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Summary

Multiscale quasicontinuum modelling of fibrous materials

Structural lattice models and discrete networks of trusses or beams are regularly used to
describe the mechanics of fibrous materials. The discrete elements naturally represent
individual fibers and yarns present at the mesoscale. Consequently, relevant mesoscale
phenomena, e.g. individual fiber failure and bond failure, culminating in macroscopic
fracture can be captured adequately. Even macroscopic phenomena, such as large rota-
tions of yarns and the resulting evolving anisotropy, are automatically incorporated in
lattice models, whereas they are not trivially established in continuum models of fibrous
materials.

Another advantage is that by relatively straightforward means, lattice models can be
altered such that each family of discrete elements describes the mechanical response
in one characteristic direction of a fibrous material. This ensures for a straightforward
experimental identification of the elements’ parameters. In this thesis such an approach
is adopted for a lattice model of electronic textile. A lattice model for interfiber bond
failure and subsequent fiber sliding is also formulated. The thermodynamical basis of
this lattice model ensures that it can be used in a consistent manner to investigate the
effects of mesoscale parameters, such as the bond strength and the fiber length, on the
macroscopic response.

Large-scale (physically relevant) lattice computations are computationally expensive be-
cause lattice models are constructed at the mesoscale. Consequently, large-scale com-
putations involve a large number of degrees of freedom (DOFs) and extensive effort
to construct the governing equations. Principles of the quasicontinuum (QC) method
are employed in this thesis to reduce the computational cost of large-scale lattice com-
putations. The advantage is that the QC method allows the direct and accurate in-
corporation of local mesoscale phenomena in regions of interest, whereas substantial
computational savings are made in regions of less interest. Another advantage is that
the QC method completely relies on the lattice model and does not require the formu-
lation of an equivalent continuum description.

The QC method uses interpolation to reduce the number of DOFs and summation rules
to reduce the computational cost needed to establish the governing equations. Large
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viii Summary

interpolation triangles are used in regions with small displacement fluctuations. In fully
resolved regions the dimensions of the interpolation triangles are such that the exact
lattice model is captured. Summation rules are used to sample the contribution of all
nodes to the governing equations using a small number of sampling nodes. In this thesis,
one summation rule is proposed that determines the governing equations exactly, even
though a large reduction of the number of sampling points is obtained. This summation
rule is efficient for structural lattice models with solely nearest neighbor interactions, but
it is inefficient for atomistic lattice computations that include interactions over longer
ranges. Therefore, a second ’central’ summation rule is proposed, in which significantly
fewer sampling points are selected to increase the computational efficiency, at the price
of the quality of the approximation.

The QC method was originally proposed for (conservative) atomistic lattice models and
is based on energy-minimization. Lattice models for fibrous materials however, are of-
ten non-conservative and energy-based QC methods can thus not straightforwardly be
used. Examples are the lattice model proposed for woven fabrics and the lattice model
to describe interfiber bond failure and subsequent frictional fiber sliding proposed in
this thesis. A QC framework is therefore proposed that is based on the virtual-power
statement of a non-conservative lattice model. Using the virtual-power statement, dis-
sipative mechanisms can be included in the QC framework while the same summation
rules suffice. Its validity is shown for a lattice model with elastoplastic trusses. The
virtual-power-based QC method is also adopted to deal with the lattice model for bond
failure and subsequent fiber sliding presented in this thesis. In contrast to elastoplas-
tic interactions that are intrinsically local dissipative mechanisms, bond failure and
subsequent fiber sliding entail nonlocal dissipative mechanisms. Therefore, the virtual-
power-based QC method is also equipped with a mixed formulation in which not only
the displacements are interpolated, but also the internal variables associated with dis-
sipation.



Chapter one

Introduction

Fibrous materials are materials consisting of discrete fibers or yarns without a matrix.
Fibrous materials are present in many technologically relevant applications, for which
the mechanical reliability is a key issue. Examples are (electronic) textile, paper and
collagen networks (see Fig. 1.1). For electronic textile for instance, a woven fabric with
embedded conductive wires and mounted electronic components [12,29], it is essential
that the conductive wires remain connected to the components during manufacture and
use. Failure of these connections entails that the electronic components, such as light-
emitting-diodes, lack power. This results in a useless product. The mechanical reliability
of paper and paperboard products is compromized by the continuous demand for lower
grammages and higher fractions of recycled fibers, for economical and environmental
reasons [8]. The mechanical properties of cardiac collagen networks are of importance
for the diligence of the heart and are for instance used to assess the quality of tissue-
engineered heart valves [4].

(x400)

Figure 1.1: Microscopic images of three fibrous materials: (from left to right) electronic textile
including a conductive wire in black, paper and cardiac collagen network [105].
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2 Introduction

The mechanical reliability of products made of fibrous materials is determined by the
resistance of the fibrous material (or one of its components) to failure during loading.
The failure process of fibrous materials often starts with the failure of an individual fiber
[2,26,46,59,73,130,131] or an individual interfiber bond [5,44,52,55,56,59,73,100,123,129].
The failure process is thus initiated at the mesoscale (∼ µm), most likely influenced
by microscale phenomena (∼ nm), e.g. defects in fibers, until so many individual fibers
and bonds are broken that the response at the macroscale (mm−m) is influenced (the
scale at which loads are applied in most applications). Hence, several length scales are
involved in the failure process of fibrous materials, making it a multiscale process.

Numerical models that describe the mechanical behavior of fibrous materials can be
used by manufacturers to assess the mechanical reliability during production and use
[8,12,107]. In numerical models, different parameters can straightforwardly be varied to
investigate their influence on the mechanical behavior during loading [8,10,13], whereas
the influence of different parameters cannot often trivially be studied by experimental
methodologies, leading to lengthy and costly product developments. Numerical models
are thus important tools for an efficient product development.

1.1 Discrete network models

To virtually asses the mechanical response of fibrous materials in industrial applica-
tions, numerical models must thus be able to describe failure. Since failure in fibrous
materials initiates at the mesoscale, the numerical models of fibrous materials must
include information of the mesoscale behavior. The most straightforward way to ac-
complish this, is to define the numerical models at the mesoscale, so that the discrete
constituents of the fibrous materials are individually incorporated. Since these models
take the discrete constituents at the mesoscale into account, they are referred to as
discrete network models, or lattice models if they are periodic.

Two examples of discrete network models are shown in Fig. 1.2. In the left image of
Fig. 1.2, a discrete model is shown for (electronic) textile (see also ahead to Chapter 2).
Each yarn in the textile is represented by a chain of discrete trusses in the model. The
trusses, that merely have an axial stiffness, are connected to each other at lattice points
(nodes), which are placed at the locations where a yarn makes contact with other yarns.
The trusses in horizontal and vertical direction thus represent yarn segments, whereas
the diagonal springs introduce rotational stiffness between the yarns when they rotate
relative to each other. The discrete network model in the right image of Fig. 1.2 is used
to describe the mechanical behavior of paper (see the center image of Fig. 1.1) at the
mesoscale [20]. In this model, each paper fiber is represented by a chain of beams, which
have a bending stiffness as well as an axial stiffness. As in the lattice model for textile
(left in Fig. 1.2), the beams are connected to each other at nodes, that are placed at
interfiber bonds.



1.1 Discrete network models 3

Figure 1.2: Discrete network models for electronic textile, superimposed on the electronic
textile, (left) and for paper [20] (right).

Depending on the amount of behavioral detail one desires to incorporate, beams
and springs can be modeled elastically, elastoplastically, rate-dependent, temperature-
dependent etcetera. In several discrete network models, the individual elements (beams
or trusses) fail if a critical stress is reached to describe failure at the mesoscale, see
e.g. [26]. Another way to describe failure at the mesoscale, depending on the fibrous
material, is to use interfiber bond models. Interfiber bonds, present in the lattice points,
can be assumed perfect (see e.g. Chapter 2 and [20,107]) or to fail if their critical strength
is reached (see e.g. Chapter 3 and [73,100]). Frictional fiber sliding often occurs after
an interfiber bond has been broken, which can be incorporated in discrete models as
well (as discussed in Chapter 3).

Discrete network models are thus able to capture (local) mechanical mesoscale phe-
nomena that occur in fibrous materials, whereas they are not trivially incorporated in
continuum models (that regard fibrous materials as a uniform material). Even global
phenomena, such as large fiber and yarn rotations that are naturally incorporated in net-
work models, are complex to take on board in continuum models [96,117,118]. Although
microscale phenomena of fibrous materials, e.g. defects in fibers, cannot explicitly be
incorporated in mesoscale network models, they can implicitly be be dealt with. Sev-
eral microscale phenomena can be lumped into the mechanical behavior of the discrete
elements (beams or trusses) or that of the interfiber bonds. Defects, that locally soften
fibers, can for instance be dealt with by adopting a distribution of the failure strengths
of the discrete elements.

A disadvantage of discrete models is their computational cost for large-scale, physically
relevant computations. The reason is that the discrete models are constructed at the
mesoscale, while loads in many applications are applied at the macroscale. This leads
to large computations, because of the large number of degrees of freedom (DOFs) and
the substantial computational effort to construct the governing equations. In [72] for
example, computation times of two weeks on a supercomputer are reported. The large
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number of DOFs originates from the displacements of all lattice points and renders the
governing equations costly to solve. The large computational effort to construct the
governing equations originate from the fact that all discrete constituents of the model
need to be visited to construct these equations.

1.2 Multiscale approaches

Multiscale techniques, that can use discrete network models at the mesoscale in com-
bination with macroscale frameworks to prescribe loads, can be adopted to increase
the efficiency of large-scale network computations. In [113], a classical homogenization
scheme is used for a discrete model of a collagen network. Classical homogenization
schemes are able to capture macroscale properties such as the effective stiffness, but
they are unable to capture discrete events at the mesoscale, such as the failure of a
single fiber. In another multiscale approach, continuum descriptions (discretized by fi-
nite elements) are coupled to network models in regions of interest. This is for instance
used in [46] to model ballistic impact of a woven textile. Failure of discrete fibers and
bonds can be modeled by such multiscale schemes in regions in which the discrete net-
work model is used. Disadvantages are that the required continuum models for fibrous
materials are not straightforwardly formulated and the non-trivial procedure to couple
continuum regions to regions in which the network model is used.

Other multiscale approaches that seem promising for network models and lattice mod-
els of fibrous materials are methodologies developed for atomistic lattice computa-
tions. Similar to discrete models of fibrous materials after all, atomistic lattice mod-
els also include discrete interactions. Several of these methodologies combine contin-
uum descriptions with network models, so these also have the drawbacks mentioned
above [27,38,125]. An exception is the quasicontinuum (QC) method, which only relies
on the discrete atomistic model [68,69,82,83,114,115]. Conveniently, a continuum de-
scription is thus not required. Several QC methods still require a coupling procedure
for the internal interface between coarse domains and fully resolved domains of interest
[108,109,114,115], but a number lack of such an internal interface [36,43,64]. A num-
ber of QC methodologies, amongst which those in this thesis, are thus convenient for
discrete network models of fibrous materials, because they

• allow the accurate incorporation of the lattice model in regions of interest,

• completely rely on the lattice model and not on accompanying continuum descrip-
tions that can be complex to formulate for fibrous materials and

• do not require an internal interface coupling or handshaking procedure.
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1.3 Aim

The aim of this thesis is to establish a QC framework that can deal with discrete
models of fibrous materials. The QC frameworks proposed so far in literature (see
e.g. [36,64,82,83,108,114,115,127]), only treat conservative atomistic lattice models (that
only include reversible interactions). Discrete network models and lattice models of
fibrous materials however, often require dissipative mechanisms (e.g. those proposed in
Chapters 2 & 3) and can thus not straightforwardly be incorporated in existing QC
methodologies.

The proposed QC frameworks do not focus on the discrete model of a specific fibrous
material, but are aimed to be general multiscale tools in which several discrete models
of fibrous materials can straightforwardly be incorporated. A disadvantage of the fact
that QC methodologies originate from atomistic computations is that they can only deal
with lattice models (i.e. periodic network models such as that on the left in Fig. 1.2).
On the other hand, a substantial number of fibrous materials have a periodic structure
and are thus appropriate for the QC method. Furthermore, periodic lattice models are
still relevant and useful models of non-periodic fibrous materials (see e.g. Chapter 3)
and at least incorporate the intrinsic discreteness of non-periodic fibrous materials.

1.4 The QC method in a nutshell

The QC method uses two reductions steps to improve the computational efficiency of
full lattice computations (see Fig. 1.3). First, only a small number of lattice points
(reppoints) is selected to represent the displacements of all points in the lattice. The
reppoints constrain the displacements of the points in between them by means of inter-
polation. The displacement components of the reppoints are the only remaining degrees
of freedom (DOFs) of the interpolated lattice. In regions where the local deformations
are small, it suffices to select few reppoints at large intervals. On the other hand, every
point constitutes a reppoint in fully resolved regions, so that the exact discrete model
is recovered in these regions of interest.

The second reduction step introduced in the QC method (see again Fig. 1.3) is the
selection of only a small number of lattice points to approximate the governing equa-
tions, instead of visiting all lattice points to compute them exactly. The small number of
lattice points used for the approximation are referred to as sampling points and the pro-
cedure that selects them as a summation rule. The sampling points are used to estimate
the contribution to the governing equations of the points in their vicinity. To ensure an
accurate estimate, the selection of sampling points must be carefully performed with
respect to the interpolation triangulation. If this is not the case, zero-energy modes
may occur [64].
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e(interpolation) e(summation)

Figure 1.3: Schematic representation of the two reduction steps in the QC method. In the
left image, the full lattice model is shown. In the center image, an interpolation
triangulation is superimposed on the lattice model and a small number of lattice
points are used to sample the governing equations in the right image. During both
reduction steps an error, e, may be introduced.

1.5 Outline

The outline of this thesis is as follows. In Chapters 2 & 3, two different discrete network
models are discussed. The discrete model in Chapter 2 is a lattice model for woven
fabrics and is applied to electronic textile. It is constructed such that the experimental
identification of the discrete elements’ parameters is straightforward. The parameters
of the three families of discrete elements can separately be determined by three types
of tensile tests. The lattice model and its experimental parameter identification are
validated based on an out-of-plane punch experiment on an electronic textile.

In Chapter 3, a discrete network model for bond failure and subsequent frictional fiber
sliding is proposed. Whereas existing discrete models for bond failure and subsequent
fiber sliding are somewhat ad hoc [52,73], the thermodynamical basis of the proposed
model ensures that the effects of different mesoscale parameters can be investigated
in a consistent manner. The capabilities of the model are demonstrated by varying
mesoscale parameters such as the bond strength, fiber length and aspect ratio of a unit
cell and studying the effect on the overall response.

In Chapters 4 & 5, different summation rules (i.e. selections of sampling points, see the
second step in Fig. 1.3) are proposed. Several summation rules have been proposed in
literature [36,43,64,83,108,109,114], but many have the disadvantage that an internal
interface occurs between coarse and fully resolved domains [83,108,109,114]. This is a
disadvantage, because they necessitate corrective interface procedures which come with
additional assumptions and need to be updated if adaptive remeshing is used. Those
methods that lack an internal interface [36,64], have a poor accuracy.

In Chapter 4 therefore, a summation rule is proposed that lacks an internal interface
and determines the governing equations exactly. Nevertheless, the computational cost
is substantially reduced for lattice models of fibrous materials with nearest neighbor
interactions. If this summation rule is applied to atomistic lattice models, character-
ized by longer-range interactions, however, the achieved computational efficiency is still
unsatisfactory. Therefore, a second summation rule is proposed in Chapter 5 for lattice
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models with interactions at longer distances. This summation rule is referred to as the
central summation rule, since the focus of this second summation rule is on the interiors
of the interpolation triangles, in contrast to other summation rules that lack an internal
interface [36,43,64].

So far, all QC methods are developed for (conservative) atomistic lattices and are based
on energy minimization or force equilibrium (that originates from energy minimization).
Lattice models of fibrous materials however often include dissipation and thus cannot
be used in traditional QC methodologies. In Chapters 6 & 7 therefore, QC frameworks
are proposed for (non-conservative) lattice models that include dissipation. In this way,
discrepancies in the governing equations of force-based QC frameworks, that at first
sight seem suitable for non-conservative lattice models, are avoided. The possibilities
of the virtual-power-based QC method for a lattice model with local dissipative mecha-
nisms are shown in Chapter 6. The lattice model considered in this chapter is a periodic
network of elastoplastic trusses, similar to that proposed in Chapter 2 for woven fabrics.

In Chapter 7, the virtual-power-based QC methodology is adopted to deal with the
lattice model for bond failure and subsequent fiber sliding proposed in Chapter 3. Since
bond failure and subsequent fiber sliding entail non-local dissipative mechanisms (in
contrast to the local dissipative mechanisms considered in Chapter 6), the virtual-power-
based QC formulation in Chapter 7 is equipped with a mixed formulation. In this mixed
framework, the displacement components of the lattice points are interpolated, as well
as the dissipation variables. Previously proposed summation rules can still be used,
because the interpolation used for the displacement components, is also used for the
dissipation variables.

Finally, conclusions and the potential of the proposed QC frameworks are presented in
Chapter 8. Also, recommendations for future developments of the presented virtual-
power-based QC methodologies for other discrete models of fibrous materials are dis-
cussed.





Chapter two

Experimental identification of a lattice

model for woven fabrics: application to

electronic textile1

Abstract

Lattice models employing trusses and beams are suitable to investigate the mechanical
behavior of woven fabrics. The discrete features of the mesostructures of woven fabrics
are naturally incorporated by the discrete elements of lattice models. In this chapter, a
lattice model for woven materials is formulated which consists of a network of trusses
in warp and weft direction, that represent the response of the yarns. Additional diag-
onal trusses are included that provide resistance against relative rotation of the yarns.
The parameters of these families of discrete elements can separately be identified from
tensile experiments in three in-plane directions which correspond to the orientations of
the discrete elements. The lattice model and the identification approach are applied to
electronic textile. This is a fabric in which conductive wires are incorporated to allow
the embedding of electronic components such as light-emitting-diodes. The model pa-
rameters are based on tensile tests on samples of the electronic textile. A comparison
between the experimental results of an out-of-plane punch test and the simulation re-
sults shows that the lattice model and its characterization procedure are accurate until
extensive biaxial tensile deformation occurs.

1 Reproduced from: L.A.A. Beex, C.W. Verberne, R.H.J. Peerlings, Experimental identification of
a lattice model for woven fabrics: application to electronic textile, Submitted to Composites Part A.
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10 Experimental identification of a lattice model for woven fabrics

2.1 Introduction

Woven materials are frequently used, for instance in clothing, bullet-proof armor and
reinforced polymeric and ceramic materials. A relatively new application is electronic
textile [29,35,79]. Electronic textiles are textiles which contain electronic components,
such as light-emitting-diodes, sensors, switches, etcetera. The woven fabric acts as a
compliant substrate for the electronic components and conductive wires are woven into
it, in order to electrically connect the individual electronic components. These conduc-
tive wires and the connections of the conductive wires with the electronic components
must stay intact during manufacturing and use, since failure of the wires and connec-
tions entails a malfunctioning product. Mechanical models can be used to study the
mechanical interplay between the different constituents of electronic textile.

To model the mechanical behavior of woven materials, different approaches can be used.
Woven materials can for instance be investigated by performing finite element simula-
tions on a single unit cell, in which the yarns are discretized in a detailed manner so
that, amongst others, yarn-to-yarn interactions are incorporated [74,75,99]. A limita-
tion of these detailed simulations is their computational cost, which prohibits large-scale
simulations.

On the other hand, continuum models are often used for large-scale simulations of woven
materials [3,6,63]. They are suitable for large-scale problems, because the discrete yarns
are not taken into account individually, but only in an average sense. A disadvantage
of continuum models for woven materials is their inability to capture local (discrete)
events, such as yarn failure and sliding of yarns. This is an important drawback for
the study of electronic textile because the conductive wires are individual, small but
relevant features. Other disadvantages are the relatively complex incorporation of large
rotations [96] and the occurrence of numerical difficulties such as locking [118].

Lattice models that employ trusses or beams offer a more natural, intermediate descrip-
tion for woven materials. The discrete members of the mesostructure of these materials
are represented by discrete elements such as trusses or beams in these models [14,60,107].
An example of a lattice model for a woven fabric is shown in Fig. 2.1, superimposed
on an image of a textile. An individual yarn segment is modeled by a discrete element,
such as a spring. At the yarn-to-yarn contacts, the discrete elements are connected to
each other by nodes. The diagonal elements provide the lattice with shear stiffness. In
this way the shear stiffness of the fabric, that comes into play if the yarns rotate relative
to each other, can be modeled. Local events, such as slip in the member-to-member
interaction [14,73] and failure of individual members, can be taken into account in a
natural manner in lattice models [73], whereas they are complex to include in contin-
uum models. Furthermore, the high computational cost of detailed sub-yarn models is
avoided. An overview of several lattice models is given in [91].

Large-scale lattice computations may still be computationally costly. To overcome this,
unit cells of lattice models often represent several unit cells of the woven material, i.e.
one truss or beam represents several parallel yarns [107]. In some studies [17,18,45],
the response of the lattice model is translated to the response of a finite element, that
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Figure 2.1: A woven fabric (blue) with 12 unit cells of a lattice model superimposed on it
(black). The black lines represent springs or beams which are fixed to each other
at nodes (black dots).

is also used to represent a number of unit cells. Local events such as element failure
can no longer be incorporated in these approaches, but they can still easily deal with
large rotations [107] and locking [45,107]. Also a number of multiscale approaches can
be used to increase the efficiency of large-scale computations [9,46,88].

Identification approaches to establish the parameters of the different discrete ele-
ments in lattice models can be complex, since the discrete elements are all mechan-
ically connected. Consequently, they influence each other during the experimental
parameter identification. Identification approaches can therefore be somewhat elab-
orate [18,106,107]. In this chapter, a rather general two-dimensional lattice model for
woven materials is proposed, that can be characterized in a straightforward manner.
From three types of in-plane tensile tests, that are performed in the orientations of the
three families of discrete elements, the parameters of the discrete elements are individu-
ally established. In this way, no (complex) inverse problem has to be solved to establish
the material parameters.

In order to separately identify the discrete elements, the mutual influence must be
negligible. To this end, the compressive responses of all elements in the lattice model
proposed in this chapter vanish. The lattice model and its identification procedure are
applied to a woven electronic textile including conductive wires, but it can be used for
any woven material that is characterized by a compliant shear stiffness relative to the
axial stiffness, e.g. metal grids to reinforce concrete [47].

The outline of this chapter is as follows. First the electronic textile is described and the
in-plane experiments on the electronic textile are discussed. Also the fabric strains at
which the conductive wires fail are identified. Subsequently, the lattice model is detailed
and the identification procedure is discussed. In Section 2.5, the lattice model including
the identification procedure is validated by a three-dimensional punch test. Overall
experimental and predicted deformations are compared, as well as the experimental and
numerically predicted punch-force/punch-displacement curves; failure of the conductive
wires is also evaluated. Finally, conclusions are presented.
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2.2 In-plane experiments

The fabric considered here is an electronic textile produced by TiTV (www.titv-
greiz.de). It is a densely woven fabric with embedded conductive wires (see Fig. 2.2).
The conductive wires are predominantly oriented in warp direction and on average one
wire is present on 65 warp yarns. In weft direction an insignificant number of conduc-
tive wires is present. The conductive wires consist of copper filaments (see Fig. 2.2).
At regular intervals they have some clearance with respect to the textile to allow the
mounting of electronic components (see Fig. 2.2). The textile yarns of the fabric contain
different fibers of dtex 76. The yarns in warp direction are turned 600 times per meter
and those in weft direction are turned 120 times per meter. The density of the warp
and weft yarns is 11000 m−1 and 8900 m−1 respectively. The warp and weft yarns are
woven in a three layer pattern.

Figure 2.2: (Left) the electronic textile with the warp direction in horizontal direction and
(right) a microscopic image of the electronic textile. The conductive wires are
mainly oriented in warp direction. The clearance of the conductive wires is clearly
visible.

2.2.1 Methodology

Tensile test samples of the electronic textile (including the conductive wires) of 100×29
mm2 are taken in three directions; in warp and weft direction and at an angle of 45◦

with respect to the warp direction. The tensile test in the latter direction corresponds
to the bias extension test [96,106]. The nominal thickness of the samples is measured
as 0.35 mm, although this thickness is somewhat arbitrary since the samples are highly
heterogeneous. The samples are fixed in between two clamps with a rough surface,
together with one piece of double-sided tape to increase the fixation. The gauge length
of all samples is approximately 60 mm. The used tensile tester (Instrom 5566) has a
load cell of 500 N . The strain rate in the experiments in warp and weft direction is
1.67 · 10−3 s−1 and in diagonal direction 3.33 · 10−3 s−1. The tensile tests are performed
up to different strains.
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During the experiments, images of the strained samples are recorded, to which an optical
strain measurement technique is applied to determine the local strains. Undesired effects
such as slip in the clamps and deformation of the load cell are therefore circumvented
in the strain measurement. Furthermore, in the tensile test in diagonal direction (bias
extension test), the pure shear strains that only occur in region C in Fig. 2.3, as is
well described in literature [96,106,118], can be established without any influence of the
constraining influence of the clamps (in regions A and B). To determine the engineering
stress of the samples the measured cell force and the original nominal cross-sectional
area are used.

Figure 2.3: Three deformation modes (A, B and C) occur in the samples during the bias
extension tests due to the influence of clamping. The conductive wires are shown
in black while the red yarns (shown in grey) correspond to regular weft yarns as
in Fig. 2.2.

To investigate the failure of the conductive wires within the fabric, X-ray images are
made (Phoenix PCB analyzer, using 60 kV and 20 µm) after the tensile tests in warp
direction. Although these images are not direct input for the experimental identifica-
tion, they are used in Section 2.5 to evaluate the lattice model and the identification
procedure.

2.2.2 In-plane stress-strain responses

The engineering stress-engineering strain responses of the in-plane tensile experiments
are shown in Fig. 2.4. Only one response is shown in each direction; the experimental
scatter of each response is relatively small [122].

The responses in warp and weft direction show similar levels of stress for the same
applied strain level. However, the shapes of the curves are clearly different from each
other (see Fig. 2.4). The warp response shows a nonlinear loading behavior, whereas the
loading behavior of the weft direction is virtually linear. Tensile tests on single yarns
and single conductive wires (both not shown here) have indicated that this different
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Figure 2.4: Engineering stress-engineering strain responses of the electronic textile in warp
(dashed), weft (dotted) and diagonal direction (dashed-dotted).

behavior is caused by the different warp and weft yarns; they are both made from the
same material, but have a different number of turns per meter. It can also be shown
that the conductive wires hardly influence the macroscopic response in warp direction.
All unloading responses show that a large amount of inelastic deformation has occurred
during the tensile tests.

The diagonal direction exhibits an initially extremely compliant response, which stiffens
at a strain of approximately 14% (see Fig. 2.4). This compliant shear behavior is typical
for woven materials and also occurs for instance in woven grids to reinforce concrete [47].
The response is determined by the rotation of the warp and weft yarns relative to each
other. Initially, this rotation solely experiences friction in the yarn-to-yarn. However,
at higher levels of strain, and thus larger rotations, the warp and weft yarns start to
make contact with each other, leading to an increasingly stiffer response. In the densely
woven fabric considered here this effect occurs at moderate strains, but for less densely
woven fabrics it occurs later and the nonlinear response is more pronounced [107].

2.2.3 Failure of the conductive wires

X-ray images of the electronic textile samples after the tensile experiments in warp
direction are presented in Fig. 2.5. At the location where the conductive wires have some
clearance, the copper filaments in each wire can be distinguished. Plastic deformation
and failure of the conductive wires can only be observed at the clearances.

For the undeformed sample and the samples strained to 2% and 6% (engineering strain),
no failure of the wires can be seen. Although the sample that is strained to 6% clearly
shows plastic deformation in the wires, the wires are still intact and their conductivity
is unaffected.
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Figure 2.5: X-ray images of an undeformed sample (A) and after 2% (B), 6% (C), 7% (D),
8% (E) and 9% (F) straining in warp direction. The conductive wires can be
distinguished, but not the woven fabric.
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Failure of the wires starts at a strain of approximately 7%, as becomes clear from image
D in Fig. 2.5. A number of copper filaments in the conductive wires are broken at the
clearance of the wires. For larger strains the number of broken filaments increases and
in some cases all filaments of a conductive wire are broken, so that no electrical contact
is made anymore.

2.3 Lattice model

A unit cell of the proposed two-dimensional lattice model for the electronic fabric is
shown in Fig. 2.6. The tow truss elements represent warp and weft yarn segments from
one yarn-yarn crossing to the location of the next one. The unit cell’s dimensions match
the dimensions of the unit cell of the discrete mesostructure of the fabric, i.e. each yarn
is represented explicitly by a (chain of) truss(es).

The diagonal trusses provide the unit cell with shear stiffness, in correspondence with
the lattice model of Sharma and Sutcliffe [107], except that two diagonal elements are
used instead of one. The advantage of using two diagonal elements per unit cell is
that uniaxial deformation in warp and weft direction can be described at the scale of a
single unit cell. In contrast to the lattice model in [61], out-of-plane phenomena such as
out-of-plane contraction and undulation are not specifically modeled, but the influence
of out-of-plane mechanisms on the in-plane responses are incorporated in the material
descriptions of the truss elements. The out-of-plane bending stiffness is not captured
however, but this is rather compliant. Furthermore, no conductive wires are individually
modeled in the lattice model, since they hardly contribute to the response [122] due to
their small number (one conductive wire is present on 65 warp yarns).

+ =

tow elements diagonal elements unit cell

Figure 2.6: Four tow elements, representing the yarns (left), and two diagonal elements (cen-
ter), providing shear stiffness, are used in a rectangular unit cell of the lattice
model (right).

In the lattice model the (discrete) yarn segments, represented by the tow truss elements,
carry no force when they are compressed. The reason for this is that it is assumed that
they buckle as soon as they are loaded in compression. Also the diagonal truss elements
are considered to carry no force in compression. As a result, the simple shear loading
only charges one diagonal truss element while the other one is compressed without axial
stress (see ahead to the right image in Fig. 2.8).
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Since the Hencky strain is used in the numerical implementation (MSC.Marc), the axial
strains of the individual trusses are expressed in terms of it:

ǫ = ln(λ) (2.1)

where λ = l/l0 is the axial stretch factor, with l and l0 the current and initial length
respectively. Since inelastic deformation occurs in the stress-strain responses of Fig. 2.4,
an elastoplastic model is adopted for the trusses. The axial strain can be split in an
elastic and plastic part as follows:

ǫ = ǫe + ǫp (2.2)

where ǫe is the axial elastic Hencky strain and ǫp the axial plastic Hencky strain.

The elastic response in each truss is governed by Hooke’s law as follows:

σ = E ǫe (2.3)

where σ represents the axial true stress and E is the Young’s modulus of the material.

The lateral contraction due to elastic straining is neglected. The plastic deformation,
on the other hand, is assumed to be incompressible. The true stress in a truss can
therefore be determined from the engineering stress via the following expression:

σ = σengλp (2.4)

where σeng is the axial engineering stress and λp = exp(ǫp) is the axial plastic elongation
factor.

Because the typical nonlinear responses in the different directions in Fig. 2.4 show that
the material behaves plastically from the very beginning of loading, the loading response
of the trusses is described by plastic hardening. The elastic part of the constitutive
model is used to describe the unloading response. To this end, a low initial yield stress,
σy0, is used and the hardening law is progressive. This is schematically shown in Fig. 2.7.

At this point the precise hardening law is not yet formulated since the most suitable
hardening law appears out of the identification procedure. For this reason, the current
yield stress, σy, of the three types of truss elements remains a yet to be defined function
of the equivalent plastic strain, ǫp, i.e. σy(ǫp).
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Figure 2.7: Schematic illustration of the uniaxial stress-strain response of the material de-
scription used for the trusses. The initial yield stress is indicated by σy0.

