10 research outputs found

    Cascaded Linear Regulator with Negative Voltage Tracking Switching Regulator

    Get PDF
    DC-DC converters can be separated into two main groups: switching converters and linear regulators. Linear regulators such as Low Dropout Regulators (LDOs) are straightforward to implement and have a very stable output with low voltage ripple. However, the efficiency of an LDO can fluctuate greatly, as the power dissipation is a function of the device’s input and output. On the other hand, a switching regulator uses a switch to regulate energy levels. These types of regulators are more versatile when a larger change of voltage is needed, as efficiency is relatively stable across larger steps of voltages. However, switching regulators tend to have a larger output voltage ripple, which can be an issue for sensitive systems. An approach to utilize both in cascaded configuration while providing a negative output voltage will be presented in this paper. The proposed two-stage conversion system consists of a switching pre-regulator that can track the negative output voltage of the second stage (LDO) such that the difference between input and output voltages is always kept small under varying output voltage while maintaining the high overall conversion efficiency. Computer simulation and hardware results demonstrate that the proposed system can track the negative output voltage well. Additionally, the results show that the proposed system can provide and maintain good overall efficiency, load regulation, and output voltage ripple across a wide range of outputs

    Assessment of an Average Controller for a DC/DC Converter via Either a PWM or a Sigma-Delta-Modulator

    Get PDF
    Sliding mode control is a discontinuous control technique that is, by its nature, appropriate for controlling variable structure systems, such as the switch regulated systems employed in power electronics. However, when designing control laws based on the average models of these systems a modulator is necessary for their experimental implementation. Among the most widely used modulators in power electronics are the pulse width modulation (PWM) and, more recently, the sigma-delta-modulator (Σ-Δ-modulator). Based on the importance of achieving an appropriate implementation of average control laws and the relevance of the trajectory tracking task in DC/DC power converters, for the first time, this research presents the assessment of the experimental results obtained when one of these controllers is implemented through either a PWM or a Σ-Δ-modulator to perform such a task. A comparative assessment based on the integral square error (ISE) index shows that, at frequencies with similar efficiency, the Σ-Δ-modulator provides a better tracking performance for the DC/DC Buck converter. In this paper, an average control based on differential flatness was used to perform the experiments. It is worth mentioning that a different trajectory tracking controller could have been selected for this research

    デルタシグマ変調制御電源回路の研究

    Get PDF
    修士論

    Variable Spurious Noise Mitigation Techniques in Hysteretic Buck Converters

    Get PDF
    This work proposes a current-mode hysteretic buck converter with a spur-free constant-cycle frequency-hopping controller that fully eliminates spurs from the switching noise spectrum irrespective of variations in the switching frequency and operating conditions. As a result, the need for frequency regulation loops to ensure non-varying switching frequency (i.e. fixed spurs location) in hysteretic controllers is eliminated. Moreover, compared to frequency regulation loops, the proposed converter offers the advantage of eliminating mixing and interference altogether due to its spur-free operation, and thus, it can be used to power, or to be integrated within noise-sensitive systems while benefiting from the superior dynamic performance of its hysteretic operation. The proposed converter uses dual-sided hysteretic band modulation to eliminate the inductor current imbalance that results from frequency hopping along with the output voltage transients and low-frequency noise floor peaking associated with it. Moreover, a feedforward adaptive hysteretic band controller is proposed to reduce variations in the switching frequency with the input voltage, and an all-digital soft-startup circuit is proposed to control the in-rush current without requiring any off-chip components. The converter is implemented in a 0.35-õm standard CMOS technology and it achieves 92% peak efficiency

    ANFIS-PID Hybrid Digital Controllers for Buck Converters

    Get PDF

    Quantization noise analysis of a closed-loop PWM controller that includes Σ-Δ modulation

    Get PDF
    Σ-Δ modulation is a popular noise shaping technique which is used to move the quantization noise out of the frequency band of interest. Recently, a number of authors have applied this technique to a pulse width modulation (PWM) controller for switching power converters. However, previous analysis has not incorporated the effects of analog-to-digital converter (ADC) resolution or feedback control on the Σ-Δ modulator. In this work, quantization due to ADC resolution and PWM resolution are analyzed, considering the effects of noise-shaping and feedback. A number of simulations have been performed to explore the impact of various design choices on output noise. The study variables included the order of the Σ-Δ modulator, resolution of ADC, resolution of DPWM, the plant and the compensator. The theoretical model developed is used to generate the expected system Power Spectral Density (PSD) curves for each design choice and simulations techniques are used to validate the analysis. Experimental analysis has been performed on a digital voltage-mode control (VMC) synchronous buck converter and the output voltage PSD curves are generated using the welch method and compared with the theoretical and the simulation results. The experimental PSD curves for the 1st-order modulator match the simulation and theoretical PSD curves. This suggests that the theoretical model is a useful approximation and similar methods can be used to analyze the contribution of the quantizers to the output noise of a closed-loop controller system --Abstract, page iii

