186 research outputs found

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    Interior boundary-aligned unstructured grid generation and cell-centered versus vertex-centered CVD-MPFA performance

    Get PDF
    Grid generation for reservoir simulation must honor classical key constraints and ensure boundary alignment such that control-volume boundaries are aligned with geological features including layers, shale barriers, fractures, faults, pinch-outs, and multilateral wells. Novel unstructured grid generation methods are proposed that automate control-volume and/or control point boundary alignment and yield perpendicular-bisector (PEBI) meshes both with respect to primal and dual (essentially PEBI) cells. In order to honor geological features in the primal configuration, we introduce the idea of protection circles that contain segments of key geological boundaries, while in order to generate a dual-cell feature aligned grid, we construct halos around key geological features. The grids generated are employed to study comparative performance of cell-centred versus cell-vertex flux-continuous control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulations using equivalent degrees of freedom and thus ensure application of the most efficient methods. The CVD-MPFA formulation (c.f. Edwards et al.) in cell-centred and cell-vertex modes is somewhat analogous and requires switching control-volume from primal to dual or vice versa, together with appropriate data structures and boundary conditions, however dual-cells are generated after primal grid generation. The relative benefits of both types of approximation, i.e., cell-centred versus vertex-centred, are contrasted in terms of flow resolution and degrees of freedom required

    Equidimensional modelling of flow and transport processes in fractured porous systems II

    Get PDF
    In fractured formations, the vastly different hydraulic properties of fractures and porous matrix lead to a considerable mass exchange between fracture and matrix, strongly affecting the flow and transport conditions in the domain of interest. This plays an important role for many environmental applications, e.g. the design of disposal systems for hazardous waste. In two papers, we display a new numerical concept describing saturated flow and transport processes in arbitrarily fractured porous media. An equidimensional approach is developed using elements of the same dimension for fracture and matrix discretisation. In Gebauer et al. (this issue, part I) we introduced a two-level multigrid method based on a hierarchical decomposition designed to solve equidimensional fracture-matrix-problems. In this paper we will discuss the effect of equidimensionality on the modelling results. Furthermore, the influence of the chosen transport discretisation technique will be shown

    Numerical methods for the modelling of chip formation

    Get PDF
    The modeling of metal cutting has proved to be particularly complex due to the diversity of physical phenomena involved, including thermo-mechanical coupling, contact/friction and material failure. During the last few decades, there has been significant progress in the development of numerical methods for modeling machining operations. Furthermore, the most relevant techniques have been implemented in the the relevant commercial codes creating tools for the engineers working in the design of processes and cutting devices. This paper presents a review on the numerical modeling methods and techniques used for the simulation of machining processes. The main purpose is to identify the strengths and weaknesses of each method and strategy developed up-to-now. Moreover the review covers the classical Finite Element Method covering mesh-less methods, particle-based methods and different possibilities of Eulerian and Lagrangian approaches.Postprint (author's final draft