The lattice model is implemented in the software package MSC.Marc. The implementa-
tion uses an updated Lagrange approach to deal with large deformations and rotations.
The current local axes and cross-sectional area of the truss elements are updated ev-
ery iteration. The Mohr-Coulomb criterion is used to distinguish between tension and
compression; its parameters are selected such that in compression the responses of the
truss are negligible.

2.4 Identification procedure

Considering uniaxial loading in warp and weft direction of a single unit cell (see the
left and center image in Fig. 2.8), it can be observed that only the discrete elements
oriented in the loading direction contribute to the mechanical response. The reason for
this is that the shear response (modeled by the diagonal elements) is compliant (the
dashed-dotted curve in Fig. 2.4) compared to the response in warp and weft direction
(the other two curves in Fig. 2.4). The diagonal elements may thus be expected to
have a comparatively low stiffness. As a result only the elements oriented in the loading
direction contribute to mechanical response during warp and weft loading. Note that,
although the stiffness of the diagonal elements increases for strains larger than 14% (see
Fig. 2.4), this strain is not exceeded, since the warp and weft strains in Fig. 2.4 remain
below 14%.

On the other hand, for the bias extension test (see the right image in Fig. 2.8), only the
diagonal element that is oriented in the loading direction contributes to the mechanical
response. The reason for this is that the four stiffer elements, that represent yarn
segments, act as a mechanism. The diagonal element oriented orthogonally to the
loading direction is compressed without stress, since no resistance against compression
is assumed in the lattice model.

During the three in-plane tests discussed in Section 2.2, it is thus reasonable to assume
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that only the elements oriented in the respective loading directions contribute to the
mechanical response. The conditions for this assumption to hold are, as mentioned
above, that the intrinsic material behavior of the fabric shows a compliant shear response
compared to the in-plane principal directions and that the elements under compression
show no stress. The results from the three in-plane tests in Fig. 2.4 can now directly be
used to determine the parameters of the three families of discrete elements associated
with the three directions. Below it will be explained how the parameters of each family
of elements can be established based on these tensile test results.

Figure 2.8: Schematic representation of three in-plane loading situations for the identifica-
tion procedure in which only the truss elements oriented in the loading direction
contribute to the response (black). The other truss elements (grey) are inactive
or contribute negligibly. The left image represents loading in warp direction, the
center image loading in weft direction and the right image diagonal loading.

Although the diagonal truss elements are oriented at an angle of 29◦ with respect to the
warp elements and the diagonal tensile tests (bias extension tests) are performed at an
angle of 45◦ to the warp direction, the stress-strain responses from the bias extensions
tests are directly used for the identification of the parameters of the diagonal trusses.
Clearly, this difference in angle is not optimal, but the predicted unit cell responses
nevertheless match the experimental responses well (see ahead to Fig. 2.12).

2.4.1 From global stress to element stress

Before the material parameters of the different families of truss elements can be estab-
lished, the geometric parameters are set. The nominal initial area, A0, of all trusses
is set to 0.0155 mm2. This value is in the order of magnitude of the actual yarns. In
principle, since only the force transmitted by the trusses matters, any diameter can be
selected as long as it is dealt with in a consistent manner. The length of the elements, l0,
is based on the microscopic images of Fig. 2.2. The geometric parameters are presented
in Table 2.1.

Before the parameters of the discrete members can be fitted, first the engineering stresses
obtained from the tensile tests, σeng,t (see Fig. 2.4), must be converted to the engineer-
ing stresses of the individual discrete elements, σeng. The reason is that the engineering
stresses obtained from the tensile tests, σeng,t (see Fig. 2.4), are computed as if the
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electronic textile is a continuum, whereas the engineering stresses of the discrete mem-
bers are needed (see Fig. 2.9). Therefore, the ratio between the yarn area, A0, and the
nominal cross-sectional area of the textile, An, must be taken into account as follows:

σeng =
σeng,tAn

A0

(2.5)

where An is the nominal area associated with a single discrete element (see Fig. 2.9).

The areas are determined based on the in-plane dimensions of the unit cell (see Fig. 2.2),
the dimensions of the yarns and the thickness of the electronic textile; they can be found
in Table 2.1.

A0An

Figure 2.9: A schematic representation of a cross section of the fabric in out-of-plane direc-
tion. The (initial) area of an element is represented by A0 and the nominal area
associated with it by An.

2.4.2 Elastic behavior

Now that the engineering stresses of the elements can be determined, the three Young’s
moduli can be fitted. As mentioned before, the elastic part of the constitutive model is
used to describe the three unloading responses. One has to take into account that at the
moment that unloading takes place, the cross-sectional area is deformed, since during
loading plastic deformation occurs in an incompressible manner. The true stress at the
moment of unloading must thus be employed to fit the Young’s moduli. To determine
this true stress, it is assumed that all strain applied until the point of unloading is
plastic strain and λp in Eq. (2.4) may thus be replaced by λ. The Young’s moduli are
fitted on the highest 40% (in terms of stress) of the unloading responses. The resulting
curves and the fits of the moduli are shown in Fig. 2.10. The values of the moduli are
given in Table 2.1.

2.4.3 Plastic behavior

To ensure that the plastic part of the constitutive model of the elements is used for the
entire loading responses, small yield stresses are used for all three families of elements



2.4 Identification procedure 21

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

Hencky strain [−]

T
ru

e 
st

re
ss

 [M
P

a]

Figure 2.10: The true stress as a function of the total Hencky strain of the individual elements
in warp (dashed), weft (dotted) and diagonal direction (dashed-dotted) and the
corresponding fits of the Young’s moduli (solid).

(see Table 2.1). A lower value than 0.2 MPa is theoretically desired, but smaller
values lead to convergence problems in the final validation simulation as described in
Section 2.5. Furthermore, this yield stress is sufficiently small for accurate fits (see
ahead to Fig. 2.12).

To determine which hardening law can be used and to fit its parameters, the true
stress-equivalent plastic strain curves are presented in a log-log diagram in Fig. 2.11.
The (effective) plastic strain has been determined by subtracting, at each level of stress,
the elastic strain as given by the Young’s moduli determined above from the total strain.
The following exponential relation seems suitable for the hardening behavior of the three
responses, since the log-log diagrams are more or less linear in the regimes of influence:

σy = σy0 + H(ǫp)
n (2.6)

where σy0 ≈ 0 is the initial yield stress and H and n are hardening parameters. The
resulting fits of the hardening behavior and the corresponding parameters are shown in
Fig. 2.11 and Table 2.1 respectively.

2.4.4 Validation of the unit cell response

The responses of a unit cell of the lattice model in the three tested directions are shown
together with the experimental responses in Fig. 2.12. In the lattice model, the linear
Mohr-Coulomb criterion is used to make the compressive responses of the individual
elements ten times more compliant than the tensile responses. The in-plane stress-
strain curves in warp and weft direction, as well as the major part of the response in
diagonal (45◦) direction correspond well with the experimental curves. Only the final
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Figure 2.11: Log-log diagram of the true stress of the discrete elements as a function of the
equivalent plastic Hencky strain in warp (blue, dashed), weft (red, dotted) and di-
agonal direction (magenta, dashed-dotted) and the fits of the hardening behavior
(black, solid).

Table 2.1: Established parameters of the three families of elements.

warp weft diagonal
A0 [mm2] 0.0155 0.0155 0.0155
l0 [mm] 0.288 0.161 0.330
An [mm2] 0.0563 0.1008 0.0492
σy0 [MPa] 0.2 0.2 0.2
E [GPa] 5.276 10.32 9.500
n [-] 0.371 1.17 2.52
H [MPa] 315.4 2,816 2,372

part of the diagonal response deviates from the experimental response. A small part
of this deviation, between a strain of approximately 28% and 38%, is caused by the
contribution of compressive behavior of the diagonal element that is not oriented in the
direction of the loading. At an engineering strain of 38% (see Fig. 2.12), all tow elements
are oriented in the same direction as the loaded diagonal element and they thus no longer
act as a mechanism and start to contribute to the predicted response. As a result, the
response of the unit cell increases significantly. This effect is less pronounced in the
experiment, in which the transition from relative rotation to a stretching dominated
response is more gradual.

The material parameters of the diagonal elements are based on the bias extension test in
which the loading angle is 45◦ with respect to the warp direction. In the unit cell of the
lattice model however, the diagonal elements are oriented at angles of 29◦ to the warp
direction. Interestingly, the response of a single diagonal element loaded in its axial



2.5 Simulation of an out-of-plane punch test 23

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

Engineering strain [−]

E
ng

in
ee

rin
g 

st
re

ss
 [M

P
a]

Figure 2.12: Comparison of the experimentally obtained engineering stress-engineering strain
curves of Fig. 2.4 in warp (dashed), weft (dotted) and diagonal direction (dashed-
dotted) and the responses of a unit cell loaded in the same directions (solid). The
response of a single diagonal truss element loaded in its axial direction (dashed)
is also shown for comparison.

direction (the dashed curve in Fig. 2.12) shows that there is no significant discrepancy
with the response of the unit cell in diagonal (45◦) direction. Only from an engineering
strain of 28% onwards, the responses start to diverge due to the contribution of the
remaining elements of the unit cell. The bias extension test results thus turn out to be
rather insensitive to the loading direction.

2.5 Simulation of an out-of-plane punch test

To validate the lattice model, an out-of-plane punch test is simulated and predictions
made for it are compared to experimental results. The test setup for this experiment is
shown in Fig. 2.13. In the punch test, a sample of electronic textile with a free area of
100×100 mm2 is fixed between two clamps in warp direction. A sphere with a diameter
of 30 mm is placed below the center of the sample and punches the sample at a velocity
of 1 mm/s. This results in an average strain rate of the warp yarns at the center of the
specimen of 8.3 · 10−3 s−1, which is of the same order of magnitude as the strain rates
used in the tensile tests discussed in Section 2.2.

During the punch test, the reaction force on the punch is measured as a function of its
displacement. The tensile tester is equipped with a 10 kN load cell with a stiffness of
16,400 N/mm for this purpose. Since the warp yarns are fixed in the clamps at two
edges and the punch is moved by a large distance (50-60 mm), large global and local
deformations are expected.

To simulate the punch experiment, only a quarter of the specimen is modeled using
symmetry boundary conditions (see Fig. 2.13). The model consists of 9 × 16 unit cells
in warp and weft direction respectively (170 lattice nodes). This means that one unit
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cell in the punch simulation corresponds to 19.5 × 19.5 fabric unit cells as described in
Sections 2.3 and 2.4. To ensure that a unit cell, as used in the punch simulation, has
the same response as 19.5×19.5 original unit cells, the cross-sectional areas of the truss
elements are 19.5 larger than those used for the identification.

Figure 2.13: Top view (left) and side view (right) of the test setup for the punch experiment.
The clamps and the spherical punch are shown in dark grey. The applied punch
displacement in the experiments is denoted by uz (right). The quarter of the
electronic textile that is modeled in the simulation is indicated by the dashed
square (left). The dimensions are given in mm.

The clamps in which the specimen is fixed are modeled by displacement boundary
conditions on the edge of the model that is oriented orthogonally to the warp direction.
The punch is considered as a frictionless rigid body in the simulation. Since the velocity
of the punch is small, a quasistatic analysis can be performed. To ensure that some
amount of out-of-plane stiffness is present in the model before the punch makes contact
with the lattice, a bilinear initial out-of-plane displacement is given to the lattice, with
an amplitude of 1 mm. In the true punch simulation the maximum displacement of
52.5 mm is reached in 51,500 increments. The convergence tolerance is formulated in
terms of the relative displacements and is set to a value of 0.01. Smaller tolerances lead
to the same results.

2.5.1 Force-displacement response

The force-displacement curve is presented in Fig. 2.14 together with four experimental
curves. The initial response is compliant, since hardly any out-of-plane stiffness is
present at the start of the test. However, the slope increases rapidly until a punch
displacement of 20 mm is reached. From 20 mm onwards the slope of all experimental
curves remains more or less constant until a displacement of approximately 40 mm is
reached. At this punch displacement, already one of the curves has deviated from the
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average trend of the remaining curves due to slip in the clamps. At a displacement of
40 mm, the second curve starts to deviate due to a large amount of slip in the clamps
and at larger displacements this can be observed for the remaining two curves as well.
In none of the experiments the electronic textile fails; slip from the clamps determines
the force drop in all cases. The deformation of the samples is presented in the left parts
of the four images in Fig. 2.15.
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Figure 2.14: The experimental (dashed) and predicted (solid) force as a function of the punch
displacement.

The numerically predicted force-displacement curve presented in Fig. 2.14 shows a good
agreement with the experimental curves until a punch displacement of approximately
25 mm. At this displacement, the local axial strains of the warp elements on top of the
punch are approximately 14%. In the warp elements between the punch and the fixed
edge of the model, local axial strains of 9-10% are observed. However, towards the free
edge of the model, which is parallel to the warp yarns, the local axial warp strains decay
to approximately 3% over only 6 out of 16 unit cells in weft direction.

The good accuracy of the simulation until a punch displacement of 25 mm can also
be observed in images A (at a displacement of 10 mm) and B (at a displacement of
20 mm) in Fig. 2.15, since the free edge in the simulations deforms exactly as in the
experiment. For larger punch displacements (image C and D), a disagreement of these
free edges can be observed.

From a displacement of approximately 25 mm onwards, the slope of the computed
curve continues to increase, whereas that of the experimentally obtained curves remains
constant and then drops. This discrepancy can be related to a number of causes, but
the most important one is the poor performance of the unit cell for extensive biaxial
deformation. For large biaxial deformations, the diagonal truss elements, that are only
meant to describe the in-plane shear response of the textile, elongate significantly and
start to contribute significantly to the mechanical response of the model.
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Figure 2.15: Comparisons of half of the deformed electronic textile during the punch test
as obtained from the experiments (left) and the deformed model as predicted
by the simulation (right). The four comparisons show the electronic textile at
punch displacements of 10 mm (A), 20 mm (B), 30 mm (C) and 40 mm (D).
Note that the images made during the experiment are truly three-dimensional,
while the deformations computed by the simulation only give an indication of
the three-dimensional shape. (This can be observed by the left fixed edge in
the experimentally obtained images that is oriented at an angle with respect to
the vertical axis, while the right fixed edge in the simulation results is oriented
exactly along the vertical axis.)

2.5.2 Failure of the conductive wires

The strains that occur during the punch experiment cannot directly be determined from
the experiments. The damage of the conductive wires however, can be investigated
after the punch experiment. This gives a qualitative idea of the maximum strains
that have occurred during the punch test in warp direction. To visualize the damage
of the conductive wires, the same X-ray equipment is used as for the warp tensile
experiments in Section 2.2.3. The damage at six locations indicated in Fig. 2.16 is
shown in Fig. 2.17. One must take into account however, that the conductive wires in
Fig. 2.5 have undergone uniaxial tension while the wires shown in this section have been
subjected to more complex loading situations.
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The engineering warp strains computed by the model at the six locations are also shown
in Fig. 2.17. The warp strains are shown for a punch displacement of 52.5 mm, because
at this punch displacement the experimental curves decrease on average. Slip from the
clamps has taken place at this displacement, but since this is difficult to asses, it is
assumed that most samples have been exposed to this punch displacement.

A B

C

D

E F

Figure 2.16: Schematic representation of the bottom right quarter of a sample in the punch
test. The dashed curve represents a quarter of the punch and the horizontal lines
with small ellipsoids represent the conductive wires. Six regions are indicated
by A to F, at which the residual deformations of the conductive wires after the
punch experiment have been visualized using X-ray imaging (see Fig. 2.17).

At locations A and B in Fig. 2.17, it is clearly visible that several conductive wires have
failed. Since in Section 2.2.3 it has been established that failure of the wires starts at
warp strains of 7%, significantly larger strains have occurred at these locations. This
corresponds with the large engineering warp strains that are observed in the simulation
results at these locations (also indicated in Fig. 2.17).

At location E, no failure can be seen, but only plastic deformation of the conductive
wires. The engineering warp strain of 3% computed at this location corresponds with
this observation, since it is significantly smaller than the warp strain of 7% at which
failure initiates.

At locations C, D and F, a substantial amount of plastic deformation in the wires is
visible (see again Fig. 2.17). The amount of damage is less than at locations A and
B, but clearly a substantial number of filaments within several conductive wires have
failed. This is in correspondence with the predictions, since all predicted engineering
warp strains are above the threshold of 7%. The relatively large amount of damage at
location F compared to locations C and D is quantitatively not completely in agreement
with the predictions, since at location F a strain of 8% is predicted and the predicted
strains at locations C and D are larger. However, qualitatively the model predicts failure
correctly, since all predicted strains are larger than 7% at the locations where failure
occurs.
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Figure 2.17: X-ray images of the electronic textile after the punch test. The damage of the
conductive wires is shown for the locations A-F in Fig. 2.16. The engineering
warp strains as computed in the simulation at a punch displacement of 52.5 mm,
ǫsim, are also shown.
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2.6 Conclusion

The aim of this chapter was to present a straightforward experimental identification
procedure for an in-plane lattice model of woven fabrics. The advantage of the presented
identification approach is that the tensile responses in three in-plane directions can be
directly used to separately determine the parameters of the three families of discrete
elements in the lattice model. This has been established by ensuring that only the
family of elements that are oriented in the loading direction during one of the three
tensile tests contribute to the mechanical response. Therefore, no mutual influence of
the different elements occurs during each tensile test and no (complex) inverse problem
needs to be solved.

To ensure that a separate identification of the families of discrete elements is allowed,
two conditions must hold. First, the compressive response of the elements in the lattice
model must be negligible compared to the tensile response of the elements. Second,
the in-plane shear stiffness of the woven material must be compliant compared to the
responses in the two principal in-plane directions. Since the latter generally holds for
most woven materials, the lattice model and its identification procedure can be used
more generally than for the electronic textile considered here.

The lattice model and its identification procedure are validated by an out-of-plane punch
test on electronic textile, in which copper wires are incorporated to provide conductivity.
In the punch test, large strains occur (local strains of 55%), so it can be considered as
a stringent validation test. The results show that failure of the conductive wires is
qualitatively, and to some extent quantitatively, well predicted by the lattice model; at
all locations at which failure occurs in the experiments, strains larger than the failure
strain of the conductive wires are predicted.

Furthermore, comparing the experimental data with the numerical results shows that
the lattice model is accurate for small and moderate strains. For large biaxial deforma-
tion, the predicted response of the lattice model is stiffer than the actual response of the
fabric. The cause of this is that during large biaxial deformation, the diagonal elements,
used only to describe the shear response, influence the responses in the two principal
directions as a result of their extensive elongation. An alternative may therefore be to
use rotational springs instead of truss elements to describe the in-plane shear response.





Chapter three

A discrete network model for bond failure

and frictional sliding in fibrous materials1

Abstract

Discrete network models and lattice models using trusses or beams can be used to me-
chanically model fibrous materials, since the discrete elements represent the individual
fibers or yarns at the mesoscale of these materials. Consequently, local mesoscale phe-
nomena, such as individual fiber failure and interfiber bond failure, can be incorporated.
Only a few discrete network models in which bond failure is incorporated include fric-
tional fiber sliding that occurs after bond failure has taken place, although this occurs in
the mechanical behaviour of several fibrous materials. In this chapter, a spring network
model for interfiber bond failure and subsequent frictional fiber sliding is developed,
which is formulated in a thermodynamical setting. The thermodynamical basis ensures
that performed mechanical work is either stored in the network or dissipated due to
bond failure and subsequent sliding. A numerical implementation of the framework
is proposed in which the kinematic and internal variables are simultaneously solved,
because the internal variables are directly coupled in the framework. Variations in net-
work connectivity, bond strength, fiber length and anisotropy are implemented in the
framework. The results show amongst others that the macroscopic yield point scales
with the bond strength and that the macroscopic stiffness and the macroscopic yield
point scale with the fiber length. The presented results also show that the macroscopic
yield point becomes significantly less pronounced for an increase of the fiber length.

1 Reproduced from: D.V. Wilbrink, L.A.A. Beex, R.H.J. Peerlings, A discrete network model for
bond failure and frictional sliding in fibrous materials, Submitted to the International Journal of Solids
and Structures.
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3.1 Introduction

In the discrete modelling of materials, lattice models and network models, as for instance
shown in Fig. 3.1, have received considerable attention over the past decades. They
have been used for the mechanical modelling of materials at various length scales [51,
91]. The system of discrete elements and nodes allows a discrete representation of a
material’s microstructure and heterogeneity [71,91]. Hence, discrete networks have been
applied to model various materials with a distinctively heterogenous microstructure,
e.g. concrete [71,104], composites [5,19] and a variety of fibrous materials [14,52,98,100].

Figure 3.1: Example of a simple discrete network, a periodic (triangular) spring network, in
which elements (springs) are connected at nodes.

Fibrous materials are of particular interest in this thesis. Their discrete fibers at the
mesoscale can be captured individually by the discrete elements of network models.
The failure process, that underlies the limiting mechanical properties, is governed by a
combination of mechanical mesoscale phenomena. Examples are fiber bending, stretch-
ing and failure, as well as the loss of interfiber connectivity, sliding friction and pull-
out [89,100,101]. To what extent each of these mechanisms contributes to failure, de-
pends on the material of interest and can be complex to asses with experimental tech-
niques. Network models however can be used to asses and investigate these mechanisms
and several of these models can be found in the literature. Some illustrative examples
are highlighted below, where a distinction is made between the constitutive behaviour
of the elements and that of the nodes.

The simplest element behaviour assumed in the literature is elastic [52,100]. To simulate
fiber failure in fibrous materials however, various network models allow the elements to
fail in a brittle manner when subjected to specific loading conditions [26,52]. Since
the fibers in many of these materials exhibit plastic behaviour before failure [55,89,93],
preference may be given to elastoplastic element behaviour. This is for instance done
in a pin-jointed model to simulate the tensile behaviour of paper [20].

The simplest way to connect the elements is by pin-jointed nodes. This however implies a
perfect bonding, i.e. no bond failure, which can be a reason that several network models
do not capture experimentally observed responses accurately. In [20] for instance, it is
suggested that incorporating interfiber bond failure may improve the response of the
network model for paper. Furthermore, some experimental studies have shown that the
degradation of interfiber connectivity plays a role in the deformation process of various
fibrous materials [55,67,100,101,129].
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A number of bond models have been proposed in literature to account for the loss of
interfiber connectivity. An example is a linear-brittle bond model [30,100]. In another
network connectivity model for cellulose fiber fluff, bonds are considered as anisotropic
elastic elements, which (under influence of mechanical loading) experience a stepwise
stiffness and strength decay until complete failure [52]. Discrepancies with realistic
behaviour appear to stem from both the absence of interfiber frictional sliding after
bond failure has taken place and the energy dissipation associated with it.

Recently, models have been proposed in [67,100,101] to account for the effects of in-
terfiber frictional sliding after bond failure has occurred. The model in [67] is used
to predict interfiber bond failure in a disordered fiber network. Subsequent frictional
fiber sliding is introduced by the use of a Coulomb friction model for the bonds. In the
model in [100], which is used to simulate the in-plane mechanical behaviour of glass fiber
nonwoven materials, the normal force has a bilinear decay as a function of the sliding
distance. Compared to a linear, brittle bond model, the frictional bond model (with a
fitting procedure for the normal load’s bilinear decay) is proven to be in better agree-
ment with the gradual loss of load-carrying capacity witnessed in tensile experiments.
This is explained by its ability to dissipate energy in the bonds.

It thus appears that frictional fiber sliding subsequent to bond failure is a key aspect
in the accurate network modelling of the mechanical behaviour of fibrous materials to
complete failure. Whereas a variety of other mesomechanical features have been dealt
with in the literature, discrete models that include bond failure as well as subsequent
frictional fiber sliding are relatively scarce.

The objective of the present chapter is to incorporate interfiber bond failure and the
subsequent frictional fiber sliding in a thermodynamically consistent spring network
model. The mesoscopic network model is proposed such that the influence of a number
of mesoscopic parameters can systematically be studied.

A numerical modelling framework is proposed to this end, which is based on the thermo-
dynamical formulation of a network model. The (isothermal) thermodynamical formu-
lation is similar to those used for continuum mechanics [41]. However, the formulations
of the stored energy and the dissipation potential are specifically derived for the spring
network model with bond failure and subsequent frictional fiber sliding. In the present
chapter, the formulation of the stored energy only allows for small sliding displacements.
A Coulomb-like friction law is used in the dissipation potential for the fiber-bond be-
haviour, in which the maximum friction force is constant. This entails that the force
at which bond failure takes place is the same as the force necessary to accommodate
subsequent sliding. However, the dissipation potential can be altered so that different
bond description can be incorporated.

This chapter consists of three parts. The first part details the model by deriving the
equations that govern the mechanical deformation of discrete dissipative systems. This
theory is applied to spring network models that represent fibrous structures with linear
elastic elements and Coulomb nodal friction to capture dry interfiber contact. The
second part proposes an algorithm that is capable of numerically approximating the
model. This algorithm uses Newton-Raphson iterations to solve the nonlinear equations
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which govern equilibrium, and employs an active set strategy to distinguish between
active sliding and static friction. The third part explores the macroscopic response
of the model for a rather straightforward spring network; a periodic X-braced spring
network. The resulting macroscopic response has many features of elastoplasticity. The
influence of several mesoscopic parameters, such as bond strength and fiber length, is
investigated using the model.

The following notation is used throughout this chapter. Matrices, including column
matrices, are denoted by bold letters. Subscripts denote the components of column
matrices and matrices. Quantities xi (where i = 1, ..., n) are stored in a column matrix
x and quantities Aij (where i = 1, ..., n and j = 1, ..., m) are stored in matrix A of size
n × m. Inequalities of column matrices apply to each of their individual components,
e.g. x ≤ y is equivalent to xi ≤ yi for all i = 1, ..., n. An element-wise multiplication
x ∗ y = z results in zi = xiyi for all i = 1, ..., n.

3.2 Modelling

The objective of the following development is to describe the thermodynamical setting
that describes the deformation of a spring network which may dissipate energy. The
first part of the thermodynamical setting is similar to those that are regularly used for
(isothermal) continuum models [41] and results in a model that includes dissipation,
for instance by plasticity, damage or friction. The theory is afterwards specifically
developed for spring network models with nodal friction, by deriving formulations for
the stored energy and the dissipation potential.

3.2.1 Governing equations for a dissipative system

Here we derive the governing equations of (isothermal) mechanical models on a thermo-
dynamical basis, along the lines of [41]. The system is characterized by (controllable)
kinematic variables (degrees of freedom), that are stored in column matrix u, and (un-
controllable) internal variables, that are stored in column matrix s. The kinematic
variables u include the displacements of the nodes in the network, but may also include
additional kinematic quantities, such as rotations if a beam network is considered. The
total rate of work of the system, the internal power Pint, is the sum of the work per-
formed by internal forces, present in column matrix Fu, that are associated with the
rate of the kinematic variables u, i.e.

Pint = u̇T Fu. (3.1)

The forces Fu may be accompanied by externally imposed forces, Fext, such that the
external power of the system, Pext, can be written as:

Pext = u̇TFext. (3.2)
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The principle of virtual power dictates that in static equilibrium, we have:

Pint = Pext ∀u̇. (3.3)

An implication of this so-called virtual-power-statement (using Eq. (3.1) & (3.2)) is that

Fu = Fext. (3.4)

This equation may be recognized as static equilibrium, i.e. each of its components
expresses the force equilibrium in a particular node in a certain direction.

The energy stored in the model is a function of the sets of kinematic variables u and
internal variables s. Consequently, the rate of internal (elastic) energy Ė can be written
as:

Ė = u̇T ∂E

∂u
+ ṡT ∂E

∂s
. (3.5)

The first law of thermodynamics dictates that energy can neither be created nor de-
stroyed. This implies that the rate of dissipation Ḋ can be expressed as Ḋ = Pint − Ė.
By substitution of Eq. (3.1) & (3.5) in this expression, the dissipation rate Ḋ can be
expressed as:

Ḋ = u̇T

(

Fu − ∂E

∂u

)

− ṡT ∂E

∂s
. (3.6)

It is now assumed that all dissipative processes are characterized by s; hence, no dissi-
pation occurs for constant s. This can be satisfied for arbitrary u̇ by defining the forces
Fu as:

Fu =
∂E

∂u
. (3.7)

Furthermore, we define a column matrix with dissipation forces, Fs, as the derivatives
of the stored energy with respect to the internal variables as:

Fs = −∂E

∂s
, (3.8)

such that by substituting Eq. (3.7) & (3.8) in Eq. (3.6), the dissipation rate can be
expressed as

Ḋ = ṡTFs. (3.9)
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The second law of thermodynamics dictates that dissipation is irreversible, such that

Ḋ ≥ 0. (3.10)

The evolution of the internal variables s must be such that this condition (in Eq. (3.10))
is satisfied. Given the fact that the forces Fs are energetically conjugate to ṡ, it is natural
to define the evolution of s in terms of Fs, taking into account the constraint imposed
by Eq. (3.8) & (3.9).

3.2.2 Application: network of elastic springs with dry nodal friction

The relations derived above are now applied to a network model of springs that includes
interfiber bond failure and subsequent frictional fiber sliding using a Coulomb friction
model.

If it is assumed that the network model represents a fictitious fibrous material, chains
of elements in the network can be considered as fibers (or fiber bundles). Hence, each
element represents a fiber segment. This is illustrated in the left image of Fig. 3.2, in
which element e between nodes A and B is a segment of the fiber that is marked by the
dashed gray line in the undeformed configuration. Fibers are connected to other fibers in
nodes. Nodes allow multiple fibers to interact in one point, as shown in the right image
of Fig. 3.2. The kinematic variables u are defined as the set of nodal displacements in
space; they are used to formulate a set of vectors that describe the nodal displacements
(e.g. ~uA and ~uB in the left image of Fig. 3.2).
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Figure 3.2: Illustration of the variables of the spring network with dry interfiber friction. (Left)
element e between nodes A and B is part of a fiber (dashed in the undeformed
configuration and solid in the deformed configuration). The nodes are displaced
in space (characterized by ~uA and ~uB) and the fiber may slide through both nodes
by distances sA and sB. (Right) in node A, three fibers are linked together, each
has its own sliding displacement through this node.

Fibers and nodes can be viewed as separate bodies and fibers may slide with respect
to the nodes. Note that fiber sliding with respect to a node changes the length of the
fiber’s segments adjacent to the node and thus lets the spring force increase in one of the
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fiber’s elements and decrease in another. For the ith fiber-node interaction, the amount
of sliding is characterized by the fiber’s axial sliding displacement, si, relative to the
node. The fact that the sliding displacement is a scalar (its direction is governed by the
local fiber orientation as Fig. 3.2 shows), implies that it retains its validity regardless of
a possible change of direction of the fiber in a node. As a node includes the interaction
of a number of fibers, multiple internal variables may be associated with each node -
one for each fiber. The column matrix s comprises all sliding displacements si of all
nodes.

As Eq. (3.7) & (3.8) show, a key factor in the model is the system energy E. The system
energy may have a nonlinear dependence on the variables u and s. For a network with
ne elastic springs where the eth element (e = 1, ..., ne) has constant stiffness, ke, and an
equivalent elongation, ωe, the system energy can be expressed as follows:

E(u, s) =

ne
∑

e=1

Ee(u, s) =

ne
∑

e=1

1

2
keω

2
e , (3.11)

with

ωe = ||~xB + ~uB − ~xA − ~uA|| − ||~xB − ~xA|| + sB − sA. (3.12)

Here, ~xA and ~xB are the position vectors of nodes A and B, respectively, to which the
element is attached (see Fig. 3.2). This definition allows large rotations, but no large
sliding displacements, since they do not influence the stiffness, ke. As a result, the effect
of fiber sliding on E with respect to a node is equivalent to the displacement of that
node in fiber direction for a one dimensional chain of elements.

For the node-fiber behaviour, the choice is made to use a constant friction resistance.
This entails that the static friction force and dynamic friction force are constant and
equal to each other for every fiber-node interaction. This corresponds to a Coulomb
friction model with a constant normal force. The sliding displacement si for the ith
fiber-node interaction is assumed to depend on the force Fsi (i.e. the ith component of
Fs) associated with this interaction. In the following discussion of an individual fiber-
node interaction, the subscripts i are dropped for convenience, except for cases where
this conflicts with previous definitions.

