classes of all valid tilings will reduce to some minimal Z2-SFT.

The standardly aligned grid of macro-tiles: In general, the hierarchical structure of macro-
tiles permits non-countably many ways of cutting the plane in macro-tiles of different ranks.
We fix one particular version of this hierarchical structure and say that a grid of macro-tiles
is standardly aligned, if for each level k the point (0, 0) is the bottom-left corner of a k-level
macro-tile. This means that the tiling is cut into k-level macro-tiles of size Lk × Lk by
vertical lines with abscissae x = Lk · t′ and ordinates y = Lk · t′′, with t′, t′′ ∈ Z (so the
vertical line (0, ∗) and the horizontal line (∗, 0) serve as separating lines for macro-tiles of all
ranks). Of course, this structure of macro-tiles is computable.

The canonical representative of a minimal shift: A minimal effectively-closed 1D-shift A
is always computable, i.e., the set of finite patterns that appear in configurations of this shift
is computable. It follows immediately that A contains some computable configuration. Let
us fix one computable configuration x; in what follows we call it canonical.



B. Durand and A. Romashchenko 5:13

The standard embedding of the canonical representative: We superimpose the standardly
aligned grid of macro-tiles with the canonical representative of a minimal shift A: we take
the direct product of the hierarchical structures of the standardly aligned grid of macro-tiles
with the canonical configuration x from A (that is, each tile with coordinates (i, j) “contains”
the letter xi from the canonical configuration).

Claim 1: Given a pattern w of size n ≤ Lk and an integer i, we can algorithmically verify
whether the factor w appears in the standard embedding of the canonical representative with
the shift (i mod Lk) relative to the grid of k-level macro-tiles. This follows from Lemma 5(b)
applied to the superposition of the canonical representative with the periodical grid of k-level
macro-tiles).

I Remark. This verification procedure is computable, but its computational complexity can
be very high. To perform the necessary computation we may need space and time much
bigger than the length of w and Lk.

Upgrade of the main construction: Let us update the construction of self-simulating tiling
from the proof of Theorem 1. So far we assumed that every macro-tile (of every level k)
verifies that the delegated factor of the embedded sequences contains no factors forbidden
for the shift A. Now we make the constraint stronger: we require that the delegated factor
contains only factors allowed in the shift A and placed in the positions (relative to the grid of
macro-tiles) permitted for factors in the standard embedding of the canonical representative.
This property is computable (Claim 1), so every forbidden pattern or a pattern in a forbidden
position will be discovered in a computation in a macro-tile of some rank. The computational
complexity of this procedure can be very high (see Remark after Claim 1), and we cannot
guarantee that the forbidden patterns of small length are discovered by the computation in
macro-tiles of small size. But we do guarantee that each forbidden pattern or a pattern in a
forbidden position is discovered by a computation in some macro-tile of high enough rank.

Claim 2: The new tileset admits correct tilings of the plane. Indeed, at least one tiling is
valid by the construction: the standard embedding of the canonical representative corresponds
to a valid tiling of the plane, since macro-tiles of all rank never find any forbidden placement
of patterns in the embedded sequence.

Claim 3: The new tileset simulates the shift A. This follows immediately from the con-
struction: the embedded sequence must be a configuration from A.

Claim 4: For the constructed tileset τ the set of all tilings is a minimal shift. We need
to show that every τ -tiling contains all patterns that can appear in at least one τ -tiling.
Similarly to the proof of Theorem 1, it is enough to prove this property for 2 × 2-blocks
of k-level macro-tile. The difference with the argument in the previous section is that for
every 2× 2-block of macro-tiles in one tiling T we must find a similar block of macro-tiles
in another tiling T ′, so that this block has exactly the same position with respect to father
macro-tileM of rank (k + 1), andM andM′ own exactly the same factor of the embedded
sequence in their zones of responsibility. This is always possible due to Lemma 5(a) (applied
to the canonical representative of A superimposed with the periodical grid of (k + 1)-level
macro-tiles). This observation concludes the proof. J

MFCS 2017



5:14 On the Expressive Power of Quasiperiodic SFT

Acknowledgments. We are indebted to Emmanuel Jeandel for raising and motivating the
questions which led to this work. We are grateful to Gwenaël Richommes and Pascal Vanier
for fruitful discussions and to the anonymous reviewers for truly valuable comments.

References
1 Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts by two-dimensional

subshifts of finite type. Acta Applicandae Mathematicae, 128(1):35–63, 2013.
2 Sergey V. Avgustinovich, Dmitrii G. Fon-Der-Flaass, and Anna E. Frid. Arithmetical

complexity of infinite words. In 3rd Int. Colloq. on Words, Languages and Combinatorics,
pages 51–62, 2003.

3 Alexis Ballier and Emmanuel Jeandel. Computing (or not) quasiperiodicity functions of
tilings. In 2nd Symposium on Cellular Automata Journées Automates Cellulaires (JAC
2010), pages 54–64, 2010.

4 Bruno Durand. Tilings and quasiperiodicity. Theoretical Computer Science, 221(1):61–75,
1999.

5 Bruno Durand, Leonid Levin, and Alexander Shen. Complex tilings. The Journal of
Symbolic Logic, 73(2):593–613, 2008.

6 Bruno Durand, Andrei Romashchenko, and Alexander Shen. Fixed-point tile sets and their
applications. Journal of Computer and System Sciences, 78(3):731–764, 2012.

7 Brunourand Durand and Andrei Romashchenko. Quasiperiodicity and non-computability
in tilings. In Proc. International Symposium on Mathematical Foundations of Computer
Science (MFCS 2015), pages 218–230, 2015.

8 Peter Gács. Reliable computation with cellular automata. Journal of Computer and System
Sciences, 32(1):15–78, 1986.

9 Gustav Hedlund and Marston Morse. Symbolic dynamics. American Journal of Mathem-
atics, 60(4):815–866, 1938.

10 Michael Hochman. On the dynamics and recursive properties of multidimensional symbolic
systems. Inventiones mathematicae, 176(1):131–167, 2009.

11 Michael Hochman and Pascal Vanier. A note on turing degree spectra of minimal shifts.
In The 12th International Computer Science Symposium in Russia, pages 154–161, 2017.

12 Emmanuel Jeandel. Personal communication. private communication, 2015.
13 Emmanuel Jeandel and Pascal Vanier. Turing degrees of multidimensional sfts. Theoretical

Computer Science, 505:81–92, 2013.
14 Andrey Rumyantsev and Maxim Ushakov. Forbidden substrings, kolmogorov complexity

and almost periodic sequences. In Annual Symposium on Theoretical Aspects of Computer
Science, pages 396–407, 2006.

15 Pavel V. Salimov. On uniform recurrence of a direct product. Discrete Mathematics and
Theoretical Computer Science, 12(4), 2010.

16 Linda Brown Westrick. Seas of squares with sizes from a Π0
1 set. arXiv preprint

arXiv:1609.07411, 2016.


	Introduction
	Notation and basic definitions
	The main results

	The general framework of self-simulating SFT
	Embedding a bi-infinite sequence into a self-simulating tiling
	Combinatorial lemmas: the direct product of quasiperiodic and periodic sequences
	Towards quasiperiodic SFT
	When macro-tiles are clones of each other
	Supplementary features: constraints that can be imposed on the self-simulating tiling
	Enforcing quasiperiodicity