    High Bandwidth Phase Voltage and Current Control Loop of a Permanent Magnet Synchronous Motor based on Delta Sigma Bitstreams

    Get PDF
    Delta-Sigma-Umsetzer sind aus der Audio-Technik für ihren hohen Signal-zu-Rausch Abstand bei Abtastraten im 10 bis 100 kHz Bereich bekannt und werden zunehmend auch in der Stromregelung von elektrischen Antrieben als Analog-Digital-Umsetzer eingesetzt. Delta-Sigma-Umsetzer bestehen aus einem Modulator und einem digitalen Tiefpassfilter. Die Auswirkungen des digitalen Filters auf die Stromregelung eines elektrischen Antriebs werden hinsichtlich der erreichbaren Bandbreite des Stromregelkreises und der Unterdrückung von Störungen in der Strommessung untersucht. In dieser Arbeit werden zwei Ansätze zur Steigerung der Bandbreite des Stromregelkreises verfolgt. Der Stromregler wird direkt in dem hochfrequenten Zeitraster (10 MHz) der Delta-Sigma-Modulatoren gerechnet, so dass auf einen digitalen Tiefpassfilter verzichtet werden kann. Dieses Vorgehen erfordert eine neuartige Signalverarbeitung, da der Ausgang des Delta-Sigma-Modulators aus einem gering quantisierten Delta-Sigma-Bitstrom mit einer Auflösung von einem Bit besteht. Die vorhandenen Ansätze zur direkten Signalverarbeitung des Delta-Sigma-Bitstroms werden verglichen und erweitert. Der zweite Ansatz zur Steigerung der Bandbreite besteht darin, die hochfrequenten Delta-Sigma-Bitströme breitbandig in PWM Signale für eine Leistungselektronik im 4 - 40 kHz Bereich umzusetzen. Das grundsätzliche Prinzip wird an einer einphasigen Last untersucht. Die im Stand der Forschung bekannte Lösung für eine dreiphasige Last weist erhebliche Nachteile auf. In dieser Arbeit wird ein Verfahren für einen hochdynamischen dreiphasigen Leistungselektronik-Modulator zur direkten Verarbeitung von Delta-Sigma-Bitströmen vorgestellt, welcher die Nachteile der bekannten Lösung aufhebt. Zusätzlich wird eine direkte Rückführung der Strom- und Spannungsmesswerte über Delta-Sigma-Bitströme realisiert. Dies ermöglicht eine hochdynamische Strom- und Spannungsregelung einer permanenterregten Synchronmaschine.Delta sigma converters are established in communication and audio high fidelity applications due to their high signal to noise ratio and sampling frequency range of 10 to 100 kHz. In the phase current control of electrical drives, delta sigma converters are more commonly used. They comprise a modulator and a digital low pass filter. The effects of the digital low pass filter on the achievable bandwidth and the suppression of disturbances of the electrical drive are analyzed in this thesis. Two measures are proposed to increase the bandwidth of the phase current control loop. The phase current controller is executed at the high frequent (10 MHz) sampling rate of the delta sigma modulator so that the digital filter can be omitted. This method requires a new signal processing, since the output of the delta sigma modulator, a delta sigma bitstream, features only a one bit resolution. Existing solutions for this direct processing of delta sigma bitstreams are compared and extended. A highly dynamic conversion of the high frequent delta sigma bitstream into pulse width modulated signals for power electronics is the second method to increase the bandwidth. The high frequent sampling rate of the delta sigma modulator is reduced to an average switching frequency range of 4 to 40 kHz. A single-phase load is used for a first analysis. The solution for a three-phase load in literature reveals some disadvantages. A power electronics modulator with high bandwidth, which directly processes the delta sigma bitstreams without these disadvantages, is presented. In addition, a direct feedback of phase currents and voltages is achieved by delta sigma bitstreams. This enables a highly dynamic phase current- and voltage control of a permanent magnet synchronous machine
    corecore