Sliding may occur if the magnitude of the driving force Fs exceeds the critical sliding
force Fsc > 0, which quantifies the friction resistance. A loading function, φ, is defined
according to:

φ = |Fs| − Fsc, (3.13)
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using which the sliding criterion can be formulated as φ = 0. The sliding velocity is
described using a monotonically increasing Lagrange multiplier ξ:

ṡ = ξ̇
∂φ

∂Fs

= ξ̇sign(Fs). (3.14)

In case the sliding criterion φ = 0 is met, a change of ξ prevents the sliding force Fs

from exceeding its limit Fsc, i.e. to maintain φ ≤ 0 at all times. If the criterion is not
met, the driving force Fs is insufficient to induce sliding, hence, ξ̇ = 0. These conditions
are mathematically expressed by the following so-called Kuhn-Tucker (KT) conditions:

φ ξ̇ = 0 φ ≤ 0 ξ̇ ≥ 0. (3.15)

Note that since sign(ṡ) = sign(Fs), the irreversibility requirement for dissipation is
satisfied component-wise (i.e. Ḋi = ṡiFsi ≥ 0) and therefore also for the entire network.

The present model shows similarities with conventional elastoplasticity models, which
are also governed by equilibrium and plasticity laws and characterized by sets of kine-
matic and internal variables. A substantial difference with these models is that in the
present model, the sliding displacement si in the ith fiber-node connection depends on
Fsi (through the loading function φi), which is a function of several sliding displace-
ments, present in s, through Eq. (3.8), (3.11) & (3.12). This renders the plasticity (the
sliding displacements) in the present model intrinsically nonlocal, whereas in conven-
tional elastoplasticity problems these quantities are governed locally and are merely
indirectly coupled through the equilibrium equations.

3.3 Numerical implementation

3.3.1 Incremental-iterative procedure

For the numerical implementation, we consider that the network model is deformed
significantly slowly so that a quasi-static analysis suffices. The loading process is divided
into time increments ∆t, where ∆ refers to an incremental change. At time t, the entire
solution known and characterized by displacements u(t) and sliding displacements s(t).
From time t to time t + ∆t, additional external forces and/or displacements may be
imposed, under which equilibrium is to be regained at time t + ∆t. For time t + ∆t, we
wish to determine the displacement solution; i.e. all nodal displacements u and sliding
displacements s, where the superscript, t + ∆t, is dropped for ease of notation. The
following discusses the solution procedure for one increment; this procedure is repeated
for each new increment to obtain the solution for the entire time interval considered.

As was shown in the model derivation, equilibrium dictates that the forces that corre-
spond to the displacement solution must obey the following conditions at time t + ∆t.
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First, the force equilibrium in Eq. (3.4) must be satisfied. Second, the KT-conditions
in Eq. (3.15), dictated by the Coulomb friction model, must be obeyed. These are
formulated for the entire system as follows:

φ ∗ ξ̇ = 0 φ ≤ 0 ξ̇ ≥ 0. (3.16)

Eq. (3.4) as well as Eq. (3.16) have a nonlinear dependence on the variables u and s,
due to the formulation of the elastic energy E in Eq. (3.11) & (3.12). Consequently, an
iterative solution procedure is used within every increment.

As a consequence of the intrinsically nonlocal plasticity in the present model, the elastic
predictor-plastic corrector algorithms, see e.g. [111], that are commonly used to solve
elastoplastic problems are not usable. The problem outlined above shows similarities
with nonlinear programming problems in constrained optimization, for which a range
of solution algorithms may be employed, such as an augmented Lagrangian formula-
tion [50].

Here, the choice is made for the Newton-Raphson method in which the nonlinear govern-
ing equations are solved iteratively, since it allows for quadratic convergence. Because
of the method’s limited robustness, small incremental loading steps are required. This
method is combined with an active set strategy to deal with the inequality constraints
imposed by the Coulomb friction model.

This solution procedure is similar to the generalized reduced gradient (GRG) method,
first proposed in [1], combined with an active set strategy. Both the GRG and the
present method rely on linearization of the governing equations. Rather than explicitly
formulating the reduced gradient, performing a line search in its direction and sub-
sequently restoring the state variables, as in the GRG method, one linear system is
formulated and solved in the present method. This allows for applying indirect solution
methods rather than explicitly determining large inverse matrices, which is computa-
tionally more efficient for large systems (containing hundreds of nodes or more).

3.3.2 Linearization

The following discusses the linearization for one Newton-Raphson iteration. Boundary
conditions and variations in sliding activity are treated separately below. For the mo-
ment these are left out of consideration, such that u and s can be changed freely. For
now, it is also assumed that all sliders are active, i.e. φ = 0, which is equivalent to
|Fs| = Fsc due to Eq. (3.13). The forces Fu and Fs both depend on u and s, such that
the linearized iterative force changes δFu and δFs may be expressed as:

δFu = Kuuδu + Kusδs,

δFs = Ksuδu + Kssδs, (3.17)



40 A discrete network model for bond failure and sliding

where δ indicates an iterative change. The tangent matrices of the form Kpq are found
by differentiating E with respect to both variables denoted in the subscript, e.g.:

Kus =
∂Fu

∂s
=

∂2E

∂s∂u
. (3.18)

More precisely the components of this matrix Kus are given by:

(Kus)ij =
∂2E

∂sj∂ui

(3.19)

where i and j run over all components of u and s respectively.

Boundary conditions are applied to particular nodes. Since external forces are already
incorporated in column matrix Fext, the boundary conditions discussed here are solely
displacement constraints. Since s contains internal variables that cannot be controlled,
constraints only act on a part of the kinematic variables u. Hence, a distinction is
made between the constrained displacements, indicated with subscript c, and the other,
‘free’ displacements, with subscript f . The constrained displacements are kept constant
during all but the first iteration of every increment, such that δuc = 0. The displacement
correction δu can thus be written as:

δu =

(

δuf

δuc

)

=

(

δuf

0

)

. (3.20)

In every iteration, the sliding displacements may only be altered for sliding mechanisms
which are found to be active: i.e. for which the sliding criterion φ = 0 is met. How
this sliding activity is determined is discussed below; for now we consider it as given.
Hence, a distinction between active mechanisms (subscript a) and passive mechanisms
(subscript p) is made. By partitioning Eq. (3.16) according to this distinction, it can
be reformulated as:

φa = 0 ξ̇a ≥ 0

φp < 0 ξ̇p = 0. (3.21)

This set of equations shows that an equality constraint applies to each sliding mech-
anism, either in terms of φa or ξp. These constraints will be used to determine the
iterative correction of the sliding displacements δs. To this end, δs is also partitioned
according to sliding activity. Since the passive sliders sp must remain constant, δsp = 0.
Hence, the sliding displacement correction δs can be formulated as:

δs =

(

δsa

δsp

)

=

(

δsa

0

)

. (3.22)
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On the basis of these distinctions, the linearized expressions for the force changes (see
Eq. (3.17)) can be partitioned. The details of this process are given in appendix A.
Using the resulting expressions, a solvable system can be formulated by specifying the
force changes δFu,f and δFs,a. Eq. (3.4) dictates that the nodal force residual Fu −Fext

should be reduced to zero, such that δFu,f = Fext,f − Fu,f , where Fu,f are the values
obtained in the previous iteration. Furthermore, to satisfy φa = 0, the magnitudes of
the driving forces for the active sliding mechanisms should be reduced to the critical
level in the direction of the forces, such that δFs,a = − (|Fs,a| − Fsc,a) ∗ sign(Fs,a).
Substitution of these expressions in the partitioned linearized system (see Eq. (A.4) in
Appendix A) allows one to formulate this system as:

Kuu,ffδuf + Kus,faδsa = Fext,f − Fu,f ,

Ksu,afδuf + Kss,aaδsa = − (|Fs,a| − Fsc,a) ∗ sign(Fs,a). (3.23)

By solving these coupled systems of equations and substituting the obtained corrections
δuf and δsa in Eq. (3.20) & (3.22) respectively, the iterative displacement corrections
δu and δs are found. Subsequently, the variables u and s can be updated according to:

u := u + δu

s := s + δs, (3.24)

and the forces Fu and Fs may be computed. This process is repeated until convergence
is reached.

3.3.3 Active set strategy

Fluctuations in Fs may necessitate an update of the active set (i.e. the set of sliding
mechanisms that are active) in every iteration. This update consists of checks for
activation and deactivation, which are discussed below. Since these checks are done for
each sliding mechanism individually, we focus on an individual sliding mechanism and
drop its index i for ease of notation.

An essential part of the active set update is the possibility of sliding mechanism acti-
vation. A characteristic of every passive sliding mechanism is that it satisfies φ < 0 as
dictated by Eq. (3.21). A sliding mechanism is activated if it no longer satisfies this
condition. As a consequence, its sliding displacement may be changed to prevent the
magnitude of the sliding force from violating the threshold in the following iterations.
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As a validation of every active sliding mechanism, it is evaluated if, according to
Eq. (3.14), sign(Fs) = sign(∆s), where ∆s = s − s(t) is the incremental correction
of s so far. Once an active sliding mechanism is found to violate this requirement, it is
removed from the active set and thus becomes passive. Since its iterative sliding dis-
placement value s is unreliable in this case, its value is reset to that at time t: s := s(t).
The iteration process is then continued with s = s(t) for the following iteration.

In the first iteration of each increment, the last known sliding activity of the previous
time increment is used as an initial estimate. In this manner, the incremental solution
is found in a single iteration if no change in sliding activity occurs. This is efficient if
small time steps are used. Furthermore, multiple sliding mechanisms may in principle
be (de)activated simultaneously in one iteration. It is therefore important that the
incremental loading steps are sufficiently small to prevent multiple sliding mechanisms
from being activated and afterwards deactivated simultaneously.

3.4 Results

This section illustrates the capabilities of the proposed framework for a straightforward
discrete network; an X-braced lattice. It serves to provide better insight into how
the mechanical aspects modelled on the microscale, especially fiber sliding, affect the
macroscopic mechanical response. The influence of various parameters is investigated
for this purpose.

3.4.1 Problem description

A two-dimensional lattice of 16 × 16 nodes is subjected to a tensile deformation (see
Fig. 3.3). The lattice is characterized by a square X-braced unit cell. The undeformed
length of the vertical and horizontal springs is l0, such that the unit cell has dimensions
l0 × l0. The entire network has a size L0 × L0, with L0 = 15l0. For smaller lattices
boundary effects are expected to strongly dominate the mechanics, whereas much larger
networks require excessive computational expenses.

Inspired by most real fibrous materials, e.g. as treated in [100], the fibers in the network
are given a finite length (see Fig. 3.3). Moreover, this introduces disorder in the lattice,
which reduces the influence of boundary effects. In the following, fibers consist of
straight chains of a constant number of elements ef . In the reference case, ef = 4, as
in Fig. 3.3. To implement the uniform fiber length in the lattice, one element is first
removed from every straight chain of elements at a randomly chosen position. This
simulates a first ‘cut’, since the two free fiber ends formed by a cut cannot transfer
load. Along the remainder of the chain of elements, every (ef +1)th element away from
the first cut is also removed to divide the element chain into finite fibers of ef elements
(or less near the boundaries). Instead of actually removing an element, its stiffness is
set to a small nonzero value (10−5 times its original stiffness) to promote computational
stability.
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U U

Figure 3.3: Illustration of the lattice characterized by a square X-braced unit cell, cut to
finite fibers of length ef = 4 elements. A horizontal displacement U in outward
directions is imposed to the nodes on the vertical edges. The fibers are assumed
to have free ends, as illustrated on the right.

The tensile tests are performed quasi-statically, by imposing a monotonically increasing
displacement, U , to the nodes on the vertical edges of the network. The vertical dis-
placement of these nodes is restricted. As a result, the nodes in the lattice are displaced
(described by u) and fibers may slide through the nodes (described by s). Four principal
fiber orientations are distinguished in the lattice (i.e. one horizontal, one vertical and
two diagonal), such that four sliding mechanisms are present in each node. No sliding
is allowed in the nodes on the vertical edges, such that the displacement U imposed on
these nodes is effectively transferred to the rest of the lattice.

The increments of imposed displacement ∆U are small compared to l0. To obtain the
results presented below, ∆U = l0/1600 is used in each simulation. Smaller increments
do not significantly affect the results, whereas larger increments may lead to inaccurate
results or may even cause the solution algorithm fail to converge.

For the sake of simplicity, all springs have the same stiffness k (thus, also the diagonal
springs). A distribution of bond strengths (or critical sliding forces) is used (i.e. the
values in Fsc are not the same) to avoid singularities. The bond strengths are randomly
selected from a uniform distribution around the mean bond strength F̄sc with an interval
(

(1 − η)F̄sc, (1 + η)F̄sc

)

. Here, η characterizes the scatter of the bond strengths (0 <
η < 1)

In the tensile testing of fibrous materials, fiber pullout plays a role in the failure pro-
cess [55]. The numerical networks studied here are assumed to be loaded up to a point
where pullout has not occurred yet, by assuming that free fiber ends are sufficiently long
to maintain the initial interfiber connection (see Fig. 3.3). Fibers are also assumed to
have long free ends outside the upper and lower edges of the network, such that vertical
or diagonal sliding may occur through the nodes at these edges.
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Each result shown below is based on seven simulations, unless indicated otherwise. The
simulations have varying lattice connectivity, i.e. for every simulation a new geometry
is generated by initiating the cutting of the fibers at random positions. This intro-
duces scatter, which is visualized by a colored band that envelopes the results of all
(seven) simulations. The solid line inside this band represents the mean result of these
simulations.

3.4.2 Reference case

Let us first consider a reference set of mesoscopic parameter values, which are given
as F̄sc = kl0/200, η = 0.1 and ef = 4. Fig. 3.4 shows the evolution of the sum of the
horizontal reaction forces, F , as a function of the imposed displacement U for these
parameters. The two quantities are normalized to the stiffness and length of a single
horizontal element. The elastic responses of the same networks are also shown for
comparison.

The diagram shows that for relatively small displacements, the response is purely elastic
and thus is solely governed by fiber stretching. The linear elasticity of the modelled
fibers renders the force-displacement relation linear for small displacements U . As the
imposed displacement increases, the response gradually starts to deviate from the elastic
response and is eventually dominated by inelastic fiber sliding. This result qualitatively
compares well with experimentally found force-displacement curves of a variety of fibrous
materials [8,20,89,100,101].
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Figure 3.4: The normalized horizontal reaction force (F/(kl0)) as a function of the normalized
imposed displacement (U/l0) for the reference situation (solid, blue) and the purely
elastic case (dashed, gray).

The band with scatter relative to the mean values of F observed in Fig. 3.4 appears to
be approximately constant. From this it can be concluded that this scatter is primarily
induced by geometric variations rather than variations in Fsc.
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Figure 3.5: The normalized total work performed by the system W , the normalized elastic
energy stored in the lattice E and the normalized accumulated amount of total
dissipation D, all normalized by 1

2kl20, as functions of the normalized imposed
displacement (U/l0).

The transition from elastic to plastic deformation witnessed in Fig. 3.4 is further il-
lustrated by Fig. 3.5. This figure shows the total work performed on the system, W ,
(which is the supplied energy by the imposed displacement U), the elastic energy stored
in the lattice, E, and the accumulated amount of dissipation, D, (which is the energy
dissipated by all sliding displacements) as functions of the imposed displacement, U .
Fig. 3.5 shows that the initial response is governed by the buildup of elastic energy in
the discrete elements. From the yield point onwards (U ≈ 0.025l0), energy is increas-
ingly dissipated by friction in the fiber-node connections, which is responsible for the
plasticity witnessed in Fig. 3.4. At the end of the deformation process (at U ≈ 0.14l0),
the stored energy tends to stagnate and almost all supplied energy is dissipated by
friction. The fact that the stored energy still slightly increases indicates that element
straining plays a role in the slight hardening witnessed in this regime in Fig. 3.4. Note
that Fig. 3.5 shows that the first and second laws of thermodynamics are obeyed, since
W = E + D (which is consistent with Pext = Ė + Ḋ) and Ḋ ≥ 0.

The distribution of sliding activity over the nodes for one of the seven simulations
(arbitrarily chosen) is illustrated in the left image of Fig. 3.6. It shows that for the
plasticity-dominated response at U = 0.125l0, dissipation has localized into a number
of nodes, whereas no dissipation has occurred in the majority of nodes. The dissipation
appears to be more or less localized in a band that runs between the upper and lower
edges of the specimen. The deformation of the network, which is also shown, is consistent
with this localization band. Similar localization bands can also be observed in the results
presented in [67,100].

An examination of the nodal dissipation of the other six simulations (not shown here)
reveals that no consistent pattern can be identified in the dissipation localization, except
that the localization bands are generally oriented perpendicular to the loading direction.
This inconsistency is induced by both the geometric variations and the variations in
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Figure 3.6: Node-wise amount of energy dissipated by sliding at U = 0.125l0; (left) for one of
the seven simulations, shown on the deformed geometry (displacements are scaled
by a factor 4 in each direction for clarity) and (right) for the average of seven
simulations, shown on the undeformed geometry.

the values of Fsc. The averaged distribution of dissipation over the nodes for the seven
simulations in the right image of Fig. 3.6 shows that no distinct pattern can be identified.
Two boundary layers in which hardly any sliding occurs are observed along the vertical
edges of the network.

Fig. 3.7 shows the mean force-displacement curve of the reference case for cyclic loading
(one cycle). It is clear that the unloading is initially elastic and takes place along
approximately the initial loading stiffness. This is similar to the behaviour of continuum-
based elastoplasticity models and in agreement with the unloading behaviour of fibrous
materials such as paper [119]. Under a continued decrease of the imposed displacement,
an elastoplastic response is found in compression. Plastic yielding (i.e. fiber sliding)
however occurs at a (compressive) stress which is substantially lower than the initial
yield strength, indicating a strong Bauschinger effect (kinematic hardening). This is
due to the elastic energy stored in the system, which helps to overcome the friction
resistance upon reverse loading. Note that a similar effect occurs upon renewed tensile
loading.

3.4.3 Parameter study

To study the influence of the mean bond strength F̄sc, the simulations are repeated using
half the reference value of F̄sc and twice the reference value, while η is kept constant.
Fig. 3.8 shows a comparison of the force-displacement curves for the three situations.
Each set of simulations is stopped when the slope is 7% of the original stiffness. It is
clear that the yield point is increased with increasing F̄sc. The strength (i.e. the reaction
force for which the response is purely governed by sliding) appears to be proportional to
F̄sc. This is expected, since F̄sc quantitatively controls the sliding forces for which the
response is sliding-dominated. The range in U over which the elastic-plastic transition
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Figure 3.7: The normalized mean horizontal reaction force (F/(kl0)) as a function of the
normalized imposed displacement (U/l0) which is increased from U = 0 to U =
0.1l0, then decreased to U = −0.075l0 and increased again to U = 0 for the
reference situation (solid, blue). The purely elastic response is shown by the
dashed grey curve.

takes place in Fig. 3.8 approximately increases with the ultimate strength, since the
scatter (characterized by η) is relative to F̄sc. This implies that the absolute width of
the distribution that determines Fsc scales with F̄sc.

The influence of the fiber length ef (measured in element lengths) is illustrated in
Fig. 3.9. This diagram shows that the elastic network stiffness increases with the fiber
length. The network strength also increases with the fiber length. It approximately
doubles upon doubling the fiber length. It can also be observed that for an increasing
fiber length, the transition from elastic-dominated to plastic-dominated deformation is
more gradual. The elevated stiffness, elevated strength and less distinctive yield point
are all explained by the higher level of connectivity in the network for larger fiber
lengths. The level of scatter relative to the mean of the tensile curve decreases with
an increase of the fiber length, since a higher level of connectivity reduces the effects of
geometric variations on the macroscopic response.

Fibrous materials are often characterized by preferred fiber orientations leading to
anisotropic material responses. Anisotropy can be captured in the considered lattice
model straightforwardly by changing the unit cell’s aspect ratio. In Fig. 3.10 the influ-
ence of the aspect ratio is shown for the response in horizontal direction. The dimensions
of the unit cell are now defined as l0,x× l0,y. Since the unit cell in the reference situation
is square (l0,x = l0,y = l0), its aspect ratio equals one. For the other situations l0,x is
either increased or decreased by a factor 1.5 while l0,y and all other parameters have
the same values as in the reference situation. Note that the horizontal and vertical axes
in Fig. 3.10 have been normalized by l0,x and l0,y respectively. The figure shows that
a higher aspect ratio corresponds to an increased relative (normalized) stiffness of the
lattice in the horizontal direction (i.e. that of the long cell edge). This is explained by
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Figure 3.8: The normalized reaction force (F/(kl0)) as a function of the normalized im-
posed displacement (U/l0) for three values of the normalized mean bond strength
(F̄sc/(kl0)). The curve of the reference case is indicated by F̄sc = kl0/200 and the
dashed curve shows the purely elastic response.
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Figure 3.9: The normalized horizontal reaction force (F/(kl0)) as a function of the normalized
imposed displacement (U/l0) for three finite fiber lengths (ef ). The curve of the
reference case is indicated by ef = 4 and the purely elastic response of the reference
case is shown by the dashed curve.

the smaller angle between the diagonal elements and the loading direction. For higher
aspect ratios, the increased stiffness and identical yield forces result in a less gradual
transition from elastic to plastic lattice deformation. The vertical response (not shown
here) exhibits the opposite trend, and the degree of anisotropy thus increases with the
aspect ratio.
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Figure 3.10: The normalized horizontal reaction force (F/(kl0,y)) as a function of the normal-
ized imposed displacement U/l0,x for three unit cell aspect ratios (l0,x/l0,y). The
curve of the reference case is presented without an aspect ratio (l0,x/l0,y = 1).

3.5 Concluding remarks

Interfiber bond failure and subsequent frictional fiber sliding are important aspects of
the deformation process of several fibrous materials [55,67,100,101,129]. In this chapter,
interfiber bond failure in mesoscopic spring network models, followed by frictional fiber
sliding, is incorporated in an isothermal thermodynamical setting. The model is applied
to an X-braced lattice with finite fibers. Each finite fiber is modelled by a chain of elastic
springs and the behaviour of the interfiber bonds is described by dry friction. However,
the model can be adapted so that different network connectivities, element behaviours
and bond descriptions (e.g. a viscoplastic description) can be studied. A framework
to numerically approximate the nonlinear model for simulating lattice deformation is
proposed as well. It is used to systematically investigate the influence of different
mesoscopic parameters on the macroscopic response.

The results for the X-braced lattice with finite fibers illustrate that, with simple de-
scriptions for fiber stretching and interfiber friction, the model exhibits an elastoplastic
macroscopic response that mimics the macroscopic mechanical behaviour of several fi-
brous materials. Energy is dissipated due to localized fiber sliding, that is typically
concentrated in a path across the network. The network model exhibits kinematic
hardening under cyclic loading. It is furthermore shown that an increase of the fiber
length leads to a stiffer macroscopic response, a higher macroscopic strength and a less
pronounced macroscopic yield point. Finally, anisotropy is implemented by changing
the aspect ratio of the unit cell. The results show an elevated stiffness and a less smooth
transition from elastic to plastic deformation for an increasing aspect ratio.

The present model may serve as a basis for the construction of discrete network models
that connect several key aspects of the deformation witnessed in fibrous materials. For
instance, elastoplastic fibers (present in paper [20,93]) may enter the model through the
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thermodynamical setting. To capture the degradation of interfiber bond response under
the influence of sliding (e.g. modelled in [100]) alternative relations for sliding can be
incorporated. The brittle failure of fibers and bonds (e.g. modelled in [19,71,73] and
[52,73,100], respectively) may be modelled by dictating thresholds for the corresponding
forces. The ability of such network models to quantitatively reproduce experimental
results using estimates of the model parameters remains a subject for further research.



Chapter four

A quasicontinuum methodology for

multiscale analyses of discrete

microstructural models1

Abstract

Many studies in different research fields use lattice models to investigate the mechan-
ical behavior of materials. Full lattice calculations are often performed to determine
the influence of localized microscale phenomena on large-scale responses but they are
usually computationally expensive. In this chapter the quasicontinuum (QC) method
[Tadmor EB, Ortiz M, Philips R, Quasicontinuum analysis of defects in solids. Phil.
Mag. A 1996; 73:1529-1563] is extended towards lattice models that employ discrete
elements such as trusses and beams. The QC method is a multiscale approach that
uses a triangulation to interpolate the lattice model in regions with small fluctuations
in the deformation field, while in regions of high interest the exact lattice model is ob-
tained by refining the triangulation to the internal spacing of the lattice. Interpolation
ensures that the number of unknowns is reduced while summation ensures that only a
selective part of the underlying lattice model must be visited to construct the governing
equations. Since the QC method has so far only been applied to atomic lattice mod-
els, the existing summation procedures have been revisited for structural lattice models
containing discrete elements. This has led to a new QC method that makes use of the
characteristic structure of the considered truss network. The proposed QC method is,
to the best of the authors’ knowledge, the only QC method that does not need any
correction at the interface between the interpolated and the fully resolved region and

1 Reproduced from: L.A.A. Beex, R.H.J. Peerlings, M.G.D. Geers, 2011, A quasicontinuum method-
ology for multiscale analyses of discrete microstructural models, International Journal for Numerical
Methods in Engineering, Vol. 87, 701-718.
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at the same time gives exact results unlike the cluster QC methods. In its present
formulation, the proposed QC method can only be used for lattice models containing
nearest neighbor interactions, but with some minor adaptations it can also be used for
lattices with next-nearest neighbor interactions such as atomic lattices.

4.1 Introduction

A vast amount of structural lattice models (using springs, trusses or beams) have been
successfully developed for discrete microstructures of fibrous and heterogeneous mate-
rials. These conceptually simple models are able to accurately describe complex mech-
anisms in these materials, caused by the discrete character of their microstructures. A
major advantage of lattice models is the fact that they intrinsically incorporate the dis-
creteness of microscale phenomena, while continuum models often have to be complex
or extensive to (partially) include them. Especially localized phenomena as for instance
fiber failure and bond failure can be adequately captured with lattice models.

The variety of lattice models for fibrous materials and structures ranges from cardboard
packages and woven structures for aerospace industry to collagen networks and other
fibrous biological materials. Recent examples are the lattice models of Heyden [52];
Arnoux et al. [5]; Bronkhorst [20]; Clyne et al. [24]; Potluri and Manan [98]; Lomov et
al. [75]; Ben Boubaker et al. [14]; Stylianopoulos and Barocas [113]; Zohdi [131] and
Hatami-Marbini and Picu [48]. For heterogeneous materials which do not consist of
a discrete network at the microscale, a discrete representation containing trusses and
beams is less natural, but it can still be physically relevant. This has been shown for
instance by Lilliu and Van Mier [72] and Cusatis et al. [28] for concrete, by Ostoja-
Starzewski and Wang [92] for epoxy plates, by Rinaldi et al. [102] for polycrystalline
microstructures and by Kim and Buttlar [62] for asphalt concrete. An overview of
different structural lattice models is presented by Ostoja-Starzewski [91].

Although lattice models have the advantage that they naturally resolve microscale phe-
nomena in discrete microstructures, their use can be computationally expensive. Lilliu
and Van Mier [72] for instance, report that a supercomputer needed more than two
weeks to analyze a 449,179 beam model. A solution to avoid huge calculation times is a
multiscale approach in which the discrete representation of trusses and beams at the mi-
croscale is used to characterize the mechanical constitutive behavior at the macroscale.
Examples of such studies are those of Heyden [52] for cellulose fiber fluff, of Boisse et
al. [17] for textile and Mohr [86] for an ideal truss lattice. In the study of Stylianopou-
los and Barocas [113], a collagen network is represented by trusses and coupled to the
macroscale model via a computational homogenization scheme. These homogenization-
based approaches however are not very appropriate to study localized phenomena such
as failure.

An alternative multiscale methodology that takes discrete lattice defects into account
is to combine continuum models with lattice models. The lattice model is used in small
regions of interest around the defects, while continuum models - discretized using the
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finite element (FE) method - are used for the remaining domain. This combined ap-
proach is widely used for atomic crystals (for instance by Xiao and Belytschko [125] and
Fish et al. [38]) but it can only be used if the effective behavior of the lattice is ade-
quately captured in a continuum model. Capturing the continuum equivalent behavior
of the lattice however becomes more difficult as the amount of detail required in the
lattice description increases. This occurs for example if plasticity is included [86], if the
complexity of the lattice increases [27], or if beams are used instead of trusses, since such
models also involve rotational degrees of freedom [91]. Even general phenomena such
as an evolving microstructure due to fiber-reorientation can lead to complex continuum
models [96], while such phenomena are intrinsically included in the underlying lattice
models. Another substantial difficulty of a combined continuum-lattice model approach
is the coupling between both domains, which is far from trivial [125,38].

An approach proposed for crystals which combines the best of both, is the quasicon-
tinuum (QC) method [114,115]. In this method a number of representative atoms is
defined and the positions of the remaining atoms is interpolated between them. For
this purpose, the crystal is triangulated, where large interpolation triangles are used in
uniformly deforming regions and the triangle size is reduced to the atomic spacing near
features and events of interest. The equations which govern the remaining equilibrium
equations, i.e. those associated with the representative atoms, are constructed by ap-
proximating the contributions of large numbers of atoms to the energy of the system
via a so-called summation rule. The method exclusively relies on the lattice model and
does not require the definition of an accompanying continuum model. The triangular
interpolation regions are thus not traditional finite elements (for the discretization of a
continuum) but they only serve to interpolate the lattice discrete model. Furthermore,
no continuum-atomistic coupling procedure is required, since only the lattice model is
used. Different QC methods have been developed that all have their specific scope,
advantages and disadvantages [114,115,108,64,36]. Overviews are given by Miller and
Tadmor [83] and Curtin and Miller [27].

Although the QC method was originally proposed by Tadmor et al. [114] for atomic
crystals and applications such as nanoindentation [115] and intergranular fracture [82],
it offers appealing possibilities for structural lattice models incorporating trusses and
beams. As a first step towards complex structural lattice models, this chapter focuses
on the development of the QC method for truss networks. The considered truss net-
work can be regarded as a lattice model of a straightfoward discrete microstructure.
The existing QC methods based on atomic lattices are therefore revisited with a new
emphasis towards this truss network, which leads to a new QC method for these type
of lattice models that also solves certain disadvantages of the classical QC methods.

The newly proposed QC method has the advantage that, similar to the cluster QC
methods [64,36], no internal interface is introduced. As a result, the fully resolved
regions around lattice defects can remain small, thus limiting the global number of
unknowns. The proposed QC method is therefore computationally efficient. However,
unlike the existing approaches, no estimate of the total potential energy is made but
the exact total potential energy is recovered. Although the method has been developed
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for a lattice model containing simple trusses, it can be used for general lattices with
nearest neighbor interactions and, with some simple modifications, also for lattices with
next-nearest neighbor interactions such as atomic lattices.

This chapter aims to establish the basis for a QC method for lattice models of fibrous
and heterogeneous materials. In particular, we consider a two-dimensional, regular
linear elastic truss network, which acts as the discrete representation of a fictitious
microstructure. Three different loading situations are considered to investigate the ac-
curacy of the QC method in combination with this lattice model. Uniform deformation
is analyzed as a reference case, followed by bending as an example of a slowly fluctuating
deformation. Finally, a truly multiscale example of a defect in an otherwise uniformly
deforming lattice is modeled to investigate computational cost versus accuracy.

The outline of the chapter is as follows. In Section 4.2, the new QC method based on
the considered structural lattice model is introduced. In Section 4.3, results obtained
for three examples are compared to direct simulations of the full lattice model and a
semi-QC method without summation. Finally, conclusions are presented in Section 4.4.