    Multiscale quasicontinuum modelling of fibrous materials

    Get PDF
    Structural lattice models and discrete networks of trusses or beams are regularly used to describe the mechanics of fibrous materials. The discrete elements naturally represent individual fibers and yarns present at the mesoscale. Consequently, relevant mesoscale phenomena, e.g. individual fiber failure and bond failure, culminating in macroscopic fracture can be captured adequately. Even macroscopic phenomena, such as large rotations of yarns and the resulting evolving anisotropy, are automatically incorporated in lattice models, whereas they are not trivially established in continuum models of fibrous materials. Another advantage is that by relatively straightforward means, lattice models can be altered such that each family of discrete elements describes the mechanical response in one characteristic direction of a fibrous material. This ensures for a straightforward experimental identification of the elements’ parameters. In this thesis such an approach is adopted for a lattice model of electronic textile. A lattice model for interfiber bond failure and subsequent fiber sliding is also formulated. The thermodynamical basis of this lattice model ensures that it can be used in a consistent manner to investigate the effects of mesoscale parameters, such as the bond strength and the fiber length, on the macroscopic response. Large-scale (physically relevant) lattice computations are computationally expensive because lattice models are constructed at the mesoscale. Consequently, large-scale computations involve a large number of degrees of freedom (DOFs) and extensive effort to construct the governing equations. Principles of the quasicontinuum (QC) method are employed in this thesis to reduce the computational cost of large-scale lattice computations. The advantage is that the QC method allows the direct and accurate incorporation of local mesoscale phenomena in regions of interest, whereas substantial computational savings are made in regions of less interest. Another advantage is that the QC method completely relies on the lattice model and does not require the formulation of an equivalent continuum description. The QC method uses interpolation to reduce the number of DOFs and summation rules to reduce the computational cost needed to establish the governing equations. Large interpolation triangles are used in regions with small displacement fluctuations. In fully resolved regions the dimensions of the interpolation triangles are such that the exact lattice model is captured. Summation rules are used to sample the contribution of all nodes to the governing equations using a small number of sampling nodes. In this thesis, one summation rule is proposed that determines the governing equations exactly, even though a large reduction of the number of sampling points is obtained. This summation rule is efficient for structural lattice models with solely nearest neighbor interactions, but it is inefficient for atomistic lattice computations that include interactions over longer ranges. Therefore, a second ’central’ summation rule is proposed, in which significantly fewer sampling points are selected to increase the computational efficiency, at the price of the quality of the approximation. The QC method was originally proposed for (conservative) atomistic lattice models and is based on energy-minimization. Lattice models for fibrous materials however, are often non-conservative and energy-based QC methods can thus not straightforwardly be used. Examples are the lattice model proposed for woven fabrics and the lattice model to describe interfiber bond failure and subsequent frictional fiber sliding proposed in this thesis. A QC framework is therefore proposed that is based on the virtual-power statement of a non-conservative lattice model. Using the virtual-power statement, dissipative mechanisms can be included in the QC framework while the same summation rules suffice. Its validity is shown for a lattice model with elastoplastic trusses. The virtual-power-based QC method is also adopted to deal with the lattice model for bond failure and subsequent fiber sliding presented in this thesis. In contrast to elastoplastic interactions that are intrinsically local dissipative mechanisms, bond failure and subsequent fiber sliding entail nonlocal dissipative mechanisms. Therefore, the virtualpower-based QC method is also equipped with a mixed formulation in which not only the displacements are interpolated, but also the internal variables associated with dissipation

    Three-dimensional unstructured gridding for complex wells and geological features in subsurface reservoirs, with CVD-MPFA discretization performance

    Get PDF
    Grid generation for reservoir simulation, must honour classical key geological features and multilateral wells. The features to be honoured are classified into two groups; (1) involving layers, faults, pinchouts and fractures, and (2) involving well distributions. In the former, control-volume boundary aligned grids (BAGs) are required, while in the latter, control-point (defined as the centroid of the control-volume) well aligned grids (WAGs) are required. Depending on discretization method type and formulation, a choice of control-point and control-volume type is made, i.e. for a cell-centered method the primal grid cells act as control-volumes, otherwise for a vertex-centered method the dual-grid cells act as control-volumes. Novel three-dimensional unstructured grid generation methods are proposed that automate control-volume boundary alignment to geological features and control point alignment to complex wells, yielding essentially perpendicular bisector (PEBI) meshes either with respect to primal or dual-cells depending on grid type. Both grid types use tetrahedra, pyramids, prisms and hexahedra as grid elements. Primal-cell feature aligned grids are generated using special boundary surface protection techniques together with constrained cell-centered well trajectory alignment. Dual-cell feature aligned grids are generated from underlying primal-meshes, whereby features are protected such that dual-cell control-volume faces are aligned with interior feature boundaries, together with protected vertex-centered (control point) well trajectory alignment. The novel methods of grid generation presented enable practical application of both method types in 3-D for the first time. The primal and dual grids generated here demonstrate the gridding methods, and enable the first comparative performance study of cell-vertex versus cell-centered control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulations using equivalent mesh resolution on challenging problems in 3-D. Pressure fields computed by the cell-centered and vertex-centered CVD-MPFA schemes are compared and contrasted relative to the respective degrees of freedom employed, and demonstrate the relative benefits of each approximation type. Stability limits of the methods are also explored. For a given mesh the cell-vertex method uses approximately a fifth of the unknowns used by a cell-centered method and proves to be the most beneficial with respect to accuracy and efficiency. Numerical results show that vertex-centered CVD-MPFA methods outperform cell-centered CVD-MPFA method
    • …
    corecore