4.2 A quasicontinuum approach for lattice models

4.2.1 Lattice model

Structural lattice models are widely used to describe material behavior of fibrous and
heterogeneous materials. Depending on characteristic properties of the discrete mi-
crostructures, trusses or beams (or both) are commonly used to model the discrete
interactions. Rotational springs or trusses can also be used to include a rotational stiff-
ness between discrete elements. Different discrete failure mechanisms may be included
as well, e.g. fiber breakage in fibrous materials or interfiber bond failure between dis-
crete particles in heterogeneous materials. Bond failure of fibrous materials may be
modeled by sliding of the discrete elements.

Within the wide scope of structural lattice models, this chapter aims to establish a
QC methodology for a relatively simple lattice model in order to show the potential of
the method for fibrous and heterogeneous materials. The considered reference lattice
model is a two-dimensional X-braced linear elastic truss network as shown in Fig. 4.1.
This simple lattice model can be regarded as the discrete representation of a fictitious
material. In it, each of the nodes, which are organized in a square pattern, is connected
by trusses to its immediate neighbors in the horizontal, vertical and diagonal sense. No
truss nodes are present at the crossings of (only) the diagonal trusses.

To determine the equilibrium state of the (loaded) network, we minimize its total po-
tential energy. Half of the potential energy of the truss between nodes i and j, Eij , is
assigned to node i and the other half to node j. The obtained nodal energy Ei can be
expressed as follows:
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Figure 4.1: Schematic representation of 9 unit cells (dark) of the considered two-dimensional,
regular linear elastic truss network. The dots are nodes of the truss network.
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2 (4.1)

where the index j refers to the neighboring truss nodes of node i, which form a subset Bi

of the index set N = {1, .., n} of the truss nodes of the lattice (Bi ⊆ N). The potential
energy Eij of a single truss element is expressed in terms of its stiffness kij and the truss
elongation ∆Lij . The fully non-linear elongation ∆Lij , which allows large rotations, is
used here and therefore the total potential energy is non-convex.

Now that the nodal energies of all truss nodes of the lattice have been established
according to Eq. (4.1), the internal potential energy Eint of the entire lattice can be
obtained by summing all nodal potential energies of the entire lattice:

Eint(u) =
n

∑

i=1

Ei. (4.2)

Eint is a function of the displacement vectors of all n truss nodes of the lattice. The
components of all displacement vectors are collected in a column matrix u with length
n d, where d equals the number of spatial dimensions of the lattice.

The total potential energy Etot can now be expressed as a function of the internal
potential energy Eint and the external forces fext:

Etot(u) = Eint(u) − fT
extu. (4.3)

The total potential energy can subsequently be minimized with respect to all degrees
of freedom (DOFs), which are the displacement components present in column u:
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min
u

Etot(u). (4.4)

The minimum of Etot can be determined using the classical variational principle, leading
to:

δEtot(u) = δuT f(u) = 0 ∀δu (4.5)

where f(u) represents the column with the conservative forces ∂Etot/∂u and has length
n d. It can be assembled from contributions fi by each node i according to

f(u) =

n
∑

i=1

fi(u) (4.6)

where

(fi)p =
∂Ei

∂up

. (4.7)

A standard Newton-Raphson procedure can be used to solve Eq. (4.5):

δuT

(

f(u∗) + K(u∗)du

)

= 0 ∀δu (4.8)

where u∗ are the displacement components of the previous iteration and du a correction
to these displacements computed in the present iteration. The overall stiffness matrix
is represented by K(u). Its elements are given by:

Kpq =
∂2Etot

∂up∂uq

=
n

∑

i=1

∂2Ei

∂up∂uq

(4.9)

where p and q run over all n d displacement components in the column u. It has size
n d×n d and is symmetric. It is again convenient to think of K consisting of contributions
Ki by each node, i.e.
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K =
n

∑

i=1

Ki (4.10)

where

(Ki)pq =
∂2Ei

∂up∂uq

(4.11)

After taking the essential boundary conditions and partioning the overall stiffness ma-
trix, the remaining part of the stiffness matrix necessary to solve the system must be
positive definite to obtain a locally stable configuration of the lattice.

A full lattice calculation is computationally inefficient for two reasons. First, it in-
cludes a large number of DOFs, which produces a large stiffness matrix - here with size
n d × n d. Solving the linear system in Eq. (4.8) becomes computationally expensive,
even if Cholesky decomposition or an iterative solution method is applied. The sec-
ond computational concern results from the fact that in order to construct the overall
stiffness matrix, all n truss nodes must be visited individually (see Eq. (4.9)).

4.2.2 Interpolation

The QC method (proposed by Tadmor et al. [114]) was developed to overcome both
of the above problems. First, interpolation is used to reduce the number of DOFs
of the model. For this purpose the lattice is triangulated as shown in Fig. 4.2. The
interpolation relates the displacement vectors of truss nodes within each triangle to the
displacement vectors of the three corner nodes of the triangle. Since in QC methods
the nodes of the triangles are placed on truss nodes and these truss nodes therefore
represent the displacements of the truss nodes surrounding them, they are referred
to as representative nodes or repnodes, in accordance with the term repatoms used
in existing QC methods for atomic crystals. The interpolation constrains truss nodes
within interpolation triangles and the displacements of the repnodes are the remaining
DOFs. So far only linear interpolation has been used in the QC methods, for which
nodes or atoms behave in an affine manner within the triangles.

In the QC method, the triangulation is done in such a way that the exact lattice model
is recovered in regions where small details need to be fully resolved, while in other
regions the lattice model is interpolated by coarsening the triangulation (see Fig. 4.2).
Regions require modelling with full accuracy if locally high strain gradients occur due
to missing truss nodes, failure of trusses, stiffer trusses or locally imposed deformation.
To ensure that the exact lattice model is captured in these fully resolved regions, all
truss nodes in fully resolved regions are repnodes (see Fig. 4.2).
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Figure 4.2: Schematic representation of a part of the two-dimensional X-braced truss lattice
and a superimposed triangulation. The size of the triangles is reduced around the
lattice defect so the exact lattice model is captured.

The set R containing the r repnodes is a subset of N (R ⊆ N). Since r ≪ n, the
solution space is drastically reduced by the interpolation and therefore the solution will
generally obtain a higher energy. The displacement components of all n truss nodes can
be expressed as a function of the displacement components of the r repnodes, stored in
column ur as follows:

u = Ψ ur (4.12)

where Ψ is the condensation matrix of size n d × r d, containing the values of the
interpolation functions evaluated in the nodal positions. Since now the total potential
energy only depends on the displacements of the repnodes, the minimization of the total
potential energy must be performed with respect to this reduced set of DOFs, i.e. the
minimization problem (4.4) is replaced by

min
ur

Etot(Ψur). (4.13)

This results in the following linearization instead of (4.8):

δuT
r

(

ΨT f(u∗) + ΨT K(u∗) Ψ dur

)

= 0 ∀δur. (4.14)

In Eq. (4.14) ΨT f can be identified as the condensed force column f c and ΨT K Ψ the
condensed stiffness matrix Kc. The condensed force column and stiffness matrix are of
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size r d×1 and r d×r d respectively and therefore considerably reduce the computational
solution effort.

The interpolation used here for lattices has some similarities with finite element (FE)
methodologies for continua, in which FEs are used to discretize a continuum. For this
reason characteristic features of conventional FE methods such as adaptivity can con-
veniently be adopted in QC methods. However, a substantial difference is that whereas
in continua we are dealing with continuous displacement fields and the interpolation
thus applies to every point in the domain, here the displacements of a discrete set of
points govern the system and the interpolation thus also applies to a finite number of
discrete points. Correspondingly, the energy of the system consists of a sum of pointwise
contributions, whereas in the FE method integrals need to be evaluated.

Although the solution space is reduced at this stage, the assembly of the condensed
force column and the condensed stiffness matrix remains a computationally expensive
procedure, since all n truss nodes must be visited for it:

f c(ur) =

n
∑

i=1

ΨT fi, (4.15)

Kc(ur) =

n
∑

i=1

ΨT Ki Ψ. (4.16)

Note that the nodal energy Ei, and thus the force column fi and the stiffness matrix
Ki in Eq. (4.15) & (4.16), only depend on the displacements of truss node i and its
neighbors, which results in a large amount of zeros in the force column and stiffness
matrix. Consequently, only a part of the condensation matrix Ψ is used for the matrix
multiplications in Eq. (4.15) & (4.16), allowing one to exploit the sparsity of the matrices
in the numerical implementation of the method.

4.2.3 Summation

Although the number of DOFs and thus the size of stiffness matrix and right hand
side is substantially reduced by the interpolation, still all n truss nodes of the lattice
must be visited to assemble the force column and the stiffness matrix (see Eq. (4.15) &
(4.16)). To overcome this expensive assembly the QC method uses only a small number
of s truss nodes to approximate the total internal potential energy, and thus the force
column and the stiffness matrix, instead of determining them via Eq. (4.15) & (4.16).
This operation has some similarity with the use of integration points to numerically
integrate the stiffness matrix in the FE method. Here, however, we are dealing with
a sum of discrete contributions, which are associated with discrete points in space.
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Consequently, the rules used to construct approximations for this sum are referred to
as summation rules.

The truss nodes selected to sample the nodal energies of their surrounding truss nodes,
are referred to here as sampling nodes. They are gathered in index set S ⊆ N . Sampling
nodes may coincide with the repnodes, as for instance in the node-based QC framework
of Knap and Ortiz [64] in which the two sets are identical (S = R).

The number of surrounding nodes that are represented by one sampling node must
be carefully determined and constitutes the weight factor of the corresponding nodal
energy. The assembly procedures of Eq. (4.15) & (4.16) can now be rewritten as follows
to obtain the condensed force column and stiffness matrix:

f c,s(ur) =
∑

i∈S

wi ΨT fi, (4.17)

Kc,s(ur) =
∑

i∈S

wi ΨT Ki Ψ (4.18)

where the nodal energy of sampling node i is used to approximate the nodal energies of
wi nodes. The sizes of fi, Ki and Ψ remain n d× 1, n d× n d and n d× r d respectively.
To ensure that the computational burden is reduced, the number of sampling nodes
must be substantially smaller than the total number of nodes, i.e. s << n.

The question arises which sampling nodes must be selected to establish an accurate
estimate of the total potential energy (and thus the condensed force column and stiffness
matrix). It is important that the selection of sampling nodes is in accordance with the
triangulation. If the selection is poorly done an incorrect solution or even zero-energy
modes may occur, as is shown in [64]. Different QC methods can be distinguished based
on different selection procedures (summation rules): the local-nonlocal QC method, the
node-based QC variant and its generalization, the cluster QC method.

The local-nonlocal QC method is characterized by a different energy evaluation of the
sampling atoms for the interpolated domain and the fully resolved domain. In the
QC methods of Tadmor et al. [114], Miller et al. [82] and Shenoy et al. [108] and
Shimokawa et al. [109] all repatoms are selected as sampling atoms but the computa-
tion of the sampling atoms in the fully resolved region is nonlocal while it is local in
the interpolated domain. In the fully resolved domain all atoms are repatoms and all
repatoms are sampling atoms to ensure the accuracy of the exact lattice model. This
part of the domain is called nonlocal because (atomic) interactions at finite distances
are fully preserved.

In the interpolated region, the repatoms are selected as sampling atoms as well. How-
ever, the site-energies of these sampling atoms are determined as if the atoms were
embedded in an infinitely large, perfect crystal. This is referred to as local QC, since
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the computation of sampling atoms is local, and is equivalent with homogenization
towards a continuum according to the Cauchy-Born rule. The corresponding weight
factor wi equals the number of atoms in the considered triangle and can be determined
in various ways [108].

A major disadvantage of this summation rule is that an internal interface occurs between
the fully resolved (nonlocal) regions and the interpolated (local) regions. This is caused
by the fact that in the local QC method separation of scales cannot be guaranteed close
to the fully resolved regions. As a consequence, non-physical forces (ghost forces) occur
at the interface. The interface must therefore be located relatively far away from the
phenomena (e.g. defects) in which one is interested. This leads to large fully resolved
regions, i.e. a large number of repatoms and sampling atoms, and thus to a relatively
large computational burden. Corrective procedures have been formulated to deal with
the internal interface [108,109], but they are not without disadvantages. Corrective
forces at the interface are for instance modeled as dead loads and they are therefore
assumed not to change [108].

The QC method of Knap and Ortiz [64] has the major advantage above the local-
nonlocal QC method that an internal interface between the interpolated and fully re-
solved region does not occur. For this reason small fully resolved regions are in principle
sufficient and thus the number of repatoms can remain small. The reason that no in-
terface occurs is that the method uses the same sampling point (atom) computation for
both domains and it does not use local computation of sampling atoms but merely non-
local computation. If the repatoms are selected as sampling atoms, i.e. the node-based
approach, this is dual to a Newton-Cotes integration scheme for continuum-based FE
methods.

An important disadvantage of the node-based approach is that it may lead to zero-
energy modes [64]. As a remedy for zero-energy modes, the use of clusters of sampling
atoms around the repatoms has been suggested [64,36]. To retrieve the exact lattice
model in fully refined domains, these clusters need to be truncated if they overlap.

A disadvantage of the cluster approach is the fact that the total potential energy is
poorly estimated for any given cluster radius, as shown by Luskin and Ortner [76].
Moreover, the large number of sampling atoms and elaborate bookkeeping costs, par-
tially caused by checks to determine if the clusters overlap, make the cluster QC method
more inefficient than the local-nonlocal QC approach [83,27].

Even though the cluster QC method gives an inaccurate estimate of the total potential
energy, it demonstrates that, in order to avoid an internal interface, one single selection
procedure for the interpolated and the fully resolved domain is needed whereby the
site-energy of all sampling atoms is computed nonlocally (i.e. the Cauchy-Born rule is
not applied).
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4.2.4 Novel summation rule

In order to formulate a summation rule (i.e. a rule governing selection and weight factor
of sampling points) that satisfies the above conditions and nevertheless provides an
accurate estimate, we first return to the interpolated system without summation (see
Fig. 4.3). This means that all truss nodes are visited, i.e. S = N , resulting in the exact
potential energy of the interpolated system according to Eq. (4.16). We will refer to
this (expensive) method of constructing the reduced equations as the semi-QC method
below.

Since linear interpolation is used for the displacement vectors of the truss nodes within
a triangle and since the nodal energies of the truss nodes only depend on their own
displacements and the displacements of their nearest neighbors, the nodal energies of
all truss nodes within a triangle are equal to each other if their nearest neighbors are
located in the same triangle. An example of this is shown in Fig. 4.3, in which the
neighboring truss nodes of truss node i are located in the same triangle as truss node
i. Since the neighboring truss nodes of truss node i + 1 are also located in the same
triangle (see Fig. 4.3), the trusses associated with these nodes are deformed identically
and their nodal energies are equal to each other. Note that, in terms of Eq (4.6) and
(4.10) this also implies that fi = fi+1 and Ki = Ki+1. On the other hand, the nodal
energy of truss node j does not have to be equal to that of truss nodes i and i + 1 since
one of the neighbors of truss node j is located in another triangle than j and therefore
the nodal energy of truss node j also depends on the deformation of the neighboring
triangle.

i

j

i+1

Figure 4.3: Schematic representation of a part of a two-dimensional regular truss network with
a superimposed triangulation. The neighboring truss nodes of truss nodes i and
j are visible as open circles. The bold neighboring truss node of truss node j
indicates that it is located in a different triangle than truss node j.

In interpolated regions with large triangles, the majority of nodes have their neighbors
in the same triangle. The energies of these nodes, which are all equal, may be poorly
represented by the repnodes or clusters around them, as proposed in the cluster QC
method [64,36]. For this reason, the cluster QC method gives an inaccurate estimate
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of the potential energy. Even if the cluster radius is large enough so that every node is
used in the summation (S = N) and the improved method of Eidel and Stukowski [36]
is used, the cluster summation rule determines the weight factors (wi in Eq. (4.17) &
(4.18)) in such a way that the exact internal potential energy is not found (see also the
study of Luskin and Ortner [76]).

Instead of sampling the energy at (or near) the repnodes, the above observations sug-
gest a focus on the central regions of each triangle, where the nodal energy is constant,
and therefore also the contributions fi and Ki to the linearized equilibrium equations.
According to the aforementioned analysis of the semi-QC approach, in which only in-
terpolation is performed (S = N), the total potential energy is not affected if only truss
nodes with all their neighbors in the same triangle are summed. Therefore the new QC
method uses only one of these nodes for sampling, i.e. only one of them is included in S
and its corresponding weight factor wi is set equal to the number of truss nodes within
the triangle that have no neighbors in other triangles.

In practice we use the first node encountered which has all of its neighbors in the triangle.
It is emphasized that this is an arbitrary choice and any other choice among the internal
nodes would also give an exact result. An exact summation is obtained if all other truss
nodes, that have one or more neighbors in another triangle, are taken into account
individually. They can also be regarded as sampling nodes (i.e. they also belong to S),
with a weight factor equal to one (wi = 1) since they ’estimate’ only their own energy.
We refer to these nodes as discretely modeled nodes. Because in this summation rule
only truss nodes are eliminated that have the same energy as the corresponding sampling
node, whereas all the nodes that have a potentially unique energy are individually
taken into account, no summation error is introduced. The computed potential energy
therefore equals the exact potential energy of the interpolated system and the condensed,
summed force column and stiffness matrix in Eq. (4.17) & (4.18) equal the condensed
force column and stiffness matrix in Eq. (4.15) & (4.16).

The proposed summation rule naturally avoids the introduction of an internal interface,
since all (internal and discretely modeled) sampling nodes are computed nonlocally.
This ensures that the discretely modeled sampling nodes interact with their actual
neighbors in the adjacent triangles. For these nodes, it is important to emphasize that
not only trusses crossing triangle edges are modeled but all trusses must be taken into
account to correctly establish their nodal energy according to Eq. (4.1).

As a result of the summation rule, bands of discretely modeled sampling nodes are
obtained along edges of the interpolation triangles, while truss nodes inside the triangles
are eliminated all but one, as can be seen in Fig. 4.4. In small triangles, most notably
in fully resolved regions, all truss nodes may have one or more neighboring truss nodes
in other triangles and they are therefore all discretely modeled (see Fig. 4.4). A smooth
transition is achieved in this way towards fully resolved regions (where the exact lattice
model is necessary) whereby the summation rule automatically uses fewer sampling
nodes if fewer truss nodes become available in triangles with decreasing dimensions - cf.
the shrinking of clusters in the cluster QC approach.
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The bands of discretely sampled truss nodes along edges as shown in Fig. 4.4 imply
that still a relatively large number of truss nodes must be visited compared to e.g. the
local QC method. For lattices with next-nearest neighbor interactions, such as atomic
lattices or three dimensional lattices, these bands become wider and the computational
efficiency may be too low. In follow-up work, we propose solutions to this concern,
by no longer requiring that the estimate potential energy is exact, but accepting some
error. However, for two-dimensional structural lattice models with only nearest neighbor
interactions such as the example considered in this chapter, the computational cost of
the exact method remains acceptable as will be shown in Section 4.3.

Figure 4.4: Sketch of the novel summation rule applied to a truss network. For clarity only
the truss nodes are shown. Open circles represent truss nodes whose contributions
are replaced by those of the internal sampling nodes (solid). Crosses represent
discretely modeled nodes (for which wi = 1).

4.2.5 Algorithm

The proposed summation rule does not result in an internal interface, which leads to
a simple and efficient algorithm. The algorithm for the new QC method is presented
in Table 4.1. The new summation, and thus the algorithm, is triangle-based and sep-
arately deals with each triangle. Therefore, the algorithm is relatively straightforward
to implement and it can be parallelized with some minor adaptations to increase its
efficiency.

The essential step of the summation rule is the second step in Table 4.1, in which
the location of the neighbors of every truss node of the lattice is used to determine
whether it is selected as a sampling node and thus belongs to S. First the truss nodes
of a particular triangle are selected in an efficient manner, for which the interpolation
functions are evaluated at the lattice positions. It is advantageous to use the evaluated
interpolation functions for this decision because they are also necessary in the fourth
step of the algorithm. At this point all truss nodes of the considered triangle are known
and by a simple count if a truss node has eight neighbors in this triangle it can be
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decided if the truss node must be selected as discretely modeled node and therefore
must be assigned to set S with wi = 1. Otherwise, the truss node is summed and one of
the internal truss nodes is selected as sampling node with a corresponding weight factor
that equals the number of summed truss nodes. After all truss nodes of the lattice
model have been processed, the set S of sampling nodes is established.

To correctly determine the nodal energy of all sampling nodes in a nonlocal manner, all
neighboring nodes of all sampling nodes must be available for the nonlocal computation
of the sampling nodes’ site-energies. Therefore, in the third step of the algorithm the
neighbors that are not in S are recovered.

In the fourth step the evaluated interpolation functions are assembled to one matrix Ψ

that is used to condense the summed force column and stiffness matrix (see Eq. (4.17)
& (4.18)) in the Newton-Raphson procedure of the fifth step.

Table 4.1: Algorithm of the proposed QC method.

1. Incorporate boundary conditions in ur and fext

2. Determine sampling nodes per triangle based on the location of neighbors

⊲ for every triangle t

- produce truss nodes in a rectangle circumscribing triangle t

- evaluate interpolation functions at the locations of all truss nodes

- use interpolation function evaluations to decide which truss nodes belong to triangle t

⊲ for every truss node i in triangle t

- determine number of neighbors of truss node i in triangle t

⊲ if number of neighbors in triangle t < 8 → select truss node i as discretely modeled sampling node (wi = 1)

⊲ else → sum truss node by adding 1 to the weight factor of triangle t

⊲ if no internal sampling node in triangle t is selected yet → select truss node i as internal sampling node

3. Recover missing neighbors of all sampling nodes with corresponding evaluated interpolation functions

4. Assemble condensation matrix Ψ with evaluated interpolation functions of sampling nodes and neighbors

5. Use Newton-Raphson procedure

⊲ for each increment until residual meets tolerance

- Assemble condensed, summed force column f
c,s and stiffness matrix K

c,s

- Partition f
c,s and K

c,s, solve system and update solution according to Eq. (4.14)

4.3 Performance study

In this section, the proposed QC method is applied to three different loading situations
in order to assess its performance. First uniform tension is considered, by way of a
patch test. This test demonstrates the accuracy of the calculated weight factors of the
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sampling truss nodes (see Fig. 4.5a). Bending is the second considered deformation
mode because it imposes gradual nonuniform deformation which triggers trusses that
cross triangle edges to behave differently than trusses within triangles (Fig. 4.5b). A
case including a lattice defect is used to assess the accuracy of the proposed QC method
for microscale lattice defects in a large-scale model (Fig. 4.5c). Finally, the impact of the
scale/size of the problem domain on the efficiency is examined by successively increasing
the model size while keeping the defect constant.

A lattice model consisting of 70 by 50 unit cells (Fig. 4.1) in horizontal and vertical
direction respectively is used as a reference model. The stiffnesses of the horizontal
and vertical trusses are equal and the stiffness of the diagonal trusses equals a factor
1/
√

2 times that of the horizontal and vertical trusses. The trusses along the four
outer boundaries are given half the usual stiffness to ensure that a state of uniform
deformation is recovered for uniform tension. The results are compared to the direct
lattice simulation and to the semi-QC method, which gives the best achievable result
for a given triangulation.

Figure 4.5: The three numerical test cases: a. uniform tension, b. bending, c. uniform tension
with a missing truss in horizontal direction.

4.3.1 Uniform tension

Uniform deformation is simulated for six triangulations as presented in Fig. 4.6 by
applying 0.5% strain in horizontal direction to the right edge of the model. The model
is free to contract in vertical direction. In the direct simulation (not shown) a perfectly
uniform deformation is obtained and the site-energies of all nodes in the interior of the
model are therefore equal. The linear interpolation used in the QC method should be
perfectly capable of capturing uniform deformation and should therefore not introduce
any error. In Fig. 4.6, it can be clearly seen that for large triangles the new summation
rule leads to a relatively large reduction of the number of sampling nodes compared to
small triangles, since in small triangles relatively many truss nodes have one or more
neighbors in an adjacent triangle and are therefore selected as (discretely modeled)
sampling nodes.

The total internal energies for uniform deformation are presented in the left graph
of Fig. 4.7. The results for the proposed QC method equal the results of the direct
simulation and the semi-QC result for all triangulations. This indicates that all weight
factors are correctly determined in the new QC method, consistently with the selected
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Figure 4.6: A coarse, intermediate and fine triangulation are shown from top to bottom, with
average triangle sizes of 250, 49 and 12 unit cells respectively. On the left the
semi-QC variant with solely interpolation is depicted (no summation) while on
the right the new summation rule is applied. The full circles indicate internal
sampling nodes that represent all other truss nodes in a triangle which have their
neighbors in the same triangle. The blue crosses represent discretely modeled
nodes.
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Figure 4.7: (Left) Computed energy in case of uniform deformation normalized by the energy
of the direct simulation for different average triangle sizes in terms of unit cells.
(Right) Bending energy normalized by the energy of the direct simulation for
different average triangle sizes. Black bars: semi-QC method; white bars: the
novel QC method.

sampling nodes. Although it may seem trivial that the exact result is obtained in this
patch test, not all existing QC methods pass this test.

4.3.2 Bending

The same lattice and triangulations are used for bending, where the applied strain in
horizontal direction increases linearly from -0.5% at the bottom to 0.5% at the top of
the truss network. Comparing the total internal energies of the proposed QC method
and the exact lattice model in the right graph in Fig. 4.7, it is clear that the coarse
triangulation is not fine enough to predict the bending energy of the direct lattice sim-
ulation, which is expected for a linear interpolation - cf. the poor performance of linear
finite elements in bending. For the finer triangulations the total internal energies of
the proposed QC method tend towards the full lattice result, i.e. towards E/Eds = 1,
but the exact internal energy is not reached. However, the energy computed by the
proposed QC method does equal that of the semi-QC method, indicating that the sum-
mation remains optimal in the proposed QC method. The correct summation implies
that not only intra-triangular interactions, i.e. the weight factors and corresponding
sampling nodes, are exact but also inter-triangular interactions are adequately resolved.

4.3.3 Single lattice defect

To investigate the multiscale character of the QC method, an example with a horizontal
lattice defect is studied. The same 70 by 50 unit cell lattice model is used, subjected to
a uniform deformation at the boundary as in the patch test of Section 4.3.1. However,
a horizontal lattice defect has been introduced by removing the right horizontal truss
of the center truss node, as shown in Fig. 4.5.
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Six different triangulations as shown in Fig. 4.8 are used to investigate the influence
of the defect and the capability of the QC method to resolved it. Triangulations a
to e in Fig. 4.8 have fully resolved regions of 2 × 2, 4 × 4, 6 × 6, 8 × 8 and 10 × 10
lattice distances respectively. The triangle size in the interpolated region doubles with
every ring of triangles away from the fully resolved region. Triangulation f has a fully
resolved region of 4 × 4 lattice distances, like triangulation b, but the triangle size in
the interpolated region doubles only after every second triangle.

Figure 4.8: Six different triangulations to investigate the influence of the lattice defect. Full
circles represent internal sampling nodes that represent all other truss nodes within
one triangle that have all neighbors inside that triangle and crosses symbolize
discretely modeled nodes.



70 A QC method for discrete microstructural models

In the left graph of Fig. 4.9 the number of repnodes and sampling nodes relative to the
3621 truss nodes of the complete lattice are shown for each triangulation. The relative
number of repnodes is smaller than 5% for all triangulations but the relative number of
sampling nodes reaches almost 70% for triangulation f . The reason for the large number
of sampling nodes is that a small model is considered here; for large models the relative
number of sampling nodes is substantially smaller (see Section 4.3.4). The difference
in number of repnodes and sampling nodes between triangulation a and b is relatively
large compared to the differences between triangulations b and c, c and d and d and
e. This is due to the degree of refinement of the triangles in the interpolated region,
which is clearly less complex for triangulation a compared to triangulations b to e. The
number of sampling nodes for triangulations b to e increases similarly as the number
of repnodes. This is caused by the fact that only the fully resolved region is enlarged
while the refinement of the interpolated region remains almost the same (i.e. every extra
repnode is also a sampling node). Comparing triangulation b to triangulation f , it is
clear that the number of sampling nodes is substantially larger for triangulation f while
the increase of the number of repnodes is small. The reason for this is the fact that the
fully resolved regions are similar but the interpolated region of triangulation f is more
refined. Therefore more additional sampling nodes are created than repnodes.
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Figure 4.9: (Left) Black bars: the relative number of repnodes for the six triangulations; white
bars: the relative number of sampling nodes. (Right) The maximum error of the
relative displacements of the two truss nodes where the lattice defect is introduced.

Instead of focussing on the total internal energies - which hardly differ due to the
presence of only one lattice defect - it is more interesting to establish if the proposed
QC method predicts the displacements in the region around the lattice defect correctly.
The horizontal components of the displacement vectors of the truss nodes clearly show
the fluctuation field caused by the defect, particularly if the displacements of the perfect
lattice are first subtracted according to:

urel
x (~xi) = ux(~xi) − Exx xi (4.19)
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where the relative horizontal component of the displacement vector is denoted by urel
x

and Exx is the applied overall strain in x-direction.

For triangulation c the relative horizontal displacements around the lattice defect as
computed with the proposed QC method are presented in Fig. 4.10. The defect causes
two peaks at the two ends of the missing truss. Only the displacements in regions to the
left and right of the lattice defect are influenced significantly while in the regions above
and below the defect the relative displacement needs only a couple of lattice spacings
to decay to zero.
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Figure 4.10: The relative horizontal displacements of the truss nodes, urel
x , for triangulation

c around the horizontal lattice defect as a function of the lattice distance in
horizontal direction and vertical direction, denoted by LDx and LDy respectively.

The results of the proposed QC method are only compared to those of the direct lattice
simulation since it is now clear that also for true multiscale models the results of the
proposed QC method equal those of the semi-QC approach (not shown here). The
maximum error of the fluctuation field of Fig. 4.10 of the two truss nodes where the
peaks occur is considered for this comparison. It is normalized by the maximum relative
displacement in the direct simulation. Note that the defined error is a sensitive error
measure since the normalization involves the displacements relative to the uniformly
deforming lattice.

The maximum errors for the six triangulations are shown in the right graph of Fig. 4.9.
The error of triangulation a is large since the missing truss is located at the edge of the
interpolated region due to the fully resolved region of only 2× 2 lattice spacings. If the
distance between the lattice defect and the interpolated region is increased, the error
is substantially reduced. For triangulation b, which has a fully resolved region of 4 × 4
lattice spacings, the relative error is reduced by a factor of ten. If the fully resolved
region is further increased, the relative error decreases as well but by a smaller factor.
For triangulation c, which has a fully resolved region of 6× 6 lattice spacings, the error
is less than 1%, indicating that the proposed QC method gives an accurate result for a
rather small fully resolved region.
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Comparing triangulation b and triangulation f , it is visible in the right graph of Fig. 4.9
that a more refined interpolated region - as in triangulation f - only leads to a marginal
reduction in the error. Since the number of repnodes and the number of sampling nodes
increases substantially, it is more efficient to increase the size of the fully resolved region
in order to reduce the error. Note, however, that this analysis is performed for uniform
deformation while other loading situations might require a refined interpolated region
instead of a larger fully resolved domain.

4.3.4 Influence of model size

The computational burden of the six models in Fig. 4.8 is substantially reduced by the
QC method compared to the direct lattice calculation. Especially the number of DOFs
(displacement components of the repnodes) is reduced, while the obtained solution is
almost identical to the direct lattice calculation. To ensure that the summation is exact,
the number of selected sampling nodes remains rather high in the problem studied above
(see the left diagram in Fig. 4.9). However, for larger (physically relevant) models the
number of sampling nodes is also reduced since in larger problems the interpolated
regions comprise a relatively large part of the domain. This is illustrated in Fig. 4.11,
in which the size of the model has been increased while keeping the lattice spacing and
defect size constant. This implies that the scale separation between the lattice and
model is increased. The four triangulations shown have fully resolved regions of 6 × 6
lattice spacings and different sizes of interpolated regions around them. As can be seen
in the graph in Fig. 4.11 the number of repnodes and sampling nodes relative to the
total number of truss nodes decreases for an increasing problem size and the efficiency
of the QC method thus improves for larger scale-separations between the fully resolved
regions of interest and the complete model.

4.4 Conclusion

The quasicontinuum (QC) method has so far only been used to reduce the computa-
tional cost of atomistic simulations [114,115,108,64,36,83,82,109]. In this chapter it is
demonstrated that QC approaches also have a potential for structural lattice models
containing discrete elements such as trusses and beams. The high accuracy of the QC
method proposed for structural lattice models has been illustrated in this chapter by
comparing the QC results to those of direct lattice calculations for a regular truss net-
work. Furthermore, the large reduction of the number of degrees of freedom, achieved
by interpolation, and the fact that only a selective part of the truss nodes of the lat-
tice model, so-called sampling nodes, has to be visited to construct the total internal
potential energy, ensure that the QC method is markedly more efficient than direct
simulations.

The main reasons that a QC type method is attractive for structural lattice models
based on fibrous and heterogeneous materials are twofold. First, only a simple lattice
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Figure 4.11: (Top) Four triangulations with fully resolved regions of 6 × 6 lattice spacings
and average triangle sizes of 70, 245, 869 and 2,976 unit cells. Every consecutive
triangulation has an extra ring of triangles in the interpolated domain. (Bottom)
Black bars: the relative number of repnodes for the four triangulations; white
bars: the relative number of sampling nodes.

model is needed in a QC approach. The method operates directly on this discrete
model and no equivalent continuum model is required. This is an advantage because
phenomena such as large rotations, re-orientation, anisotropy, bond fracture, sliding of
nodes and fracture of the discrete elements are difficult to capture in continuum models.

Second, if a fully resolved domain must be incorporated to investigate local events, no
special coupling between the interpolated (continuum) domain and the fully resolved
(discrete) domain is necessary. This is an advantage since such a coupling often invokes
additional assumptions. Most QC methods use a coupling procedure to avoid interface
problems between both domains but in this chapter a QC variant is proposed that does
not require such a coupling.

The QC method proposed here for structural lattices is the only QC method that
determines the potential energy exactly while avoiding an internal interface between
the interpolated and fully resolved domain. It is based on a clear understanding of
how the total potential energy depends on the interpolation and how this should be
reflected in the summation. This means that no summation error is introduced and the
only occurring error is due to the interpolation.

The QC method has been evaluated for a relatively simple truss network which has a
single lattice defect. For a relatively small fully resolved region (and thus a high com-
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putational efficiency) errors of less than 1% compared with the direct simulation have
been observed. The same accuracy can be expected in case the damage progresses by
subsequent removal of trusses. However, in this case the interpolation must be modified
adaptively to ensure that the failure of trusses always takes place well within the fully
resolved domain and the selection of sampling nodes must be updated accordingly. The
damage progression is than completely dependent on the lattice model and independent
on the triangulation since the triangle size in the fully resolved region is fixed to the
lattice spacing and no failure of trusses occurs in the interpolated domain. The fact
that the triangle size used in the interpolation has a natural minimum (corresponding to
the fully resolved case) ensures that no pathological localization and mesh dependency
occur upon refinement of the interpolation. In the limit of a fully resolved lattice model,
the width of the process zone is set by the (physical) discrete lattice spacing.

Although the examples treated here are two-dimensional, the extension of the QC
methodology to three-dimensional lattice models is straightforward. However, a concern
may be that the computational efficiency of the summation rule used here is reduced.
The reason for this is that tetrahedra contain relatively more nodes that have one or
more neighbors in another tetrahedron, which are all taken into account discretely, than
triangles. This is even more of a concern if lattice models with next-to-nearest neighbor
interactions are considered, such as atomistic models. Modifications of the summation
rule which deal with this issue will be discussed in a forthcoming publication.

Further research will also focus on applying the QC method to beam lattices, which
contain next to translational degrees of freedom also rotational degrees of freedom. This
combination of displacements and rotations may require a more advanced interpolation,
akin to shell formulations in the finite element method, which preserves consistency of
the two sets of degrees of freedom. Interestingly, such an approach would lead to an
enriched quasicontinuum on a natural discrete basis, and would allow us to make contact
with Cosserat-type of continuum formulations [21].



Chapter five

Central summation in the quasicontinuum

method1

Abstract

The quasicontinuum (QC) method [Tadmor, E.B., Phillips, R., Ortiz, M., 1996, Mixed
atomistics and continuum models of deformation in solids, Langmuir, Vol. 12, 4529-
4534] is a multiscale methodology to reduce the computational cost of atomistic lattice
simulations. The method ensures an accurate incorporation of small-scale atomistic
effects in large-scale models. It essentially consists of an interpolation of displacements
of large numbers of atoms between representative atoms (repatoms) and an estimation
of the potential energy of the atomistic lattice by a so-called summation rule. In this
chapter, a novel energy-based summation rule is presented for the QC method that
allows for a seamless coupling between coarse domains and fully resolved domains. In
the presented summation rule only the repatoms are used, in combination with one extra
sampling atom in the center of each interpolation triangle. The presented summation
rule is therefore straightforward and computationally efficient. The performance of
the proposed summation rule is evaluated for a number of two-dimensional and three-
dimensional multiscale atomistic test cases in which a vacancy is considered. The results
correspond well with those of direct simulations.

1 Reproduced from: L.A.A. Beex, R.H.J. Peerlings, M.G.D. Geers, Central summation in the qua-
sicontinuum method, Submitted to the Journal of the Mechanics and Physics of Solids.

75



76 Central summation in the QC method

5.1 Introduction

The quasicontinuum (QC) method [114,115] is a multiscale approach that reduces the
computational cost of atomistic lattice computations. The QC method directly takes
atomistic effects into account in large-scale models. In different studies the methodology
has been used to investigate vacancies [40,109], dislocations [49,114], cracks [82], grain
boundaries [82,109], nanovoids [77] and carbon nanotubes [95]. A substantial part of
the QC studies has focused on nanonindentation [36,84,64,65,69,97,108,115,116]. Fur-
thermore, extensions of the method have been developed to deal with phase transforma-
tions [33], density functional theory [40,49], finite temperatures [68,78] and long-range
interatomic interactions [127]. Although the QC method was so far mainly used for
atomistic lattice models, it may also be extended to structural lattice models employing
trusses or beams, as shown by Beex et al. [9].

The QC method uses two approximations to reduce the computational cost of full
atomistic computations. First, only a small number of atoms (repatoms) is selected
to represent the displacements of all atoms in the lattice. The repatoms constrain the
displacements of the atoms in between them by means of interpolation. The displace-
ment components of the repatoms are the only remaining degrees of freedom (DOFs) of
the interpolated atomistic lattice. In regions where the local deformations are small, it
suffices to select repatoms far away from each other. In fully resolved regions however,
every atom constitutes a repatom so that the exact atomistic model is recovered in these
regions of interest.

The second approximation introduced in the QC method is the selection of only a
small number of atoms (to which we will refer as sampling atoms) to estimate the total
potential energy of the lattice, by a so-called summation rule, instead of visiting all
atoms of the crystal to compute it exactly. The sampling atoms are used to sample
the site-energies of the atoms in their vicinity. To ensure an accurate estimation of the
total potential energy, it is important that the selection of sampling atoms is carefully
performed with respect to the interpolation triangulation. If this is not the case, zero-
energy modes may for instance occur [64].

Based on the type of summation rule, two general classes of QC methodologies can be
distinguished. In the local-nonlocal QC method [82,108,114,115] the site-energies of the
sampling atoms in the interpolated domain are locally computed using the Cauchy-Born
rule and the site-energies of the sampling atoms in fully resolved domains are computed
in a nonlocal manner. This leads to an internal interface between both domains at which
an error is introduced due to so-called ghost-forces. To ensure that the ghost-forces at
the interface have no significant influence at the solution in the center of the region of
interest, the fully resolved region must be relatively large. As a result, the interface
is located relatively far away from the center of the region of interest. This increases
the computational cost. Corrective procedures have been developed [108,109], but they
come with additional assumptions and therefore only allow a slight decrease of the fully
resolved regions.
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The second class of summation rules is based on the cluster summation rule [36,64]
and treats the coarse domain and the fully resolved region similarly. For this reason
no internal interface occurs and both domains can thus be seamlessly coupled to each
other. Luskin and Ortner [76] however, have shown that even for large clusters this
summation rule gives a poor estimate of the potential energy. Reviews of different QC
methods and related multiscale methods are presented in [83,85] and [27].

In addition to the above two established classes, new summation rules have recently
been proposed. In [43] and [127], the selection of sampling atoms is based on numerical
quadrature as used in the finite element (FE) method. The atoms located at (or nearby)
the Gauss points are selected as sampling atoms. The obtained results are more accurate
than those obtained with the cluster QC variant for a one-dimensional chain of atoms.
This summation rule has so far only been applied one dimension. The one-dimensional
quadrature-type summation rule has recently been compared to the nodal variant of
the cluster summation rule [57].

In the previous chapter, an exact summation rule is proposed for structural lattice
models in which only nearest neighbor interactions exist. It is based on the proper un-
derstanding of how the potential energy is related to the triangulation. As a result, the
computed total potential energy is not an estimate, but exact for the given interpola-
tion. Consequently, the remaining error is only due to the interpolation itself. However,
if this summation rule is applied to atomistic crystals, the number of sampling atoms
becomes prohibitively large, so that the method becomes computationally inefficient.

The aim of this chapter is to develop a new summation rule, inspired by the one in
the previous chapter, for two-dimensional and three-dimensional atomistic crystals. It
ensures a seamless coupling between coarse domains and fully resolved domains as a
result of the nonlocal site-energy computation of the sampling atoms in coarse domains,
as well as in fully resolved domains. The absence of an internal interface increases the
computational efficiency, because no updating of interface corrections is necessary if
fully resolved regions are adapted or moved through the coarse domain. This leads to
a simple and unified multiscale QC approach, like the cluster QC method. However,
since it is based on the exact recovery of the potential energy, in contrast to the cluster
summation rule, a better estimate of the potential energy is obtained.

The computational cost of the energy-based summation rule is low, because it selects
the repatoms as sampling atoms, plus one sampling atom in the center of each triangle
(or tetrahedron) of the interpolation. The repatoms only sample themselves (i.e. have
a weight factor of one), so that in the fully resolved region the exact atomistic model
is recovered. One sampling atom near the center of each interpolation triangle (or
tetrahedron for three-dimensional crystals) is used to sample the remaining atoms. Since
the focus of the summation rule is on the center of the triangles and tetrahedra, we refer
to the new summation rule as the central summation rule.

The outline of this chapter is as follows. In Section 5.2, the QC method is briefly
reviewed and in Section 5.3 the existing summation rules are explained in somewhat
more detail. In Section 5.4, the exact relation between the total potential energy and
the interpolation triangulation is discussed. In Section 5.5, the central summation rule



78 Central summation in the QC method

is derived. The algorithm for the central summation rule in which the sampling atoms
are selected is considered in Section 5.6. The results of the central summation rule are
discussed in Section 5.7 for a two-dimensional atomistic lattice and a three-dimensional
atomistic lattice. Furthermore, a comparison is made with the results of the cluster
QC method [64], as improved by Eidel and Stukowski [36], for the two-dimensional
atomistic lattice. In all numerical tests, the solution near a vacancy at the center of the
fully resolved domain is investigated and compared. Finally, conclusions are presented
in Section 5.8.

5.2 The quasicontinuum method

The descriptions of the direct atomistic lattice computations and quasicontinuum lattice
computations in this section are formulated in terms of potential energy and minimiza-
tion thereof. The central summation rule formulated below is energy-based, as for
instance those in [36,9]. For force-based formulations, the study of Knap and Ortiz [64]
may form a starting point.

Atomistic computations are often based on the minimization of the lattice’s potential
energy. The total potential energy is the sum of the internal and external potential
energy, where the internal potential energy is assumed to be the sum of the site-energies
of all atoms of the lattice:

Etot(u) =

n
∑

i=1

Ei(u) − fT
extu, (5.1)

in which the total potential energy is denoted by Etot and the site-energy of atom i by
Ei. The n atoms of the lattice are stored in index set N = {1, .., n}. The external
potential energy, Eext, is a function of the components of the externally applied forces,
stored in column matrix, fext, and the displacement components of all atoms which
are stored in column matrix u. Columns fext and u are both of length n d, where d
represents the number of spatial dimensions. The site-energy, Ei, is formulated as the
sum of the interatomic potential energies Eij between atom i and its neighbors within
its cut-off radius, which are stored in subset Bi (Bi ⊆ N):

Ei(u) =
1

2

∑

j∈Bi

Eij(u). (5.2)

Half of the interatomic potential energy, Eij , between atom i and neighboring atom j is
thus assigned to atom i and the other half to atom j. For the interatomic potential en-
ergy, Eij, the Lennard-Jones potential [70] is used in this chapter, as for instance in [64]



5.2 The quasicontinuum method 79

and [65]. In other studies, multibody potentials, such as the embedded atom method
(EAM), are used [85,109]. As a result of using the EAM, an additional contribution
must be added to the site-energy, Ei, that corrects for the electron density.

Now the total potential energy has been established, it can be minimized with respect
to the DOFs of the system. The DOFs are in this case the displacement components of
all atoms, stored in column matrix u:

min
u

Etot(u). (5.3)

The minimum of Etot can be determined using classical variational principles. This
leads to the following expression:

δEtot(u) = δuT f(u) = 0 ∀δu, (5.4)

where f(u) is a column matrix containing conservative forces and is of length n d. Ar-
bitrary variations of u are represented here by δu. With respect to the formulation of
Eq. (5.1), it is convenient to assemble the force column matrix with the conservative
forces, f(u), from contributions fi of each atom, according to:

f(u) = −fext +

n
∑

i=1

fi(u), (5.5)

where

(fi)p =
∂Ei

∂up

, (5.6)

where p runs over all n d displacement components in u. A standard Newton-Raphson
process (using a Taylor expansion) can now be used to solve Eq. (5.4):

δuT

(

f(u∗) + K(u∗)du

)

= 0 ∀δu (5.7)

where u∗ are the displacement components of the previous iteration and du forms the
correction on these displacement components computed in the present iteration. The
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overall stiffness matrix in Eq. (5.7) is represented by K(u). The elements of the stiffness
matrix can be established as follows:

Kpq =
∂2Etot

∂up∂uq

=

n
∑

i=1

∂2Ei

∂up∂uq

, (5.8)

where p and q run over all n d displacement components. The stiffness matrix is thus
of size n d×n d and is symmetric. Similarly to the force column, the stiffness matrix K

can also be straightforwardly assembled by contributions Ki of each atom:

K(u) =

n
∑

i=1

Ki(u) (5.9)

where

(Ki)pq =
∂2Ei

∂up∂uq

. (5.10)

In order to solve Eq. (5.7), Neumann and Dirichlet boundary conditions must be in-
corporated and the system must be partioned. A locally stable configuration of the
atomistic lattice is obtained, if the part of the overall stiffness matrix that remains after
partioning is positive definite.

5.2.1 Interpolation

The first approximation used by the QC method aims to reduce the large number of
DOFs in u by interpolation. Interpolation is imposed by selecting a small number of r
repatoms, which are used to represent the displacements of all atoms of the lattice. The
index set R, containing the repatoms, is therefore a subset of N (R ⊆ N). The domain
is subsequently triangulated such that the repatoms form the corners of the triangles
(or tetrahedra in 3D). The displacements of the remaining atoms in each triangle are
interpolated (and thus constrained) between those of the repatoms. Linear interpolation
functions are generally used to express the displacement components of all atoms, u, as
a function of the displacement components of the repatoms, ur:

u = Ψur. (5.11)
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In this equation, Ψ represents the condensation matrix, with size n d × r d, in which
the interpolation functions evaluated at the locations of all n atoms are gathered.

The total potential energy of the interpolated atomistic crystal only depends on the
DOFs of the repatoms, instead of the DOFs of all atoms. In regions where displacement
fluctuations are small, relatively large distances between the repatoms are allowed. In
regions with large displacement fluctuations however, the repatoms must be located
close to each other, where the minimal distance equals one lattice spacing to create
a fully resolved region. By correctly selecting the repatoms for a specific problem,
i.e. by creating a proper triangulation, the total potential energy of the condensed
(triangulated) lattice, Er

tot, is assumed to be similar to the total potential energy of the
full lattice, Etot:

Etot(u) ≈ Er
tot(Ψur) =

n
∑

i=1

Ei(Ψur) − fT
extΨur. (5.12)

Since the DOFs of the condensed lattice are now the displacement components of the
repatoms, ur, the minimization of Er

tot must also be performed in terms of this reduced
set of DOFs:

min
ur

Er
tot(Ψur). (5.13)

Instead of Eq. (5.7), this results in the following linearization:

δuT
r

(

ΨT f(Ψur) + ΨT K(Ψur)Ψ dur

)

= 0 ∀δur, (5.14)

in which ΨT f symbolizes the condensed force column, f r, and ΨT KΨ the condensed
stiffness matrix, Kr. They are of size r d × 1 and r d × r d respectively and can be
constructed according to the following expressions:

f r(ur) = −ΨT fext +

n
∑

i=1

ΨT fi(Ψur), (5.15)

Kr(ur) =
n

∑

i=1

ΨT Ki(Ψur) Ψ, (5.16)
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where fi and Ki represent the force column and stiffness matrix contributions associated
with atom i. Since the condensed stiffness matrix is substantially smaller than the orig-
inal stiffness matrix (r ≪ n), the condensed equation in Eq. (5.14) is computationally
more efficient to solve than the uncondensed equation (Eq. (5.7)).

5.2.2 Summation

Although the number of scalar equations in Eq. (5.14) has been reduced compared to
Eq. (5.7), the assembly of the condensed force column and stiffness matrix still remains
computationally expensive, since all n atoms must be visited according to Eq. (5.15)
& (5.16). To overcome this, the QC method proposes to select only a small number
of s atoms to approximate the total potential energy, instead of visiting all n atoms to
exactly determine the total potential energy. These so-called sampling atoms (stored
in index set S) are used to sample the site-energies of their surrounding atoms and are
selected from N , i.e. S ⊆ N .

The total potential energy of the sampled, condensed lattice, Ers
tot, is assumed to be

equal to the total energy of the condensed lattice, Er
tot. This is the case, if the correct

sampling atoms are selected. For instance for the summation rule proposed in [9], the
total potential energy of the sampled, condensed lattice is exact to the total potential
of the condensed lattice. The following expression is now obtained for Ers

tot:

Er
tot(Ψur) ≈ Ers

tot(Ψur) =
∑

i∈S

wiEi(Ψur) −
∑

i∈S

wif
T
ext,iΨur, (5.17)

in which the site-energy of sampling atom i, Ei, represents the site-energies of the
atoms in the vicinity of atom i, including sampling atom i itself. The number of atoms
it represents is accounted for in the weight factor wi. Column matrix fext,i only contains
the external forces acting on sampling atom i. Although fext,i is of size n d × 1, it thus
only has non-zero entries on the locations that are related to atom i.

Since the DOFs of the lattice are still the displacement components of the repatoms, the
minimization of the total potential energy must still be performed with respect to ur.
The assembly of the condensed force column, f r, and of the condensed stiffness matrix,
Kr, becomes computationally more efficient to construct because of the summation.
They are expressed as follows:

f r,s(ur) = −
∑

i∈S

wiΨ
T fext,i +

∑

i∈S

wiΨ
T fi(Ψur), (5.18)

Kr,s(ur) =
∑

i∈S

wi ΨT Ki(Ψur) Ψ, (5.19)
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in which f r,s and Kr,s represent the sampled, condensed force column and the sampled,
condensed stiffness matrix respectively.

To ensure that the computational cost is actually reduced, the number of sampling
atoms must be substantially smaller than the total number of atoms (s ≪ n). The
question arises now which atoms must be selected as sampling atoms, i.e. which atoms
need to belong to subset S, to ensure that the estimate of the total potential energy is
accurate for a given interpolation.

5.3 Existing summation rules

Two general approaches for the selection of sampling atoms are proposed in QC litera-
ture in which also the computation of the site-energies and weight factors is different.
We refer to a specific selection procedure, combined with its own computation of site-
energies and weight factors, as a summation rule, although in the literature it is also
known as summation [83].

5.3.1 The local-nonlocal summation rule

The first general class of summation rules is the local-nonlocal rule [108,109,114,115]. It
computes the site-energy of sampling atoms in the fully resolved domain nonlocally, so
that all neighboring atoms influence the site-energy of a sampling atom and the exact
atomistic model is recovered. This ensures a high accuracy in the fully resolved regions.
In the coarse domain however, the site-energy of one sampling atom per triangle is
locally computed using the Cauchy-Born rule, ensuring a high efficiency. This means
that the site-energy is computed as if the sampling atom were located in an infinite
crystal, which is deformed uniformly. This is only accurate, if the deformation slowly
fluctuates at the scale of a triangle. Therefore, the site-energy only depends on the
repatoms associated with the triangles surrounding that particular sampling atom. An
illustration of this summation rule is shown on the left in Fig. 5.1. The local-nonlocal
summation rule leads to the use of a small number of sampling atoms. In the fully
resolved regions, only the repatoms are selected as sampling atoms and one sampling
atom is in principle selected per triangle in the coarse domain (of which the energy is
related to the repatoms of the considered triangle [108]).

However, the coupling of the coarse (local) region to the fully resolved (nonlocal) region
leads to a relatively large computational burden due to two difficulties. First, the fully
resolved regions must be relatively large because at the interface of the fully resolved
regions a transition towards local sampling atoms occurs, for which the strain gradients
must be small. An example is shown for the local sampling atom indicated in black on
the left in Fig. 5.1. Considering the corresponding cut-off radius, three nonlocal and
four local sampling atoms are present within the cut-off region. The latter have no
influence the site-energy of this sampling atom. To ensure that this locally computed
site-energy is still rather accurate, the fully resolved regions must be relatively large.
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Furthermore, at the interface between the two domains non-physical forces occur, so-
called ghost-forces. These forces are caused by the fact that the site-energy computa-
tions of several nonlocal sampling atoms at the boundary of the fully resolved region
are dependent on the local sampling atoms next to the fully resolved domain, while the
site-energy computations of the latter are independent of the displacements of several
nonlocal sampling atoms (see Fig. 5.1).

Corrective procedures have been introduced to deal with this internal interface [108,109],
but since they come with additional assumptions, the relatively large fully resolved
regions can only be slightly reduced. Moreover, these corrective procedures must be
implemented in the algorithm and they must be updated during computations if the
size and locations of the fully resolved regions change.

Figure 5.1: Schematic representation of a two-dimensional atomistic lattice with a triangula-
tion in combination with (left) the local-nonlocal summation rule and (right) the
cluster summation rule. (Left) The dark repatoms are part of the coarse domain
and the red (light) atoms are repatoms as well as sampling atoms in the fully
resolved domain. The cut-off radius around the bold atom is shown. The dashed
line represents the location of the internal interface between the fully resolved re-
gion and the coarse region. (Right) the dark atoms are repatoms (R) while both
dark atoms as well as the other indicated atoms are sampling atoms (S). The
dashed circles mark the clusters of sampling atoms (and are not related to the
cut-off radius).

5.3.2 The cluster summation rule

The second class of summation rules is the cluster variant, which was introduced by
Knap and Ortiz [64] in terms of forces and reformulated by Eidel and Stukowski [36] in
terms of energy. This summation rule computes the site-energy of all sampling atoms
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nonlocally; in the fully resolved domains as well as in the coarse domains. Therefore,
no internal interface occurs and a seamless transition is obtained towards fully resolved
regions.

According to this summation rule, clusters of sampling atoms are selected centered at
the repatoms (see the right illustration in Fig. 5.1). The repatoms therefore also form
sampling atoms (R ⊆ S ⊆ N). If the clusters tend to overlap, they are truncated
so that sampling atoms are only used once. The truncation of the clusters and the
nonlocal computation of the sampling atoms’ energies ensures that a smooth transition
is achieved towards fully resolved regions in which the full atomistic lattice is recovered
(right in Fig. 5.1). A higher accuracy is achieved, at the expense of computational
efficiency, if a larger cluster radius is used. Note that if the cluster radius is set to zero,
the repatoms are the only sampling atoms (S = R) and the node-based summation rule
of Knap and Ortiz [64], for which zero-energy modes may occur, is retrieved.

Disadvantages of the cluster summation rule are a relatively low accuracy and large
look-up tables. The poor accuracy is caused by the use of one summation weight per
cluster (wi in Eq. (5.18) & (5.19)), as shown in [76], but also by the mere selection of
clusters, as shown below.

Large look-up tables result from the nonlocal site-energy computation of all sampling
atoms and increase the bookkeeping costs. On the other hand, the fact that no corrective
interface procedures have to be used is considered to be an advantage. The reason is
that, if adaptivity is included to allow for changing and moving fully resolved regions,
no corrective procedures have to be updated.

5.4 Relation between the interpolation and the total potential

energy

In order to obtain an improved summation rule that estimates the total potential energy
well without introducing an internal interface, we consider more carefully how the total
potential energy of the interpolated system depends on the interpolation. For this
purpose, consider a semi-QC method in which interpolation is applied to an atomistic
model, but no summation rule is used, i.e. R ⊆ N and S = N . In this semi-QC method,
all n atoms of the lattice must be visited to determine the total potential energy and
the energy is computed exactly, albeit for the interpolated lattice. An illustration of
the semi-QC method is shown in Fig. 5.2 for a two-dimensional closely packed atomistic
lattice (i.e. the distances between every atom and its six nearest neighboring atoms
equal one lattice spacing).

Now, consider atom p in Fig. 5.2. The site-energy of atom p depends on its own
displacement and the displacements of its 18 neighboring atoms (encircled in Fig. 5.2)
within its cut-off radius according to Eq. (5.2). Since all neighboring atoms of atom p
are located within or exactly on the edge of the triangle in which atom p is located and
the displacements are interpolated linearly within this triangle, the site-energy of atom
p ultimately depends on the displacements of the three repatoms of the triangle only.
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p+1p q

Figure 5.2: Schematic representation of the semi-QC method: a two-dimensional atomistic
lattice with a superimposed triangulation between the repatoms (shown in red).
The neighboring atoms of the dark atoms p and q are encircled. The neighboring
atom of atom q indicated with the bold circle, is located in another triangle than
atom q.

A second important aspect is that because linear interpolation functions are used, the
relative displacements of all identical bonds within a particular triangle are equal. This
entails that the site-energies of atom p and atom p +1 in Fig. 5.2 are identical, because
all their neighboring atoms are located inside the same triangle. As a consequence, the
contribution made by atom p + 1 to the energy of the system is identical to that of
atom p. This also implies that in Eq. (5.15) & (5.16) we have ΨT fp = ΨT fp+1 and
ΨTKpΨ = ΨTKp+1Ψ.

The neighboring atoms of atom q in Fig. 5.2 however, are not all located within the
same triangle. Thus, the site-energy of atom q depends not only on the repatoms of the
triangle in which atom q is located, but also on the repatoms of a neighboring triangle.
This means that the site-energy of atom q can be different from those of atoms p and
p + 1 and thus also ΨT fp 6= ΨT fq and ΨTKpΨ 6= ΨTKqΨ.

The potential energy of the triangle in which atoms p, p + 1 and q are located remains
thus identical if, instead of computing the site-energies of all atoms, the site-energy of
atom p is computed and multiplied by the number of atoms that have their neighbors
in the triangle (wi in Eq. (5.18) & (5.19)). In principle, the sampling atom may be
chosen arbitrarily among those that have their neighbors within the triangle. We refer
to such a sampling atom as a central sampling atom. The site-energies of the atoms
that have one or more neighboring atoms in a different triangle, such as atom q, must
still be computed individually if the potential energy is to be exact. Such sampling
atoms, which only sample their own site-energy (i.e. wi = 1), are referred to as discrete
sampling atoms.

For small triangles in which all atoms have one or more neighbors in different triangles,
all atoms are discrete sampling atoms (see Fig. 5.3). Furthermore, in the triangles in
fully resolved regions this type of summation leads to the use of only the repatoms as
discrete sampling atoms, so that the atomistic model is automatically recovered (see
Fig. 5.3). In large triangles, many atoms may be represented by the central sampling
atom and the corresponding weight factor, wi, may thus be large. Along the edges
(or faces) of the triangles (or tetrahedra), a band of discrete sampling atoms however
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remains.

The focus of the exact ”summation” is thus on the inner part of the triangles. The
repatoms, or the atoms around the repatoms, which have many neighbor interactions
crossing triangle edges, are thus not appropriate to sample the site-energies of the inner
atoms, which have all their neighbor interactions within the same triangle. In the cluster
summation rule however, exactly these atoms with many interactions across triangle
edges are used for sampling. This means that not only the specific computation of the
weight factors in the cluster summation rule leads to inaccurate results, as shown in [76],
but the mere selection of clusters of sampling atoms around the repatoms themselves is
questionable.

Figure 5.3: A summation rule that recovers the exact potential energy applied to a two-
dimensional closely packed atomistic lattice including a fully resolved region on
the right. The open circles represent the repatoms as well as discrete sampling
atoms, the large dark circles represent central sampling atoms and the small dark
circles indicate discrete sampling atoms.

As can be seen in Fig. 5.3, the exact summation leads to the use of a large number
of sampling atoms due to the bands of discrete sampling atoms at the edges of the
triangles. For lattice models that only contain nearest neighbor interactions, such as
two-dimensional structural lattice models, such a summation rule is computationally
viable, as shown in [9], because these bands are thin. For atomistic models in which
not only nearest neighbor interactions are present, this type of summation would result
in rather large (and hence expensive) bands of discrete sampling atoms. Furthermore,
if three-dimensional crystals are considered, zones of thickness 2rcut are needed along
all faces of the interpolation tetrahedra, leading to an even larger number of discrete
sampling atoms.

5.5 Central summation rule

The summation rule explained above is exact. For atomistic crystals it is however too
inefficient because it leads to many sampling atoms, i.e. s ≈ n. The central summation
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rule proposed in this section aims to be more efficient so that s ≪ n. Therefore,
only one internal sampling atom is in principle selected in each triangle. Although it
introduces some degree of approximation, the central summation rule is based on the
understanding of how the total potential energy relates to the interpolation and its
accuracy is therefore still high compared to a number of existing summation rules.

5.5.1 Selection of sampling atoms

We take as a starting point the exact summation as discussed above. Rather than keep-
ing track of all interatomic interactions that cross triangle edges by defining discrete
sampling atoms along these edges, these atoms are now also represented by the respec-
tive central sampling atoms (see Fig. 5.4). In this way the number of sampling atoms is
largely reduced, but the total potential energy is approximated, instead of determined
exactly. The introduced approximation is acceptable if the difference in deformation
between neighboring triangles is small. Where large differences occur, a larger error is
made, or the triangulation should be refined.

Figure 5.4: Illustration of the proposed central summation rule for a two-dimensional closely
packed atomistic lattice including a fully resolved region on the right. The open
circles represent repatoms as well as discrete sampling atoms, whereas the large
dark circles represent central sampling atoms and the small dark circles indicate
discrete sampling atoms.

In the central summation rule, the atom closest to the incenter of the triangle (or
tetrahedron) is selected as the central sampling atom of each interpolation triangle
(i.e. belongs to S). The reason that the incenter of the triangles is used is that it
marks the location of the point that is located furthest from each triangle edge (see
Fig. 5.5). It therefore marks the location that has the least probability of neighbors in
other triangles.

In case a significant number of neighbors of the central atom are present in adjacent
triangles, the central atom is the one that has its neighbors most evenly spread over the
adjacent triangles. If another atom is used for sampling (in case only one sampling atom
is to be selected for computationally efficiency) that is closely located to one adjacent
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triangle but further away from the other adjacent triangles, it has a disproportional
number of neighbors in the adjacent triangle to which it is closely located, but possibly
no or few neighboring atoms in the other adjacent triangles, that are located further
away from this atom. For symmetric triangulations this selection ensures a symmetric
selection of sampling atoms.

Note that, in some cases, the selection of the central sampling atoms in the proposed
summation rule may result in the selection of an atom which has neighbors in adjacent
triangles, particularly in small triangles.

In case a triangle or tetrehadron only contains atoms on its corner nodes, edges and
faces, and no atoms within the triangle or tetrahedron, all atoms are selected as discrete
sampling atoms (wi = 1). This means thus that all central sampling atoms (with wi > 1)
exist inside triangles or tetrahedra. This can be seen for the band of triangles in the
coarse domain next to the fully resolved domain in Fig. 5.4. Sampling atoms on top of
an edge or face may not be selected as a central sampling atom, since this would induce
alternating patterns of weight factors for the central sampling atoms that can lead to
saddle-point solutions, that are characterized by non-stable equilibria.

Figure 5.5: Schematic representation of the selection of central sampling atoms (large, dark
dots) which are located closest to the incenter (small, blue dots) of two triangles
which are marked by the two blue circles in the triangles. Repatoms (encircled)
act as discrete sampling atoms and the remaining atoms (light grey) are accounted
for in the weight factors of the corresponding central sampling atoms.

5.5.2 Weight factors

As indicated before, the discrete sampling atoms only represent themselves and therefore
have a weight factor wi = 1. The remaining atoms in a particular triangle are summed
in the weight factor of the central sampling atom of that triangle, including the central
sampling atom itself. Atoms located on a triangle edge are summed half in the weight
factor of the central sampling atom of one triangle of the corresponding edge and the
other half is summed in the weight factor of the central sampling atom of the other
triangle that belongs to that edge.
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For three-dimensional atomistic crystals atoms on a tetrahedral face are summed half in
the weight factor of the central sampling atom of a tetrahedron which corresponds with
that face and the other half is summed in the weight factor of the central sampling atom
in the adjacent tetrahedron containing to that face. Atoms located on tetrahedron edges
are summed with the different central sampling atoms of tetrahedra that correspond
to the particular edge. The fraction attributed to the corresponding weight factors is
determined by the angle of the two faces intersecting the edge.

5.5.3 Site-energy computation

The computation of the sampling atoms’ site-energies is formulated in an energy setting
according to Eq. (5.2), i.e. no force-based formulation is used. All site-energies are
furthermore computed nonlocally to ensure that the interatomic bonds which cross
triangle edges are correctly incorporated. This means that all neighboring atoms of
all (central and discrete) sampling atoms must be addressed to ensure that the site-
energies of the sampling atoms are correctly computed. For central sampling atoms in
large triangles a nonlocal computation of the site-energy equals the local computation
using the Cauchy-Born rule, since all neighbors are located within the same triangle.
However, the neighbors of central sampling atoms in small triangles and tetrahedra may
be located in other interpolation elements and their nonlocal computation thus results
in a dependence on repatoms of several triangles or tetrahedra. Note that this is always
the case for discretely sampled atoms, in particular for repatoms.

An efficient and straightforward algorithm of the central summation rule is guaranteed
by ensuring that all triangles are treated in the same fashion (see Table 5.1). For
this reason the repatoms are also used as discrete sampling atoms in large triangles,
although they hardly contribute to the sampled energy of large triangles, since their
weight factors (wi = 1) are small compared to the weight factors of the central sampling
atoms. It is possible to avoid selecting the repatoms of large triangles and tetrahedra
as discrete sampling atoms, but this introduces an extra user-defined parameter in the
summation rule. Because the aim here is to obtain a straightforward and unambiguous
summation rule, the repatoms of large triangles are used as well as discrete sampling
atoms. Furthermore, for small triangles around the fully resolved domains, these discrete
sampling atoms are significant and they therefore assure a smooth transition from fully
resolved domains to coarse domains.

No spurious surface energies occur at the edges of the model due to the discrete sampling
atoms in large triangles, since they hardly contribute because of their small weight factor
and because their neighboring atoms outside the model are not taken into account (see
ahead to Section 5.7.4). Furthermore, spurious surface energies can be overcome by
using correct boundary conditions (e.g. periodic boundary conditions) on all repatoms
of the outer triangles of the model (see e.g. the benchmark test in [85] and the numerical
example in Section 5.7.2).

The advantage of this summation rule is that, as a result of the nonlocal computation of
all site-energies, no internal interface between the interpolated and fully resolved domain
exists. A natural and gradual transition is obtained from a near-local QC method in
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coarsely discretized regions to a fully nonlocal method in fully resolved regions. No in-
ternal interface corrections, for which additional assumptions are often necessary [108],
have to be implemented. Although the nonlocal computation of site-energies requires
look-up tables (containing sampling atoms and their neighbors) at the expense of book-
keeping, the fact that no internal interface corrections have to be updated, guarantees
efficient analyses in which fully resolved regions may transform or move significantly.

5.6 Algorithm for the central summation rule

An efficient algorithm for the summation rule is presented in Table 5.1. It is formu-
lated for the more general case of tetrahedra. For triangles it is almost identical, except
for a few lines that can be skipped. The algorithm is tetrahedron-based, i.e. it sepa-
rately selects sampling atoms for every tetrahedron. Only a few checks on sampling
atoms of previously considered tetrahedra have to be made to ensure that sampling
atoms are not selected twice. The tetrahedron-based algorithm is therefore efficient and
straightforward to implement. Parallelization of the presented algorithm is relatively
easy, requiring only minor adaptations to further increase the efficiency.

The algorithm is presented in Table 5.1 in such a way that the selection of sampling
atoms and computation of corresponding weight factors becomes clear. This part is
covered in the second step of the algorithm. Subsequently, the missing neighbors of the
sampling atoms are recovered for the nonlocal site-energy computation (third step), the
condensation matrix Ψ is assembled (fourth step) and the Newton-Raphson procedure
is applied (the fifth step). In the first step, the boundary conditions are incorporated
in the columns ur and fext.

In the second step, every tetrahedron is separately considered to select the appropriate
sampling atoms with corresponding weight factors. First, the atoms in and around the
considered tetrahedron t are produced. The interpolation function values at the atoms’
locations are used to decide which atoms are inside tetrahedron t or on its nodes, edges
and faces. It is efficient to use the interpolation function values, because they are also
used in the fourth step to assemble the condensation matrix.

The atoms on tetrahedron edges and faces are stored in a provisional list until a central
sampling atom is defined in tetrahedron t, because it is a priori unknown if any atoms are
present in tetrahedron t. If no central sampling atom can be found in tetrahedron t, this
means that either only four atoms are present in the tetrahedron that are all repatoms
(fully resolved region), or tetrahedron t contains atoms that are merely located on
nodes, edges and faces. In both cases, all atoms in tetrahedron t are selected as discrete
sampling atoms (wi = 1), if they were not selected as such yet. On the other hand, if
one or more atoms are located within tetrahedron t, one of them is retrieved as central
sampling atom and the provisional list with discrete sampling atoms is discarded after
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Table 5.1: Algorithm for the central summation rule for three-dimensional atomistic crystals.

1. Incorporate boundary conditions in ur and fext

2. Determine sampling atoms per tetrahedron

⊲ for every tetrahedron

→ produce atoms in a cube circumscribing tetrahedron t

→ evaluate interpolation functions at the locations of all atoms

→ use interpolation function evaluations to decide which atoms belong to tetrahedron t

⊲ for every atom in tetrahedron t

⋄ if atom i is a repatom and not present in discrete sampling atoms list

→ add atom i to discrete sampling atoms list

⋄ elseif atom i is located on edge or face and not present in discrete sampling atoms list

→ add atom i to provisional discrete sampling atoms list

→ add weight factor of atom i to provisional weight factor of

potential adjacent central sampling atom

⋄ elseif atom i is located within tetrahedron t

⋄ if atom i is closer to incenter of tetrahedron t than previously considered atoms

→ select atom i as central sampling atom

→ add 1 to weight factor of central sampling atom

⋄ else

→ add 1 to weight factor of central sampling atom

⊲ end

⋄ if a central sampling atom in tetrahedron t is selected

→ add provisional weight factor (corresponding with the provisional discretely

modeled sampling atoms) to the weight factor of the central sampling atom of

tetrahedron t

⋄ else

→ add provisional discrete sampling atoms list to

global discrete sampling atoms list

⊲ end

3. Recover missing neighbors of all sampling atoms with

corresponding evaluated interpolation functions

4. Assemble condensation matrix Ψ with evaluated interpolation functions of

sampling atoms and neighbors

5. Use Newton-Raphson procedure

⊲ for each increment until residual meets tolerance

- Produce condensed, summed force column f
r,s and stiffness matrix K

r,s according to

Eq. (5.18) & (5.19)

- Partition f
r,s and K

r,s and update solution according to Eq. (5.14)
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they have been accounted for in the weight factor of the central sampling atom. This
decision can only be made after all atoms of tetrahedron t have been visited, i.e. at the
end of the second step of the algorithm.

5.7 Results

5.7.1 Reference solution of a two-dimensional crystal

As a first numerical example to evaluate the central summation rule, a two-dimensional
closely packed atomistic crystal is analyzed with a vacancy in its center. The crystal
contains 251 by 285 rows of atoms in horizontal and vertical direction respectively
(71,392 atoms). The Lennard-Jones (6-12) potential [70] is used for the interatomic
pair potential, Eij in Eq. (5.2). This potential has its minimum at the interatomic
lattice spacing r0, as depicted in Fig. 5.6. The cut-off radius is set to 2.23 lattice
spacings, implying that each atom interacts with 18 neighboring atoms.

r
0r

rcut

0r0

Figure 5.6: Schematic representation of the two-dimensional closely packed atomistic crystal.
The atomistic lattice spacing, at which the interatomic Lennard-Jones potential
has its minimum, is given by r0. The interaction region of a single atom is shown
by the circle with cut-off radius rcut. Two unit cells are depicted by the dashed
hexagonals.

An example of a triangulation including a fully resolved region around the vacancy is
shown in Fig. 5.7. The crystal is loaded to a uniaxial strain of 0.5% in [1 0] (horizontal)
direction. No vertical strain is allowed. Displacement boundary conditions in accor-
dance with this uniaxial strain state are applied to the repatoms of the band of slim
triangles that surround the model. This band has a thickness which exceeds twice the
cut-off radius to ensure that no edge effects occur (see Fig. 5.7). In all triangulations
considered, this band is the same. The size of the fully resolved region around the
vacancy is varied using different triangulations. The transition to the coarse domain is
made by doubling the triangle size for every extra ring of triangles away from the fully
resolved region.
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Figure 5.7: The triangulation for the two-dimensional closely packed atomistic crystal with a
fully resolved region of 71 × 70 unit cells around the vacancy that serves as a ref-
erence (left). (Right) a zoom around the vacancy. The [1 0] direction corresponds
to the horizontal direction and the [0 1] direction is at an angle of 60o relative to
the horizontal direction and -30o relative to the vertical direction.

The semi-QC variant as described in Section 5.5 serves as a reference for assessment
of the central summation rule. In this reference model no summation rule is used
(S = N) and thus no error due to summation occurs. The only remaining error resides
in the interpolation, for which a large fully resolved region of 71 × 70 unit cells in
horizontal and vertical direction respectively ensures that this error remains small (see
Fig. 5.7). The predicted relative [1 0] (horizontal) displacement components urel

x , which
show the influence of the introduced vacancy, are shown as a function of the location
of the repatoms in Fig. 5.8. This relative displacement is obtained by subtracting the
horizontal displacements of the same model without a vacancy (loaded with the same
boundary conditions) from the computed displacements:

urel
x ( ~X i) = ux( ~X i) − Exx X i

x (5.20)

where ~X i is the position vector indicating the original location of atom i, ux( ~X i) is
the horizontal component of the displacement vector of atom i and Exx is the applied
overall strain in [1 0] (horizontal) direction. Two distinct peaks, which both have an
amplitude of 0.0068r0, can be observed at the two repatoms located left and right of
the vacancy. In [1 0] direction the peaks decay slower than in the vertical direction.

5.7.2 Application of the central summation rule to the two-dimensional

atomistic crystal

We illustrate the effect of summation first on a triangulation with a fully resolved region
of 3× 4 unit cells in horizontal and vertical direction respectively. The sampling atoms
selected according to the central summation rule are marked in Fig. 5.9. After the
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Figure 5.8: The displacement field in [1 0] (horizontal) direction of the semi-QC method with
a fully resolved region of 71 × 70 unit cells in horizontal and vertical direction.
The predicted relative horizontal displacements are shown, normalized by r0, in
all repatoms (top) and a zoom around the vacancy (bottom).

identification of the sampling atoms and the recovery of the missing neighbors of the
sampling atoms, the atom at the location of the vacancy was removed (see Fig. 5.9,
right).

The results computed with the central summation rule for the triangulation of Fig. 5.9
are shown in Fig. 5.10. The peaks on the left and right side of the vacancy are in
reasonable agreement with the reference results of Fig. 5.8; their amplitude is 0.0081r0.
This corresponds with a maximum error of the displacement of these two repatoms of
18.6% for this triangulation. A semi-QC simulation for the triangulation of Fig. 5.9
(not shown here), in which no error due to summation occurs, has indicated that the
error due to the interpolation is only 1.0% for this triangulation. It can thus be con-
cluded that the maximum error of 18.6% is mainly caused by the summation. The
predicted displacement field however also shows discrepancies with the reference solu-
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Figure 5.9: A triangulation for the two-dimensional atomistic crystal with a fully resolved
region of 3 × 4 unit cells (left) and a zoom of the fully resolved region that in-
cludes the vacancy in the center (right). The discrete sampling atoms (including
repatoms; wi = 1) are represented by black circles and the central sampling atoms
(wi > 1) by red squares. The remaining neighboring atoms of the sampling atoms
are not shown.

tion in Fig. 5.8 in and around the fully resolved region. These discrepancies with a
maximum amplitude of 0.0053r0 are caused by the error due to summation, since they
are not present in the results of the semi-QC variant applied to this triangulation. The
fully resolved region of the triangulation shown in Fig. 5.9 is apparently so small that
in the first ring of triangles in the coarse domain the site-energies of the atoms within
one triangle differ substantially from each other. This use of relatively large triangles
in regions where atoms behave differently leads to relatively large summation errors,
as could be expected. In the coarse domain however, the summation rule captures the
uniaxial strain deformation well, as can be seen on the left in Fig. 5.10.

A straightforward way to improve the predicted displacement field in the region of
interest (the region around the vacancy) is to enlarge the fully resolved domain. This
ensures that the error due to summation only occurs in regions where the site-energies
of the atoms vary little, as assumed in the summation rule. On the left in Fig. 5.11 the
maximum errors are presented for triangulations with different sizes of fully resolved
regions. The error drops rapidly upon increasing the size of the fully resolved region. If
it is sufficiently large, so that the coarse domain, in which the true summation occurs,
starts where the site-energies of the atoms are almost identical, the error remains below
5%. This degree of accuracy is reached for fully resolved regions larger than 7× 12 unit
cells.

The fact that the maximum error does not decrease to zero for increasing fully resolved
regions (Fig. 5.11) is caused by the non-zero relative displacements that remain in
the coarse domain, just outside the fully resolved region (see Fig. 5.12). The maximum
amplitude of these relative displacements for the results shown at the bottom in Fig. 5.12
is 0.0079r0. This is close to the obtained value reached at the maximum peak next to
the vacancy. The reason for these discrepancies is that a number of neighboring atoms
of the central sampling atoms are located in different triangles for these small triangles
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Figure 5.10: The relative displacement field in [1 0] (horizontal) direction computed for the
triangulation of Fig. 5.9 with a fully resolved region of 3 × 4 unit cells. The
predicted relative horizontal displacements in terms of r0 are shown as a function
of the repatoms of the entire triangulation (top) and a zoom around the vacancy
(bottom).

around the fully resolved region (see Fig. 5.9). If the fully resolved region is not too
small, however, this error at the edge of the fully resolved region has little influence
on the solution in the central region of interest (in this case the solution around the
vacancy).

As can be seen in the diagram on the right in Fig. 5.11, the computational efficiency of
the summation rule, expressed in terms of the number of repatoms and sampling atoms
relative to the number of total atoms present in the crystal, is high and remains high
for increasing fully resolved regions. The computational efficiency of the summation
rule can be further increased if the ratio between the coarse domain (in which many
atoms are summed) and the fully resolved domain is increased. This is shown for the
summation rule that recovers the exact potential energy for structural lattices with
nearest neighbor interactions in [9].
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Figure 5.11: (Left) the maximum error at one of the two repatoms at the peaks of the displace-
ment field in [1 0] (horizontal) direction computed using the central summation
rule for triangulations with different sizes of fully resolved regions. The maximum
error is shown as a function of the sizes of the fully resolved regions. The shapes
of the fully resolved regions are kept as square as possible. (Right) the relative
number of repatoms (black) and sampling atoms (white) for the triangulations
with different sizes of fully resolved regions.

5.7.3 Comparison with the cluster summation rule for a two-dimensional
atomistic crystal

It is interesting to compare the results of the proposed central summation rule to those
computed with the cluster summation rule. The cluster summation rule, like the central
summation rule proposed here, allows a seamless coupling between coarse domains and
fully resolved domains.

The cluster summation rule that is used here is the improved variant as proposed in [36],
which is formulated in terms of energy (like the summation rule presented here). No
use is made of the hybrid correction strategy proposed in [36]. The cluster summation
rule is applied to the triangulation with a fully resolved region of 11 by 20 unit cells.
The boundary conditions are identical to those in the previous simulations. The cluster
radius is set to 3 atomistic lattice spacings (3r0), which means that a cluster contains
37 sampling atoms, if it is not truncated because of overlap with another cluster. This
leads to 6.8% sampling atoms, while the summation rule presented here only needs 1.7%
sampling atoms for this triangulation (see right diagram in Fig. 5.11).

The displacement field computed with the cluster summation rule is presented in
Fig. 5.13. It corresponds for the greater part with the displacement field obtained
by Eidel and Stukowski [36] for the two-dimensional cluster computation without the
hybrid correction strategy. The correction strategy involves a computation of the inter-
polated lattice in which all atoms must be incorporated and thus no summation is used
(as in the aforementioned semi-QC method). Since summation rules in the QC method
are aimed at avoiding computations in which all atoms are incorporated and since no
correction approach is required for the central summation rule, the correction strategy
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Figure 5.12: The displacement field in [1 0] (horizontal) direction of the central summation
rule for the triangulation with a fully resolved region of 11 by 20 unit cells, split
up into the fully resolved region (top) and the first two rings of triangles in
the coarse domain around the fully resolved regions (bottom). The predicted
relative horizontal displacements, normalized by r0, are shown as a function of
the position of the repatoms.

is not used here for the comparison between the cluster summation rule and the central
summation rule.

The cluster summation rule without the hybrid correction strategy is clearly not able to
accurately capture the uniform strain applied to the crystal. This is not only caused by a
poor computation of the weight factors [76], but also by selecting sampling atoms around
the repatoms (as mentioned before). This clearly leads to significant discrepancies in
large triangles in which many atoms are present that have all their neighbors within
the same triangle, while they are sampled by atoms that have many neighbors in other
triangles. Although the cluster summation rule computes the sampling atoms’ site-
energies in the fully resolved region correctly, the error in the coarse domain has such an
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Figure 5.13: The relative displacement field in [1 0] (horizontal) direction computed with the
cluster summation rule for the triangulation with a fully resolved region of 11
by 20 unit cells. The predicted relative horizontal displacements scaled by r0

are shown as a function of the repatoms of the entire triangulation (top) and a
zoom around the vacancy (bottom). Note the different vertical scales compared
to those in Fig. 5.8, 5.10 and 5.12.

influence on the displacements of the entire crystal that the relative [1 0] displacements
of two peaks in the fully resolved regions equal -0.0017r0 and 0.0007r0 which corresponds
to a maximum error of 89.7%.

5.7.4 The central summation rule for a three-dimensional atomistic crys-
tal

The use of the central summation rule for three-dimensional atomistic crystals is demon-
strated by modelling a vacancy in a three-dimensional cubic FCC crystal. The consid-
ered crystal contains 1,074,344 atoms (64× 64× 64 unit cells). Using the triangulation
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of Fig. 5.14, results a fully resolved region of 8 × 8 × 8 unit cells, whereby only 8,732
repatoms and 55,744 sampling atoms need to be used. The computational cost in
terms of DOFs (number of repatoms) and effort to construct the governing equations
(sampling atoms) is thus reduced to 0.8% and 5.1% respectively of the full atomistic
analysis.

x
y

z

Figure 5.14: Part (7
8) of the triangulation for the three-dimensional cubic FCC crystal includ-

ing a vacancy in the center. The axes correspond to the < 1 0 0 > orientations
of the FCC crystal. The purple tetrahedra contain central sampling atoms. The
white tetrahedra contain only discrete sampling atoms because all atoms in these
tetrahedra are located on top of the repatoms (in the fully resolved regions) or
on top of tetrahedron nodes, edges and faces (in the coarse domain around the
fully resolved region).

The boundary conditions are equivalent with those in the two-dimensional examples.
The FCC crystal is uniaxially strained to 0.5% in [1 0 0] direction. Since the outer
tetrahedra contain a significant number (approximately 85) of atoms that are sampled
by the central sampling atom, the ratio between the number of atoms represented by
the central sampling atom and the four discrete sampling atoms (i.e. the repatoms) in
one tetrahedron is large. Therefore, the edge effects are expected to be small and no
fully constrained band of tetrahedra is necessary (cf. the slim triangles that surround
the two-dimensional models). This saves computational efforts.

To investigate the influence of the vacancy, relative displacements of the repatoms are
computed based on the predicted displacement vectors according to Eq. (5.20). The
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relative [1 0 0] displacement of each repatom urel
[100] is the component of the predicted

displacement vector in [1 0 0] direction relative to the displacement component in [1 0
0] direction for a FCC crystal without a vacancy subjected to the same uniaxial strain.

The relative [1 0 0] displacements of the repatoms are presented in Fig. 5.15. A num-
ber of observations can be made based on Fig. 5.15 that are distinct from the two-
dimensional results, revealing intrinsic differences in three-dimensional crystals.

Eight atoms around the vacancy show distinct relative [1 0 0] displacements with a
magnitude of 0.00149r0. This effect decays away from the vacancy over three lattice
spacings. The four atoms next to the vacancy in the face given by the [1 0 0] normal
direction show no distinct relative [1 0 0] displacements. This is caused by the fact that
these four neighboring atoms of the vacancy are located in the face given by the normal
direction that corresponds to the loading direction.

The most striking difference with the two-dimensional results is that the relative [1 0
0] displacements of the three-dimensional crystal reveal that the neighboring atoms of
the vacancy are moving towards the location of the vacancy whereas the neighboring
atoms of the vacancy in the two-dimensional crystal move away from the vacancy. This
is caused by the differences in two-dimensional and three-dimensional configurations.

The quality of the summation rule for this three-dimensional example is relatively dif-
ficult to evaluate, since the semi-QC model in which S = N is computationally too
expensive. However, the accuracy of the relative [1 0 0] displacements of the repatoms
in the fully resolved regions appears to be sufficient, since no significant fluctuations
can be observed in the fully resolved domain as in a number of two-dimensional results,
e.g. in the bottom image of Fig. 5.12. Apparently, the size of the fully resolved domain
(8 × 8 × 8 unit cells) is sufficiently large to obtain an adequate solution for a vacancy
in the considered lattice.

As in the two-dimensional results (see Fig. 5.12), some fluctuations occur in the small
tetrahedra around the fully resolved domain (see the left images in Fig. 5.15). However,
because for the FCC crystal with the triangulation shown in Fig. 5.14 a relatively large
number of small tetrahedra occur that have all their atoms on tetrahedron edges and
faces (see the white triangles in Fig. 5.14), a relatively large number of atoms around
the fully resolved region are selected as discrete sampling atoms compared to the two-
dimensional crystal. For this reason the fluctuations induced in the transition region
between the coarse and full resolved domain are smaller compared to the fluctuations
in the two-dimensional results.

5.8 Conclusion

The aim of this chapter was to develop an accurate summation rule for the quasicon-
tinuum method [114] that can efficiently deal with atomistic crystals, while avoiding an
internal interface. The proposed central summation rule is based on a clear understand-
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Figure 5.15: The relative displacement components scaled by r0 in [1 0 0] direction of the
repatoms in three cross-sectional faces with [0 0 1] normal (image A), [0 1 0] nor-
mal (image B) and [1 0 0] normal (image C) through the center of the < 1 0 0 >
oriented FCC crystal. Zooms around the vacancy are presented in the right
images. The arrows indicate the loading in [1 0 0] direction.
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ing of relation between the potential energy and the interpolation, as the summation rule
presented by Beex et al. [9] for structural lattice models. In contrast to the summation
rule of Beex et al. [9], which leads to a large number of sampling atoms if applied
to atomistic crystals (especially in three dimensions), the number of sampling atoms
selected in the central summation rule is small to gain computational efficiency. As a
result, the potential energy is estimated instead of determined exactly, but the accuracy
nevertheless remains high.

The central summation rule significantly reduces the computational cost of full atomistic
computations as a result of the use of the repatoms as sampling atoms, in combination
with one extra sampling atom in the center of coarse triangles. The focus of the central
summation rule is thus on the center of the triangles and tetrahedra, which is more
natural compared to clusters of sampling atoms around the repatoms [36,64]. The
algorithm for the summation rule deals with triangles in the coarse domains and fully
resolved domains in a unified way and is therefore simple to implement.

The energy-based central summation rule uses a nonlocal site-energy computation in
the coarse domain, as well as in the fully resolved domain. Consequently, no internal
interface occurs between both domains, similar to the cluster summation rules [36,64].
This ensures that moving and growing/shrinking fully resolved regions can easily be
included since no internal interface procedures have to be implemented and updated.
Adaptivity can therefore more straightforwardly be implemented in a quasicontinuum
framework.

In the presented numerical examples and the comparison with the energy-based cluster
summation rule [36], a Lennard-Jones pair potential is used for the interactions between
the atoms. In case a larger interaction radius is used, it is expected that the accuracy
remains rather similar. The reason is that the contribution of the Lennard-Jones pair
potential to a site-energy is rather insignificant, if the distance between the two atoms is
large. In case multibody potentials are used, the accuracy is expected to remain similar
as well, since the central summation rule is based on energy-minimization instead of
force-equilibrium. This ensures that the correct dependance of a sampling atom’s site-
energy on the displacements of the sampling atoms and the sampling atom’s nearest
and next-to-nearest neighboring atoms is captured.

The central summation rule has in common with the local-nonlocal summation rule [108,
114] that in the limit of large interpolation triangles and tetrahedra it equals the local
summation rule using the Cauchy-Born rule. This is a result of the fact that in large
interpolation triangles all neighboring atoms of the central sampling atoms are located in
the same interpolation triangles as the central sampling atoms. Furthermore, since the
weight factors (wi) of the central sampling atoms are large in large triangles compared
to the weight factors of the discrete sampling atoms (wi = 1), the discrete (corner)
sampling atoms’ contribution becomes negligible. A natural and smooth transition is
thus obtained from a fully nonlocal method in refined regions to an almost local method
in coarse regions.

The central summation rule combines most advantageous characteristics of the two main
classes of summation rules:



5.8 Conclusion 105

• no internal interface occurs (as in the cluster summation rules),

• it uses almost as few sampling atoms as the local-nonlocal rules,

• it is more accurate than the cluster summation rules.

A disadvantage is that, as in the cluster summation rules, to ensure that no internal in-
terface occurs, the site-energies of all sampling atoms must be computed nonlocally and
thus relatively large lookup tables are necessary. However, this seems to be inevitable
for summation rules in which internal interfaces are to be eliminated.





Chapter six

A multiscale quasicontinuum method for

dissipative lattice models and discrete

networks1

Abstract

Lattice models and discrete networks naturally describe mechanical phenomena at the
mesoscale of fibrous materials. A disadvantage of lattice models is their computational
cost. The quasicontinuum (QC) method is a suitable multiscale approach that reduces
the computational cost of lattice models and allows the incorporation of local lattice
defects in large-scale problems. So far, all QC methods are formulated for conservative
(mostly atomistic) lattice models. Lattice models of fibrous materials however, often
require non-conservative interactions. In this chapter, a QC formulation is derived that
is based on the virtual-power formulation of a non-conservative lattice model. By using
the virtual-power statement instead of force-equilibrium, errors in the governing equa-
tions of the force-based QC formulations are avoided. Nevertheless, the non-conservative
interaction forces can still be directly inserted in the virtual-power QC framework. The
summation rules for energy-based QC methods can still be used in the proposed frame-
work as shown by two multiscale examples.

1 Reproduced from: L.A.A. Beex, R.H.J. Peerlings, M.G.D. Geers, A multiscale quasicontinuum
method for dissipative lattice models and discrete networks, In preparation.
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6.1 Introduction

Structural lattice models and discrete networks that include trusses or beams are fre-
quently used to represent discrete microstructures of fibrous materials [12,20,24,100,
110,113,123,130]. Likewise, for investigating the mechanical responses of other mate-
rials, e.g. concrete and polymers, lattice models and discrete networks are often ap-
plied [28,62,71,92,102,128]. The advantage of discrete models is that they naturally
incorporate discrete phenomena occurring in meso- and microstructures of many mate-
rials. Individual microscale events such as fiber failure and bond failure, precursors for
macroscale failure, can be readily incorporated in lattice models, whereas they are not
easily included in continuum models. Even the incorporation of global mechanisms such
as large rotations may lead to relatively complex continuum models and finite element
implementations [96,117], whereas they are naturally captured by truss networks.

A clear disadvantage of lattice models is the required computational effort for large-scale
physically relevant models. This large computational cost essentially results from the
construction of the lattice model at the meso- or microscale. Consequently, if lattice
models are being used for macroscopic computations, a large number of lattice points
is involved. First, this leads to a large number of degrees of freedom (DOFs) making
the system of equations computationally expensive to solve. Secondly, the construction
of the system of equations is computationally expensive because all lattice points must
be visited for this [9].

An approach to reduce the computational cost of lattice models is the quasicontinuum
(QC) method. The QC method has been originally developed for the reduction of
atomistic lattice models in [114] and has been widely used to investigate phenomena such
as intergranular fracture [82] and nanoindentation [64,68,115]. In a previous study [9]
the applicability of the QC method has been demonstrated for lattice models of fibrous
materials that employ elastic trusses. An overview of several QC frameworks is given
in [83].

The benefit of the QC method is its intrinsic multiscale character, allowing the accurate
incorporation of local lattice defects in large-scale problems. This is not trivially pos-
sible with multiscale methods that are based on computational homogenization [113].
Moreover, the QC method entirely relies on the microstructural lattice topology, unlike
approaches such as those in [125] and [38], that need a continuum description in ad-
dition to the discrete model. The fact the QC method does not require a continuum
description is an advantage, since continuum descriptions for fibrous materials tend to
be complex to formulate [96]. Another advantage of the QC method is that a number
of QC frameworks [36,9,11,64] do not require a handshaking region or coupling pro-
cedure between fully resolved domains (in which the exact lattice model is recovered)
and coarse domains (in which an approximation is made). Several other multiscale
approaches require such a coupling procedure [38,46,108,125].

The QC method introduces two remedies to reduce the computational cost of lattice
models. First, interpolation is applied to the displacements of the lattice points to
reduce the number of DOFs and thus reducing the size of the governing set of equations.
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In coarse regions, the interpolation triangles are large so that many lattice points are
interpolated. In regions of interest, e.g. around lattice defects, the exact lattice model
is captured by refining the interpolation such that every lattice point corresponds to a
point of the interpolation triangulation (so-called representative point or reppoint).

Secondly, so-called summation rules are used in the QC method to ensure that only a
small number of lattice points (so-called sampling points) needs to be visited to construct
the governing equations, instead of all lattice points. To obtain an accurate solution,
all lattice points in the fully resolved regions are sampling points, while in the coarse
regions only a small number of points is used (e.g. [9,11,127]).

Most QC formulations are based on minimizing the total potential energy of the interpo-
lated system [36,82,108,114]. Also the QC formulation in [9], developed for lattice mod-
els with elastic interactions only, uses this ansatz. Depending on the application, such an
elastic description may be adequate [31,42,48,107,126]. For many applications however,
more advanced descriptions of lattice interactions are required that include dissipation
in the lattice interactions, e.g. by using plasticity [5,12,20,23,32,34,60,86,110,123] or
damage [28]. In these cases, a straightforward minimization of the potential energy
can no longer be employed since the dissipation leads to non-conservative interactions.
Energy-based QC formulations are thus inadequate for structural lattice models with
dissipative interactions.

Existing force-based QC formulations may be appropriate alternatives. The QC formu-
lations that depart from force-equilibrium however [64,68], also appear to be energeti-
cally inconsistent for conservative systems. This has for instance been shown in [36] for
the widely used cluster QC approach [64].

The aim of this chapter is therefore to develop a thermodynamically consistent QC
formulation for non-conservative lattice models. Our point of departure for this is a
virtual-power statement in which the non-conservative forces can be directly inserted.
As a result, the framework is equivalent to energy minimization for conservative lattices,
but its applicability is broader.

Another advantage of using the virtual-power statement is that summation rules pro-
posed in energy-based QC formulations can directly be used in the proposed QC method-
ology. In this chapter, the summation rule for atomistic lattice models as presented
in [11] is used to reduce the computational efforts of the considered lattice model.

The outline of this chapter is as follows. In Section 6.2, the thermodynamics of structural
lattice models with dissipative interaction forces are formulated. The lattice model of
interest is discussed here as well. In Section 6.3, the virtual-power-based QC formulation
is introduced and applied to an elastoplastic lattice model consisting of an equidistant X-
braced truss network with elastoplastic interactions. This fairly simple lattice model is
chosen in order to show the possibilities of the framework. In Section 6.4, two multiscale
numerical examples are simulated to evaluate the accuracy and efficiency of the virtual-
power-based QC method and to illustrate some of key features for fibrous materials.
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6.2 Structural lattice models with non-conservative interactions

It is useful to formulate structural lattice models, as adopted in the QC method, on
a thermodynamic basis. The reason is that most QC methods are based on energy-
minimization and that thermodynamical inconsistencies in sampling points are carried
over to their corresponding lattice points. These inconsistenties can significantly con-
tribute to the inaccuracy of the QC method [36]. The thermodynamics of dissipative
lattice models are therefore first considered. We subsequently particularize the frame-
work to the case of a lattice of elastoplastic trusses and briefly discuss solution methods
for it.

The lattice model studied in this chapter is a two-dimensional equidistant X-braced
network of elastoplastic trusses (see Fig. 6.1). It can be considered as a discrete rep-
resentation of the microstructure of a fictitious fibrous material. A unit cell of the
truss network contains four truss nodes positioned at the locations where the horizon-
tal, vertical and diagonal trusses meet (see Fig. 6.1). At the center of a unit cell, where
the diagonals cross each other, no truss node is present. This means that every truss
node in the network is connected to eight other nodes. The considered simple lattice
is essentially used to show the possibilities of the virtual-power-based QC method for
structural lattice models including dissipative mechanisms.

Figure 6.1: The equidistant X-braced lattice model with elastoplastic trusses as considered in
this chapter. A unit cell of the truss network is marked in black.

6.2.1 Thermodynamics of non-conservative lattice models

The lattice model considered here merely contains trusses. The DOFs of the system
are thus only the displacement components of the lattice nodes. For a solution of the
lattice model, the internal power of the lattice equals the external power:

u̇T intF = u̇T extF ∀u̇, (6.1)
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where u refers to the column matrix containing the components of the displacement
vectors of all n lattice points. The column matrices intF and extF contain the compo-
nents of the resulting internal forces and externally applied forces. In Eq. (6.1) u̇T intF

can be identified as the internal power, intP , and u̇T extF as the external power, extP .

A dissipative lattice model depends not only on a set of the (controllable) kinematic
variables, u, but also on a set of (not directly controllable) internal variables, stored
in column matrix z. The size of this column matrix is Z × 1 and is independent of
the number of kinematic variables, 2n, since it depends on the number of dissipation
mechanisms in the lattice. The energy stored in the lattice, E, thus depends on the
kinematic and internal variables, i.e. E = E(u, z). For a lattice model, the total energy
stored in the lattice, E, can be written in terms of the stored energy per lattice point i,

iE, which can be written in terms of the energy stored per interaction (truss) between
a lattice point, i, and one of its neighbors, j, ijE:

E(u, z) =

n
∑

i=1

iE(u, z) =

n
∑

i=1

∑

j∈iB

1

2
ijE(u, z), (6.2)

where iB contains the neighboring points of lattice point i, which is a subset of the
index set N = {1, ..., n} containing all n lattice points (iB ⊆ N). The factor 1/2
arises because half of the energy ijE associated with the interaction between i and j is
attributed to node i and the other half to j. Using the chain rule, the rate of the stored
energy reads:

Ė = u̇T ∂E

∂u
+ żT ∂E

∂z
. (6.3)

Now the internal power and the rate of the stored energy have been defined, the first
law of thermodynamics can be used to relate them and determine the dissipation. The
first law states that the power performed by a system is the sum of the rate of the stored
energy and the rate of dissipation of the system:

intP = Ė + Ḋ, (6.4)

where Ḋ is the rate of dissipation. Substituting Eq. (6.1) & (6.3) in Eq. (6.4) yields Ḋ
as:

Ḋ = u̇T

(

intF− ∂E

∂u

)

− żT ∂E

∂z
. (6.5)
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Similar to [41], it is now assumed that no dissipation takes place if the internal history
variables, z, which are related to the dissipation mechanisms, remain constant (Ḋ = 0
if ż = 0). To ensure that this requirement is valid for all (controllable) u̇, the term
between brackets in Eq. (6.5) should vanish. The standard expression for the internal
forces results:

intF =
∂E

∂u
, (6.6)

and the rate of dissipation is reduced to:

Ḋ = −żT ∂E

∂z
. (6.7)

Furthermore, the second law of thermodynamics states that the entropy of a system
must remain constant or increase, i.e. Ḋ ≥ 0. If we now introduce a column matrix
with dissipative forces zF = −∂E

∂z
, the following expression is obtained for the dissipation

rate:

Ḋ = żT zF ≥ 0. (6.8)

A dissipation potential, Φ, needs to be formulated as functions of the kinematic and
internal variables (u and z respectively). The dissipation potential can be summed
from the dissipation potential of each lattice point, iΦ, (if dissipation takes place in the
lattice points) or summed from the dissipation potential of each lattice interaction, ijΦ,
(if dissipation takes place in the interactions):

Φ(u, z) =
n

∑

i=1

iΦ(u, z) =
n

∑

i=1

∑

j∈iB

1

2
ijΦ(u, z), (6.9)

Note that this expression entails that each interaction is visited twice (one node on each
side), as is performed for the stored energy in Eq. (6.2).

At this point, the thermodynamical setting for a dissipative lattice model with trusses is
complete, except for the formulation of the stored energy per truss and the formulation
of the dissipation potential per point or interaction as functions of the kinematic, u,
and internal variables, z. Both formulations depend on the specific lattice model of
interest. For a lattice with elastoplastic trusses (see Fig. 6.1), the expressions of the
energy stored per truss, ijE in Eq. (6.2), and the dissipation potential for a truss, ijΦ in
Eq. (6.9), (since dissipation takes place in the trusses for a network with elastoplastic
trusses) are established below.
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6.2.2 Elastoplastic interactions

The formulations of the stored energy per truss and the dissipation potential per truss
are derived here for a truss that is connected to lattice point i and neighboring lattice
point j. However, the subscripts ij are dropped below for ease of notation.

The elastoplastic trusses in the considered lattice are all of the same material with the
same material description. The elastic part of the material description is linear, whereas
the hardening behavior is yet to be defined (in the dissipation potential Φ). First the
stored energy per truss (ijE in Eq. (6.2)) is defined in terms of u and z.

The total axial strain of one elastoplastic truss, ǫ, is split in an elastic part, eǫ, and a
plastic part, pǫ, as follows:

ǫ = eǫ + pǫ. (6.10)

The total strain is taken linear in terms of the elongation, λ:

ǫ = λ − 1. (6.11)

The elongation depends on the kinematic variables, u, according to:

λ =
| j~x + j~u − i~x − i~u|

| j~x − i~x|
, (6.12)

where i~u and j~u are the displacement vectors of nodes i and j respectively. The original
length of the interaction is represented by | j~x − i~x| where i~x is the original position
vector of node i. The internal variables, z, are taken as the plastic strains of all trusses,
i.e. pǫ = z. By inserting pǫ = z and Eq. (6.11) & (6.12) in Eq. (6.10), the following
expression is obtained for the elastic strain:

eǫ =
| j~x + j~u − i~x − i~u|

| j~x − i~x|
− 1 − z. (6.13)

This relation relates the elastic strain of a truss, eǫ, to u and z.

The elastic part of the material description of all trusses is linear. The stored energy of
a truss can then be expressed in terms of eǫ, according to:
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E =
1

2
Y 0A| j~x − i~x| eǫ2, (6.14)

where Y represents the Young’s modulus and 0A the original cross-sectional area. In-
sertion of Eq. (6.13) in Eq. (6.14) leads to the following expression:

E =
1

2
Y 0A| j~x − i~x|

( | j~x + j~u − i~x − i~u|
| j~x − i~x|

− 1 − z

)2

. (6.15)

Now we can define the expression for the local dissipation potential for each truss (ijΦ
in Eq. (6.9), although below we drop subscript ij again). The following formulation is
regularly used to describe the onset of yielding in a 1D system (the axial direction of a
truss):

Φ = | zF | − yF (ξ) ≤ 0, (6.16)

with

zF = −∂E

∂z
, (6.17)

where yF is the yield function. This expression entails that no dissipation (plastic
deformation) occurs if the force zF remains below the corresponding yield force, yF .
The full dissipation potential in Eq. (6.9) depends on the column matrix zF, but each
local term of the dissipation potential only depends on one component of zF, namely zF .
Therefore each local term can be locally determined, as commonly done in elastoplastic
descriptions. The internal history variable ξ, which for all trusses are stored in column
matrix ξ, is introduced for one truss by:

ż = ξ̇
∂Φ

∂ zF
= ξ̇sign( zF ). (6.18)

To ensure a positive or zero rate of dissipation, the following Kuhn-Tucker equations
are imposed for each truss:
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ξ̇ ≥ 0 Φ ≤ 0 ξ̇Φ = 0. (6.19)

The internal history variable ξ is thereby the effective plastic strain of a truss. Note
that since sign(z) = sign( zF ), Eq. (6.8) is satisfied for each individual truss (i.e. each
component of ż and zF) and thus for the entire lattice.

For the hardening behavior of a truss in the lattice the following formulation is used:

yF = 0A 0σ| j~x − i~x|(1 + Hξα), (6.20)

where H and α are hardening parameters and 0σ is the initial yield stress. The same
values are used for all trusses.

6.2.3 Solution procedure

The solution of the lattice can be found by solving Eq. (6.1) while taking into account
the inequality constraints in Eq. (6.19) for all trusses. This system of equations is non-
linear due to the non-linear material description of the trusses (see Eq. (6.20)) and the
fact that we allow large rotations (see Eq. (6.15)). A Newton-Raphson procedure can
be used to solve Eq. (6.1), for which a first-order Taylor expansion is required:

u̇T

(

intF( ∗u, ∗z) + K( ∗u, ∗z)du

)

= u̇T extF ∀u̇, (6.21)

where ∗u and ∗z are the displacement components and the plastic strains of the previous
iteration respectively. The correction to the displacement components computed in the
present iteration is represented by du. The overall stiffness matrix K is defined here as
∂ int

F

∂u
and is thus a second order derivative of the stored energy (since intF is the first

order derivative of the stored energy, see Eq. (6.6)). Note that the inequality constraints
(see Eq. (6.19) for the constraints acting in each truss) must be met as well, which can
be checked locally for each truss of the network.

In the Newton-Raphson scheme, Eq. (6.21) is used to obtain a new estimate of the
displacement components, whereas the new plastic strains are determined from these
newly obtained displacements by the use of the inequality constraints. The latter are
numerically dealt with by a standard return mapping procedure [111,124]. Since each
inequality constraint is related to one local dissipation mechanism (in each truss), each
inequality constraint is treated individually in the solution procedure.
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Although not incorporated in Eq. (6.21), the boundary conditions of the system must
be taken into account. Neumann boundary conditions are present in the external force
column extF and the Dirichlet boundary conditions are incorporated in the displacement
column u. After the system is partitioned in a standard manner, the incremental
solution results for the standard Newton-Raphson procedure.

The system of equations is computationally expensive to solve for large-scale lattice
models (i.e. n is large). A large number of 2n DOFs (displacement components) is
involved, making the first expression in Eq. (6.21) computationally expensive to solve.
Moreover, all n lattice points need to be visited to construct the system of equations in
Eq. (6.21), according to Eq. (6.2), (6.6) & (6.9).

6.3 Virtual-power-based quasicontinuum method

The QC method, developed for (conservative) atomistic lattice models [114], introduces
two remedies to improve the efficiency of direct lattice computations. First, interpola-
tion of the displacements of the lattice points ensures that the number of displacement
components (DOFs) is reduced. Furthermore, summation is used in the QC method
to achieve a more efficient construction of the governing equations. Instead of using
all lattice points to construct the governing equations, an estimate of the governing
equations is obtained by selecting only a small number of lattice points.

6.3.1 Interpolation

Interpolation is introduced in QC methods by imposing an interpolation triangulation
to a lattice model. For the two-dimensional lattice model considered here, an example
of a triangulation is shown in Fig. 6.2. Nodes of the triangles are positioned at chosen
lattice points and the displacements of the remaining lattice points are interpolated
between them. Linear interpolation is generally used as in this chapter, except in [69].
As a result of the interpolation, the displacements of the interpolated lattice points
follow directly from the displacements of the lattice points at triangle nodes. The latter
are therefore referred to as representative points or reppoints (or repatoms if the method
is being used for atomistic lattices). The reppoints, stored in set R, are selected from
all lattice points, i.e. R ⊆ N .

The use of interpolation of the lattice model ensures that the QC method is a true multi-
scale method. Consider for instance Fig. 6.2 in which a number of trusses is significantly
stiffer than the regular trusses. In the region surrounding the stiff trusses significant
displacement fluctuations are expected. Therefore, a fully resolved interpolation grid
is used there to capture these fluctuating displacements, i.e. every lattice point is a
reppoint. The exact lattice model is recovered here, while in the remaining regions the
lattice model is interpolated and many DOFs are eliminated. As a consequence, the
lattice points displace in an affine manner in these coarse domains. Coarse domains
(large triangles) are therefore only allowed to be used in regions with smooth displace-
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Figure 6.2: The X-braced truss network (grey) with an imposed triangulation (red). The blue
bold trusses in the center of the fully resolved region are substantially stiffer than
the remaining grey trusses.

ment fluctuations to ensure sufficient accuracy. The fact that in coarse domains the
displacements are coarse-grained and in the fully resolved domains the displacements
of the individual lattice points are incorporated, gives the QC method its multiscale
character.

The displacement components of all lattice points can be expressed as a function of the
displacement components of the reppoints by the following expression:

u = Ψ ru (6.22)

where ru is the column matrix with the displacement components of the reppoints of
size 2r × 1 for the two-dimensional truss network of interest. Here, r refers to the
number of reppoints. The condensation matrix is denoted by Ψ and its size is 2n× 2r.
It contains the values of the interpolation functions, evaluated at the positions of all
lattice points.

Interpolation directly affects the displacement components, u, of the lattice according
to Eq. (6.22). The interpolated displacements are (C0-)continuous as a result of the
linear interpolation. According to the inequality constraints in Eq. (6.21), the internal
variables follow from the displacements. Consequently, they are only indirectly influ-
enced by the interpolation of u. The internal variables are (approximately) constant
within an interpolation triangle as a consequence of the linear interpolation of the dis-
placements, since they are defined as (plastic) strains, of the order of the gradients of
the displacements (kinematic variables).

By substituting Eq. (6.22) in Eq. (6.21) the formulation of the virtual-power statement
reads:

ru̇T

(

ΨT intF(Ψ ∗ru, ∗z) + ΨTK(Ψ ∗ru, ∗z)Ψd ru

)

= ru̇TΨT extF ∀ ru̇, (6.23)
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where ΨT intF and ΨTKΨ can be identified as the condensed internal force column,
int,rF (size 2r × 1), and the condensed stiffness matrix, rK (size 2r × 2r), respectively.
For the sake of clarity the condensed external force column is not considered in more
detail here and below. The condensed counterparts of the internal force column and
stiffness matrix are formulated as follows:

int,rF = ΨT

n
∑

i=1

∑

j∈iB

1

2

∂ ijE

∂u
, (6.24)

rK = ΨT

n
∑

i=1

∑

j∈iB

1

2

∂2
ijE

∂u2
Ψ. (6.25)

Note that the constraints in all trusses (see Eq. (6.19) for the constraints acting in one
truss) must still be satisfied in the condensed system.

To ensure that the condensed governing equations in Eq. (6.23) adequately approach the
original governing equations in Eq. (6.21), coarse domains (i.e. large triangles) may only
exist in regions with small displacement fluctuations. In these regions, the displacements
are linearly interpolated resulting in an equal virtual power of two neighboring lattice
points in one triangle (ru̇TΨT ∂ iE

∂u
= ru̇TΨT ∂ i+1E

∂u
). This is only valid if the virtual

powers of these two lattice points in the uncondensed system are practically identically
(u̇T ∂ iE

∂u
≈ u̇T ∂ i+1E

∂u
).

As a result of Eq. (6.23) and because r ≪ n, the (condensed) system in Eq. (6.23) is
substantially more efficient to solve than the (uncondensed) system in Eq. (6.21). This is
in correspondence with other QC methods based on conservative lattices. The inequality
constraints for the entire network, which originate from the considered elastoplastic
(non-conservative) lattice, remain unaffected by interpolation. Through interpolation,
a new estimate of the displacements is computationally more efficiently obtained. Yet,
all constraints need to be satisfied individually and still all n lattice points need to be
visited for the construction of the governing equations in Eq. (6.23).

6.3.2 Summation

Now the solution space of the system is reduced by means of interpolation, the first
cause of the large computational effort has been addressed. However, still all n lattice
points must be visited to construct the condensed internal force column, int,rF and the
condensed stiffness matrix, rK.

The remedy adopted in the QC method to avoid accessing all n lattice points is to
access only a small number of s lattice points in order to obtain an estimate of the
condensed virtual power (i.e. the condensed governing equations). This procedure is
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called summation in QC methodologies. The lattice points that are used for this are
referred to as sampling points since they sample the virtual power of the lattice points
in its vicinity. They are stored in set S and are selected from all lattice points (S ⊆ N).

The key principle of summation is that the virtual power of a sampling point i can be
used to represent the virtual power of iw lattice points in the vicinity of the sampling
point (including sampling point i itself). This entails for the governing equations that:

ru̇T

(

int,rsF(Ψ ∗ru, ∗z) + rsK(Ψ ∗ru, ∗z)d ru

)

= ru̇TΨT extF ∀ ru̇ (6.26)

with

int,rsF = ΨT
∑

i∈S

iw
∑

j∈iB

1

2

∂ ijE

∂u
, (6.27)

rsK = ΨT
∑

i∈S

iw
∑

j∈iB

1

2

∂2
ijE

∂u2
Ψ, (6.28)

in which int,rsF and rsK are the summed condensed internal force column and summed
condensed stiffness matrix respectively.

As a result of the presence of the weight factor, iw, the dissipation potential will not
show the same elastoplastic behavior for a truss connected to a sampling point. To
ensure that the elastoplastic behavior of a truss recovers its response in the direct lattice
model (i.e. to ensure equal dissipation), the dissipation potential for the truss between
sampling point i and neighbor j in Eq. (6.16), Φ, needs to be modified to (where we
use the subscript ij again for clarity):

rs
ij Φ = | ijz,rsF | − iw

yF ( ijξ) ≤ 0, (6.29)

since ijz,rsF = iw
∂ ijE

∂ ijz
, where ijz refers to the component of z that is associated with

the truss between points i and j. Eq. (6.29) implies that the yield function yF is to be
weighted equally with the same weight factor iw.

The advantage of using summation is that only a small number of s sampling points
(assuming that s ≪ n) need to be visited to obtain an approximation of the condensed
governing equations, instead of all n lattice points (to determine the condensed gov-
erning equations exactly). In this way, the QC method solves the governing equations
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more efficiently by interpolation and also gains efficiency to construct them. Since the
inequality constraints hold for each truss connected to a sampling point, the inequality
constraints apply to all trusses related to sampling points.

An important advantage of the proposed virtual-power-based QC framework is that
the internal forces are accurately related to all virtual displacements of influence. This
automatically follows from the virtual-power-based framework as was the case for the
energy-based QC frameworks [9,36] which did not take dissipation into account. The
relation between the virtual displacements and the forces is for instance illustrated by
the summed condensed internal force column in Eq. (6.27) in which ∂

∂u
ensures that

stored energy of a truss, represented by ijE, is related to the virtual displacements of
the sampling point itself and also to its neighboring points.

For the summed condensed internal force column in a force-based QC framework [64]
however, the following formulation is used:

int,rsF = ΨT
∑

i∈S

((

iw
∑

j∈iB

∂ ijE

∂ iu

)T

iN

)T

, (6.30)

where for the two-dimensional lattice considered here iu contains the displacement com-
ponents of sampling point i (iu = [u2i−1 u2i]

T ) and iN is of size 2×2n. The components
of iN are given by:

iNhk =

{

1 if (h = 1 & k = 2i − 1) or (h = 2 & k = 2i),

0 otherwise.
(6.31)

Eq. (6.30) illustrates that only the dependence of the stored energy of a truss, ijE, on
the displacement components of the sampling points are considered in the force-based
methods (indicated by ∂

∂ iu
), but not its dependence on the displacement components

of the neighboring points of the sampling points. As a consequence, the accuracy of
force-based QC methods is compromized, whereas this is not the case for the proposed
virtual-power-based QC method in which the same dependence is recovered as in energy-
based QC methodologies. This is explained extensively in [36] for conservative lattice
models.

Now the question arises which lattice points are suitable to serve as sampling points.
The answer to this question results from the requirement that the virtual power of
each sampling point needs to be approximately the same as those of the lattice points
represented by each sampling points. Hence, we need to identify lattice points for
which ru̇T ΨT ∂ iE

∂u
≈ ru̇T

r ΨT ∂ i+1E

∂u
, so that one of them can serve as a sampling point to

represent the others. The number of lattice points that each sampling point i represents,
the weight factor iw, can be determined in different ways and one has to decide if the
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virtual power of the sampling points is established in a local or nonlocal fashion. The
combination of these three issues (which sampling points to select, how to determine iw
and which sampling points are treated locally or nonlocally) is specified in a so-called
summation rule of which several have been proposed [9,11,36,64,114,127]. An overview
is given in [83].

Although the summation rule presented in [9] has been developed for structural lattice
models with only nearest-neighbor interactions (as the truss network considered in this
chapter) the modified version of this summation rule [11], the so-called central sum-
mation rule, is used here. The reason is that less sampling points are necessary in the
central summation rule which leads to an efficient QC method. A disadvantage of the
central summation rule compared to the original summation rule [9] is that it only gives
an estimate of virtual power. As shown in [11] and below in Section 6.4, the accuracy
in the fully resolved regions of interest can be increased by using relatively large fully
resolved regions.

In the central summation rule one internal sampling point is selected in the center
of each triangle to sample all lattice points in the triangle and on top of the triangle
edges (with iw ≥ 1) while the reppoints of the triangle are selected to only represent
themselves (see Fig. 6.3). The reppoints are selected as discrete sampling points (with

iw = 1) so that in the fully resolved regions the exact lattice model is recovered. In
case all lattice points in a triangle are located at triangle edges and triangle nodes, no
internal sampling node is selected and all lattice points of the corresponding triangle are
selected as discrete sampling nodes to overcome metastable solutions [11]. Furthermore,
the virtual powers of all sampling points are computed in a nonlocal fashion so that no
internal interface occurs, as for instance in the QC methods presented in [114] and [108]
and other multiscale approaches [38,125].

Figure 6.3: Schematic representation of the central summation rule applied to the X-braced
truss network. The thick, blue trusses in the fully resolved region are substantially
stiffer than the regular trusses. Black dots are discrete sampling points (with

iw = 1) and large black dots are internal sampling points (with iw ≥ 1). The
neighboring nodes of the sampling nodes that must be taken into account in the
nonlocal computation are not highlighted.
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6.4 Numerical examples

In this section, the virtual-power-based QC framework including the central summation
rule [11] is applied to two numerical examples to illustrate the computational gain and
accuracy that can be achieved. The elastoplastic lattice model of Section 6.2 is used
in the examples which have a true multiscale character, since large-scale networks with
local adaptations are considered. The examples are set up in a dimensionless form.

6.4.1 Problem statement

The lattice spacings in horizontal and vertical direction are set to 1. The length of the
diagonal trusses is thus

√
2. The lattice model contains 100 × 100 unit cells (20,402

DOFs). The parameters of the trusses’ material behavior are presented in Table 6.1,
corresponding to a purely elastic response up to a strain of 1%. The use of these
parameters results in a smooth increase of plastic deformation for strains larger than
1% (see ahead to the left image in Fig. 6.7 for the response of a unit cell).

Table 6.1: Dimensionless material parameters.

Y 1
0A 1
0σ 0.01
H 10
α 0.5

In the numerical examples, a stiff region of 6×6 unit cells is introduced at the center of
the lattice by modelling the trusses in this square substantially stiffer than the regular
trusses. The Young’s modulus of these trusses is therefore increased by a factor of 100
and a large initial yield stress is used so that no plastic deformation occurs in the stiff
region. The local stiff region in the lattice model can be regarded as a hard particle or
region inside a fibrous material. An example can for instance be the locally thermally
bonded material investigated in [53] or an electronic textile with a light-emitting-diode
mounted on it [12].

As a result of the local stiff region, large displacement fluctuations are expected near this
domain so that a fully resolved region is required in and around it. The displacement
fluctuations in the remaining domain are expected to be significantly smaller so that
coarse triangles can be used. This results in a true multiscale example that forms a
representative test case for the virtual-power-based QC method.

The local influence of this stiff region on the lattice is investigated for uniform loading
using periodic boundary conditions [66]. It can thus be considered as a representative
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volume element in a periodic structure. To this end, the cross-sectional area of the
trusses of which both lattice points are located on the model edges is only half of the
area of the other trusses. Uniform deformation is applied in horizontal direction up to a
strain of 10%. The maximum strain is reached in 100 increments in the QC simulations
as well as in the direct lattice computations. Note that in the direct lattice computation,
used to evaluate the QC framework, the boundary conditions are directly applied to the
lattice points (truss nodes), whereas they are applied to the reppoints only in the QC
model.

6.4.2 Computational efficiency

Four different triangulations are used to investigate the smallest possible size of the
fully resolved region that still gives sufficiently accurate results (see Fig. 6.4). The fully
resolved region is centered around the central stiff region since this is the region of
interest where significantly fluctuating displacements occur. The coarse domain is kept
similar (i.e. a similar coarseness) in the four triangulations so that only the influence
of the size of the fully resolved region is investigated. Another reason to keep the
coarse domain as coarse as possible is that the refinement of the coarse domain leads
to a relatively large extra number of reppoints and sampling points for only a limited
increase of the accuracy [9].

The diagram in Fig. 6.4 shows that the number of reppoints and sampling points of
the four triangulations is only 5-20% of the number of points used in direct lattice
computations. This significant reduction of the direct lattice computation indicates
that the reduction strategy proposed in the QC method is efficient for lattice models.
Especially considering that in this case study the coarse domain (in which the reduction
takes place) is relatively small compared to the fully resolved domain. Cases in which
significantly larger coarse domains are present, are widely existing. An example may
be if local failure occurs in large-scale models, as in [46].

6.4.3 Accuracy

Results of the direct lattice computation and QC simulation for the triangulation with
a fully resolved region of 14 × 14 unit cells are presented in Fig. 6.5. The results of
the trusses that are not shown in the top-right image of Fig. 6.5 belong to the summed
lattice points. This means that they are represented by the internal sampling points.

The results predicted by the virtual-power-based QC method adequately correspond to
those of the direct lattice computation for uniform deformation. The horizontal trusses
on the left and right of the stiff region experience large plastic strains in tension, while
the vertical trusses above and below the stiff region are plastically more compressed than
the other vertical trusses. The trusses with the maximum plastic strains are located at
the four corners of the stiff region.



124 A QC method for dissipative lattice models

14x14 20x20 26x26 32x32
0

5

10

15

20

Fully resolved region

Figure 6.4: The four triangulations used to investigate the influence of a stiff region in the
lattice. For clarity, trusses are not shown. Red circles represent internal sampling
points (iw ≥ 1) and blue crosses represent discrete sampling points (iw = 1).
The triangulations have fully resolved regions of 14 × 14 (top-left), 20 × 20 (top-
right), 26 × 26 (middle-left) and 32 × 32 unit cells (middle-right). A zoom of the
fully resolved region with 14 × 14 unit cells can be seen in the bottom-left image.
The diagram on the bottom-right shows the number of reppoints (black bars) and
sampling points (white bars) relative to the total number of points for the four
triangulations.
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-0.04 0 0.12

Figure 6.5: The plastic strains in the trusses at the maximum uniform deformation computed
by the direct lattice computation (left) and the virtual-power-based QC computa-
tion (right) for the triangulation with a fully resolved region of 14 × 14 unit cells
(see Fig. 6.4). The triangulation is not shown. The top images show the entire
models and the bottom images show zooms of the fully resolved region around the
stiff region (white).

To evaluate the accuracy of the QC results in a quantitative manner, the plastic strains
at maximum deformation of twelve trusses are considered in more detail. The twelve
interactions of interest are shown on the left in Fig. 6.6. The local average relative error,
relē, for a given triangulation is based on the following expression:

relē =
1

12

12
∑

i=1

∣

∣

∣

∣

qc
i v − dlc

i v
dlc
i v

∣

∣

∣

∣

· 100% (6.32)

where iv represents the variable of interest (the axial plastic strain) of truss i. The
superscript qc refers to the solution of the virtual-power-based QC model for a particular
triangulation and superscript dlc refers to the solution of the direct lattice computation.

The local average relative errors of the plastic strains for the four triangulations shown
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Figure 6.6: The twelve interactions selected around the stiff region (left) and (right) the local
average relative errors of the plastic strains of the twelve interactions shown in the
left image for the four triangulations shown in Fig. 6.4.

in Fig. 6.4 are shown on the right in Fig. 6.6. The trend of the local average relative
errors is decreasing for an increasing size of the fully resolved domain. A pronounced
decrease is noticed between the error of the triangulation with a fully resolved domain
of 14 × 14 unit cells and the error of the triangulation with a fully resolved domain of
20 × 20 unit cells. For triangulations with fully resolved regions larger than 20 × 20
unit cells, a relatively small decrease can be observed. This is in agreement with the
results in [11] in which the central summation rule is used for atomistic lattice models.
In the results in [11], the error also decreases significantly if the size of the fully resolved
domain is enlarged so that all local displacement fluctuations occur inside the fully
resolved domain. For a further increase of the size of the fully resolved domain, only
a minor decrease of the error was observed. In [11], it has been shown that if an error
in the fluctuations field remains at the border of the fully resolved domain, the error
remains non-zero. This is in agreement with the local average relative errors in Fig. 6.6.

The most important observation based on Fig. 6.6 is that for the triangulation with a
fully resolved region of 20 × 20 unit cells, the local average relative error is below 5%.
This indicates that this triangulation gives results that may often be considered to be
accurate enough, while the computational cost is low (see Fig. 6.4). A triangulation
with a larger fully resolved region can be used if a larger accuracy is required, but this
is at the expense of the computational efficiency.

6.4.4 Textile-like lattice model

To illustrate that the virtual-power-based QC framework picks up trends if the lattice
model is changed, the Young’s modulus of the diagonal trusses is next decreased by a
factor of 10. In this way the mechanical response of the lattice more or less corresponds
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to a general response of lattice models for woven fabrics [12,107]. In such lattice models,
the relatively stiff horizontal and vertical interactions represent two families of yarns and
the compliant diagonal trusses represent the rotational stiffness between the two families
of yarns. Except for the stiffness of the diagonal trusses, all other model parameters and
boundary conditions are the same as before. The stiff region in this case may represent
a light-emitting-diode placed on a patch of electronic textile [12].

The homogenized stress-strain responses of a unit cell of the textile-like lattice model is
compared to the response of the original lattice on the left in Fig. 6.7. The initial stiffness
(during macroscopic uniform deformation) reduces to approximately 80% of the original
stiffness. The initial stiffness during macroscopic shear deformation however decreases
to approximately 10% of the original stiffness (not shown here). This is caused by the
fact that during macroscopic shear deformation mainly the diagonal trusses are loaded,
whereas during macroscopic uniform deformation the diagonal and vertical trusses are
also loaded through the horizontal trusses.
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Figure 6.7: Left: the homogenized engineering stress-strain responses of an original unit cell
(solid line) and of a unit cell with compliant diagonal interactions (dashed line) for
uniform loading. Right: the plastic strains in the fully resolved region computed
by the virtual-power-based QC model for the triangulation with a fully resolved
region of 20 × 20 unit cells (at maximum applied uniform deformation).

The plastic strains predicted with the virtual-work-based QC framework for the lattice
with compliant diagonal trusses are presented on the right in Fig. 6.7. They show a
clear difference with the previous results. In this case only the horizontal interactions
are plastically elongated. Because the diagonal interactions only yield at an axial strain
of 10% (due to their small Young’s modulus), no yield of the diagonal interactions can be
observed at maximum uniform loading. Because the diagonal trusses only transfer small
loads, the vertical trusses are also not plastically deformed. The virtual-power-based
QC framework is thus well applicable a wide range of dissipative lattice models.
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6.5 Conclusion

Lattice models and discrete networks are appropriate to describe the mechanical be-
havior of fibrous and heterogeneous materials, since they automatically incorporate
mesoscale phenomena that dominate the material response of these materials. Large-
scale computations of lattice models and discrete networks that are necessary for physi-
cally relevant simulations, involve substantial computational efforts since a large number
of lattice points is required. The quasicontinuum (QC) method is a suitable multiscale
approach to reduce the computational efforts of lattice models and discrete networks
because it

• allows the accurate incorporation of the mesoscopic lattice model in regions of
interest,

• completely relies on the lattice model and not on accompanying continuum de-
scriptions that can be complex to construct for fibrous materials and

• does not require a coupling or handshaking procedure (in the proposed frame-
work).

Several QC methods presented so far, are based on energy-minimization and can thus
only deal with conservative lattice models. Many lattice models for fibrous materials
however, are non-conservative. In this chapter, a virtual-power-based QC formulation
is presented that can deal with non-conservative lattice models. Since it is based on
the virtual-power statement, the construction of the governing equations is accurate in
contrast to force-based QC methods which relate the internal forces incompletely to
the virtual displacements of the lattice points. This is caused by the fact that in the
virtual-power-based QC formulation the virtual power is sampled (summed), instead
of the forces. The dissipation involved in non-conservative lattice models is naturally
incorporated by the constraints that follow from the virtual-power statement.

In the numerical examples, two straightforward lattice models with elastoplastic trusses
are used to show the possibilities of the method. The examples are truly multiscale in
nature. Since no continuum descriptions are necessary and no internal interfaces occur,
the QC counterparts of the direct lattice models are surprisingly easy to implement.
The two elastoplastic lattice models show different results that are adequately captured
the virtual-power-based QC framework. Comparisons with the results of direct lattice
computations indicate that the local average relative error in the results of the virtual-
power-based QC method are below 5% for a specific triangulation. Compared to the
direct lattice simulations, the computational efficiency of the QC computation for this
triangulation is 6% in terms of degrees of freedom and 9% in terms of effort to construct
the governing equations (i.e. the number of sampling points). Since the considered
problems are representative studies only, the computational gain is expected to be even
larger for large-scale models in which a higher grade of scale separation is present.
This makes the virtual-power-based QC framework a powerful method to reduce the
computational cost of dissipative lattice models while ensuring a high accuracy in regions
of interest.



Chapter seven

A multiscale quasicontinuum framework for

lattice models with bond failure and fiber

sliding1

Abstract

Structural lattice models incorporating trusses and beams are frequently used to me-
chanically model fibrous materials, because they accurately capture (local) mesoscale
phenomena. Physically relevant lattice computations are however computationally ex-
pensive. A suitable multiscale approach to reduce the computational cost of large-scale
lattice computations is the quasicontinuum (QC) method. This method resolves local
mesoscale phenomena in regions of interest and coarse grains elsewhere, using only the
lattice model. In the previous chapter, a virtual-power-based QC framework is pro-
posed for lattice models that include local dissipative mechanisms. In this chapter, the
virtual-power-based QC method is adopted for lattice models in which bond failure and
subsequent fiber frictional sliding are incorporated - which are of significant importance
for fibrous materials. Bond failure and fiber sliding are nonlocal dissipative mechanisms
and to deal with this nonlocality, the virtual-power-based QC method is equipped with a
mixed formulation in which the kinematic variables, as well as the internal history vari-
ables are interpolated. Previously defined summation rules can still be used to sample
the governing equations in this QC framework. Illustrative examples are presented.

1 Reproduced from: L.A.A. Beex, R.H.J. Peerlings, M.G.D. Geers, A multiscale quasicontinuum
framework for lattice models with bond failure and fiber sliding, In preparation.
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7.1 Introduction

Structural lattice models and discrete networks using trusses and beams are often used
for the mechanical modelling of fibrous materials with discrete fibers and yarns at
the mesoscale and microscale [25,48,53,87,103,100,110,126]. They are typically used
to model biological materials [5,4,22,54,113], paper networks [7,20,67,73,112] and tex-
tiles [12,15,16,60,107,130]. The discrete elements in lattice models naturally represent
the discrete fibers and yarns of these materials. Therefore, lattice models intrinsically
capture discrete mechanical phenomena that occur at the mesoscale or microscale, such
as fiber fracture, failure of interfiber bonds and fiber sliding. Even global phenomena
such as large rotations of yarns are naturally incorporated in lattice models, whereas
these are complex to include in continuum descriptions of fibrous materials [96,117].

Also the mechanical microscale behavior of other materials, for which a discrete repre-
sentation seems not directly relevant, are nowadays often modeled with lattice models
and discrete networks. Reasons are the simplicity and intrinsic discreteness of lattice
models and the ability to capture highly anisotropic behavior. Failure of concrete is for
instance regularly modeled using lattice models [23,72], whereas they are also used to
investigate polymer behavior [59,92,102,128] and delamination of thin films [121].

A disadvantage is the computational cost for physically relevant macroscale lattice com-
putations [72], since lattice models are constructed at the level of the mesoscale or mi-
croscale. Consequently, macroscale lattice computations have a large number of degrees
of freedom (DOFs) which makes their governing equations inefficient to solve. Also the
computational effort to construct the large number of governing equations is significant.

Multiscale techniques can be adopted to increase the efficiency of large-scale structural
lattice computations. In [113], a classical homogenization scheme is used for a lattice
model of a collagen network. Classical homogenization schemes are able to capture
macroscale properties such as the effective stiffness, but they are unable to capture
local discrete events such as the fracture of a single fiber. Individual failure events
are important to include because they are often the precursor of macroscale failure of
fibrous materials. In another multiscale approach, continuum descriptions in coarse
domains are coupled to lattice models in regions of interest. This is for instance used
in [46] to model ballistic impact of a woven textile. Failure of discrete fibers and bonds
can be modeled by such a multiscale scheme in regions where the lattice model is
used. Disadvantages are that the required continuum models for fibrous materials are
not trivial to formulate (as mentioned before) and the non-trivial procedure to couple
continuum regions to discretely resolved lattice regions.

Other multiscale approaches that are promising for structural lattice models (using
trusses and beams) are frameworks that increase the efficiency of atomistic lattice com-
putations. Like structural lattice models, atomistic lattice models include discrete in-
teractions. Several of these [27,38,125] also combine continuum descriptions with lattice
models, also involving a considerable complexity. The quasicontinuum (QC) method
[114] however, only relies on the lattice model and is successfully used for atomistic
lattice computations [68,69,82,83,115]. Conveniently, a continuum description is thus
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not required. Several QC methods still require a coupling procedure for the internal in-
terface between coarse domains and fully resolved domains of interest [108,109,114,115],
but some avoid this internal interface [11,13,36,43,64]. A number of QC methodologies
are therefore potentially convenient for structural lattice models and discrete networks.
In [9], the QC method has first been adopted to deal with (conservative) structural
lattice models.

In the previous chapter, a QC framework has been proposed that is based on the virtual-
power statement of non-conservative lattice models since many structural lattice models
include dissipation. This is in contrast to other QC methods [9,11,36] developed for
conservative atomistic lattice models that are based on energy minimization and cannot
deal with dissipative lattice models. Using a virtual-power approach, non-conservative
lattice forces can be directly inserted in the QC framework proposed in the previous
chapter. This has been shown for a structural lattice model with elastoplastic trusses.

The aim of this chapter is to include interfiber bond failure and subsequent frictional
fiber sliding in the previously proposed virtual-power-based QC framework. The failure
of interfiber bonds (and subsequent fiber sliding) is an important cause of failure of
fibrous materials. Different studies have been carried out to investigate bond failure
in paper networks [45,52,56,67,73,123]. Bond failure for a nonwoven glass structure is
modeled in [100] and fiber sliding (i.e. slippage) in textiles is investigated in [129].

In this chapter, the lattice model for bond failure and subsequent fiber sliding of Chapter
3 is used. Since the model proposed in Chapter 3 only allows small sliding displace-
ments, the expression for the energy stored in the lattice is reformulated to allow large
sliding displacements. Furthermore, a viscous dissipation potential is used, leading to a
continuous dissipation potential, in contrast to the discontinuous dissipation potential
of proposed in Chapter 3.

In the previous virtual-power-based QC methodology, local dissipative mechanisms have
been considered (by using elastoplastic trusses). Bond failure and fiber sliding are
however nonlocal, since they depend on the bond failure and fiber sliding in neighboring
lattice points. To address this nonlocal interaction, not only the displacements are
interpolated - as is normally done in QC methods -, but also the sliding displacements.
The resulting QC framework thereby entails a mixed formulation.

The same type of linear interpolation is used for the sliding displacements (internal
history variables) as for the regular displacements (kinematic variables). Consequently,
the summation rule of Chapter 5, in which only one internal sampling point in each
interpolation triangle is selected, can be used. The extension of the virtual-power-based
QC framework is validated by comparing the results of multiscale QC examples, in
which bond failure and subsequent fiber sliding occur, to the results of direct lattice
computations.

The outline of the chapter is as follows. First, the lattice model of Chapter 3 is refor-
mulated, including a viscous dissipation and an extension that allows for large sliding
displacements. In the subsequent section, the main principles of the virtual-power-based
QC method are considered, as well as the incorporation of the lattice model for bond
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failure and fiber sliding. In Section 7.4, multiscale examples are shown and their re-
sults are compared to those of the direct lattice computations. Finally, conclusions and
recommendations are presented in Section 7.5.

7.2 Lattice thermodynamics for bond failure and fiber sliding

QC frameworks increase the efficiency of lattice computations by means of interpola-
tion of the displacements and summation rules to approximate the governing equations
instead of resolving them exactly - this is discussed in more detail in the next section.
Using summation rules, the potential energy (in this framework the virtual-power) of
only a small number of lattice points (so-called sampling points) is determined, instead
of determining the potential energy (or virtual-power) of all lattice points. Structural
lattice models must be thermodynamically consistent so that no errors occur in the
potential energy (or virtual-power) of these sampling points. The reason is that the
error in a sampling point is also present in the lattice points that are represented by the
sampling point. This can result in a poor accuracy. The formulation of a thermody-
namically consistent structural lattice model including bond failure and fiber sliding is
therefore first considered along the lines of [41], as well as a possible solution strategy.

The lattice model considered in this chapter is an equidistant X-braced network with
linear elastic trusses, see Fig. 7.1. It can be observed that in general every lattice point
(truss node) is connected to eight neighboring points. Lattice points are only present at
crossings of horizontal, vertical and diagonal trusses and not at the locations where only
diagonal trusses cross each other. The trusses that are located on the same line can be
regarded as fibers or yarns of a fictitious fibrous material. An individual fiber or yarn is
thus modeled by a chain of trusses. As a result, fibers are oriented in four directions in
the considered lattice. Some of the fibers in the lattice are of a finite length, which can
be observed in Fig. 7.1 by the disconnected curves. A missing truss can be interpreted
as the end or start of a fiber, or as an initially broken fiber.

In each lattice point four fibers are connected to each other. A lattice point can therefore
be regarded as the collection of four interfiber bonds. Each of these bonds are modeled
such that they can fail, leading to frictional sliding of the fibers (trusses) through the
nodes (see Fig. 7.2). A certain sliding force has to be achieved to accommodate fiber
sliding after bond failure has taken place. After the deformation is removed, the sliding
displacements through the nodes remain present. Consequently, the energy associated
with bond failure and frictional sliding, is lost. This entails that bond failure and sliding
are dissipative mechanisms.

7.2.1 A thermodynamical formulation for non-conservative truss net-
works

The two-dimensional lattice model in Fig. 7.1 only contains trusses. The kinematic
variables are the displacement components of the lattice points. These are stored in
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Figure 7.1: Part of an equidistant X-braced lattice model with linear elastic trusses that can
slide through nodes if bonds fail. A number of truss interactions are initially not
present. At these locations, half of a truss remains connected to each node. This
is indicated by the disconnected curves.

j

i

Figure 7.2: A part of a fiber (or yarn) shown in black is modeled by a chain of trusses of
which only the truss between nodes i and j is completely shown. The other trusses
connected to the nodes are shown in grey. The different sliding displacements of
the black fiber through nodes i and j are indicated by arrows.

column matrix u of size 2n × 1. Here, n refers to the number of lattice points of the
entire lattice, which are stored in index set N = {1, ..., n}.
For a thermodynamically consistent lattice model, the internal power equals the external
power for an arbitrary variation of the kinematic variables, which is expressed as follows:

u̇T intF = u̇T extF ∀u̇, (7.1)

where u̇T intF is the internal power, intP , and u̇T extF the externally applied power.
The column matrices containing the decomposed internal forces and external forces are
represented by intF and extF respectively. They are both of size 2n × 1. The internal
power is the rate of energy stored in the lattice, Ė, and the rate of energy dissipated by
the lattice, Ḋ, according to the first law of thermodynamics:

intP = Ė + Ḋ. (7.2)
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For a dissipative lattice model the stored energy is a function of the kinematical vari-
ables, u, and a set of internal history variables, z, i.e. E = E(u, z). These internal
variables are associated with z dissipation mechanisms in the lattice that are stored in
index set Z = {1, ..., z}. Consequently, z is of size z × 1. The rate of the stored energy
can be formulated using the chain rule according to:

Ė = u̇T ∂E

∂u
+ żT ∂E

∂z
. (7.3)

Substitution of Eq. (7.3) in Eq. (7.2) leads to the following expression for the rate of
dissipation:

Ḋ = u̇T

(

intF− ∂E

∂u

)

− żT ∂E

∂z
. (7.4)

Since the second law of thermodynamics requires the dissipation to be constant or
increase, the rate of dissipation can only be zero or positive, i.e. Ḋ ≥ 0. It is assumed
that only a change of the internal history variables leads to a change of dissipation,
i.e. Ḋ = 0 if ż = 0. To ensure that this is the case for any rate of the kinematic
variables, the following relation is formulated for the internal forces:

intF =
∂E

∂u
. (7.5)

The term between brackets in Eq. (7.4) vanishes and the formulation of the rate of
dissipation in Eq. (7.4) reduces to:

Ḋ = żT zF ≥ 0, (7.6)

with

zF = −∂E

∂z
. (7.7)

Now any dissipation potential Φ is allowed as long as Ḋ ≥ 0. The formulation of the
dissipation potential is, together with the formulation of the energy stored in the lattice,
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E, the only ingredient yet to determine. They both depend on the mechanical behavior
to describe and are formulated below for the lattice model including bond failure and
subsequent frictional fiber sliding. These two formulations differ from those proposed in
Chapter 3, where only small sliding displacements are allowed. Moreover, a continuous
dissipation potential will be considered here.

7.2.2 Incorporation of bond failure and subsequent sliding

First, the stored energy, E, is expressed as a function of u and z for the case including
bond failure and fiber sliding. If half of the energies stored in each truss are projected
on node i, its nodal energy, iE, can be expressed as:

iE =
∑

j∈ iB

1

2
ijE, (7.8)

where ijE represents the energy stored in the truss connecting lattice point i and j. The
subset iB (iB ⊆ N) contains the neighboring points of point i and can thus contain a
maximum of eight nodes for the presented lattice model. By considering all n points of
the lattice, the energy stored in the entire lattice, E, can be established according to:

E =
n

∑

i=1

iE =
n

∑

i=1

∑

j∈ iB

1

2
ijE. (7.9)

The mechanical behavior of each truss in the lattice is linear elastic. The Young’s mod-
ulus Y and the cross-sectional area of each truss A are independent of the deformation,
i.e. they remain constant. The same Young’s modulus and area are used for all trusses.
Consequently, the energy stored in a linear elastic truss between points i and j, ijE,
can expressed as follows:

ijE =
1

2
Y A rel

ij L ijǫ
2 =

1

2
Y A rel

ij L

( def
ij L
rel
ij L

− 1

)2

, (7.10)

where rel
ij L is the relaxed length of the truss between nodes i and j, i.e. the length of

the interaction between points i and j that remains after the deformation is removed.
The axial elastic strain acting on the relaxed length of the truss is represented by ijǫ,

which is expressed in terms of rel
ij L and def

ij L, where def
ij L is the deformed length of the

truss between nodes i and j.
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Expressions for the relaxed length, rel
ij L, and the deformed length, def

ij L, are trivially
extracted from the geometry, see Fig. 7.3. The internal history variables, z, are defined
as the sliding displacements that remain after the deformation has been removed (see
Fig. 7.3). Consequently, z = 4n. Based on Fig. 7.3, the length of the interaction
between nodes i and j that remains after deformation is removed, rel

ij L, can be formulated
according to:

rel
ij L = || j~x − i~x|| + zp − zq, (7.11)

where i~x is the original location vector of lattice point i and zp and zq are the pth and
qth component of z respectively. They correspond to the sliding displacements - after
deformation is removed - of the truss (between nodes i and j), through nodes i and
j respectively. Each sliding displacement is a scalar (zp ∈ R ∀p ∈ Z), since sliding
always takes place in the axial direction of the trusses in the lattice model (see Fig. 7.3).
The length of the interaction between nodes i and j during deformation, def

ij L, trivially
reads:

def
ij L = || j~x + j~u − i~x − i~u||, (7.12)

where i~u refers to the displacement vector of lattice point i (see Fig. 7.3).

ia

ia

j

i

zq

zp

o

xjx

u
uj

Figure 7.3: A truss between nodes i and j in the deformed configuration (dashed, grey) and
in the relaxed configuration after sliding has occurred through both nodes (solid,
grey).

By substitution of Eq. (7.11) & (7.12) in Eq. (7.10), the following expression is obtained
that relates ijE - and also E via Eq. (7.9) - to u and z:
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ijE =
1

2
Y A(|| j~x − i~x|| + zp − zq)

( || j~x + j~u − i~x − i~u||
|| j~x − i~x|| + zp − zq

− 1

)2

. (7.13)

At this point, the only missing ingredient of the thermodynamical formulation of the
lattice model is the dissipation potential, Φ. In principal, the same dissipation potential
of Chapter 3 is used, which is a straightforward Coulomb friction law. The disadvantage
of this is the need of an active set strategy that determines which bonds fail, which
depends on user-dependent implementation choices. In this chapter, a viscous friction
law is therefore used. The following dissipation potential is proposed:

Φ =

z
∑

p=1

pΦ =

n
∑

i=1

∑

p∈ iC

pΦ (7.14)

with

pΦ = zFp − cFp

2

π
tanh(κżp) = 0, (7.15)

where subset iC contains the bonds in lattice point i (iC ⊆ Z). Furthermore, cFp is the
pth component of cF, which is the column matrix of size z × 1 containing the critical
force values at which bond failure occurs as well as subsequent sliding. Parameter κ
is a measure for the slope of the arc tangent function that approaches the Coulomb
friction law. The value of 2/π normalizes the arc tangent. The viscous formulation in
Eq. (7.15) implicitly assumes that all bonds are always active and the solution algorithm
is free of user choices. Note furthermore that since sign(zp) = sign( cFp

2
π
tanh(κżp)), the

condition for the dissipation in Eq. (7.6) is met for each bond and thus also for the sum
of all bonds.

The nonlocality of the presented dissipation formulation can be recognized in the term
zFp in Eq. (7.15) for bond p. This term (equal to −∂E/∂zp) depends not only on the
sliding displacement of this bond, zp, but also on the sliding displacements of two bonds
adjacent to bond p which are connected to the same fiber.

7.2.3 Solution procedure

The system of equations resulting from the thermodynamical formulation that need to
be solved are the virtual-power statement in Eq. (7.1) and the dissipation constraints
(see Eq. (7.15)). The governing equations can be expressed according to:
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u̇T intF(u, z) = u̇T extF ∀u̇ (7.16)

zF(u, z) − M(z) cF = 0, (7.17)

where M is a diagonal matrix of size z × z (4n × 4n) that contains the dissipation
equation of each bond on one of its diagonal entries (see also Eq. (7.20) & (7.23) further
on).

Eq. (7.16) & (7.17) can be solved simultaneously using a Newton-Raphson procedure,
requiring a consistent linearization. This results in the following expressions:

u̇T

(

intF( ∗u, ∗z) + intK( ∗u, ∗z) du

)

= u̇T extF ∀u̇ (7.18)

zF( ∗u, ∗z) − M( ∗z) cF +

(

zK( ∗u, ∗z) − ∂M( ∗z) cF

∂z

)

dz = 0, (7.19)

where ∗u and ∗z are the displacement components and sliding displacements of the
previous iteration respectively. The corrections on the displacement components and
sliding displacements are represented by du and dz respectively. The matrices intF,
intK, zF, zK, M and ∂M cF

∂z
are assembled from the contributions of each node:

intF =

n
∑

i=1

int
i F intK =

n
∑

i=1

int
i K

zF =

n
∑

i=1

z
i F

zK =

n
∑

i=1

z
i K

M cF =

n
∑

i=1

∑

p∈ iC

pM
cF

∂M cF

∂z
=

n
∑

i=1

∑

p∈ iC

∂ pM
cF

∂z
, (7.20)

with
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int
i Fh =

∂ iE

∂uh

int
i Khk =

∂2
iE

∂uh∂uk

, (7.21)

where h and k run over all 2n components of u and with

z
i Fp =

−∂ iE

∂zp

z
i Kpq =

−∂2
iE

∂zp∂zq

, (7.22)

where p and q run over all 4n components of z and with

pMpp =
2

π
tanh(κżp)

(

∂ pM
cF

∂z

)

pp

=
∂( pM

cF)p

∂zp

. (7.23)

For clarity the external forces are left out of consideration.

Dirichlet boundary conditions are used for u and z (required for the nonlocal plastic
formulation). Neumann boundary conditions are incorporated in extF. Even though
possible, no Neumann boundary conditions are adopted for the nonlocal plastic formu-
lation. To resolve the viscous terms in M and ∂M cF/∂z in Eq. (7.19), a backward
Euler scheme is used, since implicit schemes are more stable than explicit schemes.

The procedure to simultaneously solve the governing equations in Eq. (7.18) & (7.19)
is computationally inefficient for lattice models with a large number of n lattice nodes.
The reason for this is twofold. First, the total system contains 6n DOFs, of which 2n
DOFs are associated with the displacement components and 4n DOFs with the sliding
displacements. This is a substantial number since n is significant for large-scale lattice
computations. Large systems are inefficient to solve, even if Cholesky decomposition or
an iterative solver is used. Moreover, the effort associated with the construction of the
governing equations in Eq. (7.18) & (7.19) is significant, since all n lattice points have
to be visited according to the formulations in Eq. (7.20).

7.3 Virtual-power-based QC method with a mixed formulation

The QC method is originally developed for large-scale atomistic lattice computations
[114], aiming to remedy the two aforementioned causes of high computational cost.
The QC method uses two reduction steps for this (see Fig. 7.4). First, the number of
displacements is reduced by means of interpolation (see the center image in Fig. 7.4).
Second, the potential energy, or here the virtual-power, (i.e. the governing equations) is
approximated by sampling the potential energy, or the virtual-power, of a small number
of sampling points, instead of determining it exactly by visiting all lattice points (see
the second step in Fig. 7.4). In both reduction steps an error may be introduced that
influences the potential energy, or virtual-power, and thus the obtained solution. If
both steps are performed adequately however, these errors are negligibly small.
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e(interpolation) e(summation)

Figure 7.4: Schematic representation of the two reduction steps in the QC method. In the
left image, the full lattice model is shown. In the center image, a triangulation is
superimposed to the lattice model and in the right image a small number of lattice
points is depicted, which are used to sample the potential energy, or virtual-power
(i.e. the governing equations). During both reduction steps an error, e, may be
introduced.

7.3.1 Interpolation

Interpolation in QC methodologies applies to lattice models by the use of interpolation
triangles (see the center image in Fig. 7.4). The interpolation triangles are spanned
by the same interpolation functions as used in finite element (FE) methods. Conse-
quently, well established techniques developed for FE methods, e.g. adaptive meshing,
can be used in QC methodologies. In general, linear interpolation triangles are used
in QC frameworks. The triangle nodes of the interpolation triangles coincide with a
limited number of lattice points. These lattice points represent the displacement of the
entire lattice and are often referred to as reppoints or repnodes (or repatoms if used for
atomistic lattice models). The remaining lattice points are interpolated between the
reppoints. Consequently, their displacements entirely depend on the displacements of
the reppoints.

The advantage of using interpolation triangles is that in regions in which small displace-
ment fluctuations are expected, the reppoints can be chosen far away from each other.
This results in relatively large triangles in which a large number of lattice nodes are
constrained and a large reduction of displacements takes place. In regions in which large
displacement fluctuations are expected, all the lattice points are selected as reppoints
(triangle nodes), i.e. the exact lattice model is captured in these regions. In Fig. 7.4,
two fully resolved regions are present. One is located in the region where an indenter
makes contact with the lattice and the other is located near a lattice defect (e.g. a failed
truss).

The r reppoints, stored in index set R, are selected from set N containing all n lattice
points, i.e. R ⊆ N . To achieve a substantial computational gain, the number of rep-
points must be significantly smaller than the total number of lattice points (r ≪ n). The
displacements of all lattice points, u, can be expressed as a function of the displacements
of the reppoints, ru, as follows:
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u = uΨ ru, (7.24)

where uΨ is the displacement condensation matrix with size 2n×2r for two-dimensional
lattices. It contains the interpolation functions evaluated at the locations of all lattice
points.

So far, most QC frameworks are used for (conservative) atomistic lattice models [11,36,
64,82,114] including only kinematic variables (u). Here, non-conservative lattice models
are considered that include internal history variables (z) associated with dissipation. In
case the dissipation mechanisms are local, it suffices to use internal history variables that
are constant in (the internal parts of) each interpolation triangle. Consequently, they
are not (C0-)continuous across interpolation triangles, whereas this is the case for the
condensed displacements. This is shown in previous work on the virtual-power-based
QC method [13] for elastoplastic trusses.

In case of a lattice model with bond failure and subsequent frictional sliding, the dissi-
pation mechanisms are nonlocal, because the sliding displacements directly depend on
each other. This can be observed in Eq. (7.17). Since nonlocal dissipation mechanisms
exist here, the internal history variables depend on each other and are not constant
within an interpolation triangle. To allow the internal history variables (z) to vary
within an interpolation triangle, they are interpolated as well. The condensed sliding
displacement can be expressed in terms of the sliding displacements of the reppoints
according to:

z = zΨ rz, (7.25)

where zΨ is the sliding displacement condensation matrix with size z × 4r (4n × 4r)
and rz is the column matrix of size 4r × 1 containing the sliding displacements of the
reppoints. The same interpolation functions evaluated at the locations of all lattice
points are present in zΨ. As a result, the interpolated internal history variables are also
(C0-)continuous of the interpolation triangles. Although the size of zΨ differs from the
size of uΨ, they both contain the same interpolation function evaluations. Consequently,
almost no additional effort is involved in the construction of both zΨ and uΨ, compared
to the construction of uΨ only.

An important advantage of using the same interpolation for the internal history variables
is the fact that no complex interplay between two types of interpolations occurs. Such
an interplay may have a substantial influence on the summation rules. Because the
same interpolation is used, previously proposed summation rules can still be used, as
explained below.

If Eq. (7.24) & (7.25) are inserted in Eq. (7.18) & (7.19), the following formulations for
the condensed governing equations are obtained:
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ru̇T

(

uΨT intF + uΨT intK uΨ d ru

)

= ru̇T uΨT extF ∀ ru̇ (7.26)

zΨT zF − zΨT M cF +

(

zΨT zK zΨ − zΨT ∂M cF

∂z
zΨ

)

d rz = 0. (7.27)

Note that the term zΨT in the terms zΨT zF and zΨT zK zΨ in Eq. (7.27) originates
from substitution of Eq. (7.25) in Eq. (7.6). Furthermore, to ensure that the equality
constraints in the direct lattice model are similar to those for the condensed lattice
model, zΨT is introduced in Eq. (7.27) in the terms zΨTM cF and zΨT ∂M cF

∂z

zΨ.

The terms uΨT intF, uΨT intK uΨ, zΨT zF, zΨT zK zΨ, zΨTM cF and zΨT ∂M
c
F

∂z

zΨ

represent the condensed counterparts of the corresponding expressions in Eq. (7.20).
Like their uncondensed counterparts, they can be assembled by contributions of each
node:

int,rF =

n
∑

i=1

uΨT int
i F int,rK =

n
∑

i=1

uΨT int
i K uΨ

z,rF =
n

∑

i=1

zΨT z
i F

z,rK =
n

∑

i=1

zΨT z
i K

zΨ

rM cF =

n
∑

i=1

zΨT
∑

p∈ iC

pM
cF

∂ rM cF

∂ rz
=

n
∑

i=1

zΨT
∑

p∈ iC

∂ pM
cF

∂z
zΨ, (7.28)

where the superscript r refers to the condensed counterparts of the force columns and
stiffness matrices in Eq. (7.20).

To ensure that the virtual-power of the condensed system adequately approximates
that of the original system, only little difference in the virtual-power of the lattice
points may exist. This entails that large interpolation triangles (i.e. coarse domains)
can only be used in regions with small displacement fluctuations and (in contrast to



7.3 Virtual-power-based QC method with a mixed formulation 143

regular QC methodologies) with small sliding displacement fluctuations. Indeed, linear
interpolation enforces that the virtual-power of a lattice point in a large triangle is
identical to the value in its neighboring point (i.e. ru̇T uΨT ∂ iE

∂u
= ru̇T uΨT ∂ i+1E

∂u
). This

is only allowed if the virtual-power of these lattice points is nearly equal in the direct
lattice model (i.e. u̇T ∂ iE

∂u
≈ u̇T ∂ i+1E

∂u
).

By means of interpolation the number of governing equations is reduced from 6n to 6r.
This makes the condensed system significantly more efficient to solve (assuming that
r ≪ n). However, still all n lattice points need to be visited to construct the condensed
governing equations in Eq. (7.26) & (7.27) compromizing the computational cost.

7.3.2 Summation

The second step proposed in the QC method aims to reduce of the computational
effort to construct the governing equations. Rather than visiting all n lattice points
to construct the governing equations according to Eq. (7.28), only a small number of
s sampling points are selected to sample the virtual-power and thus the the governing
equations (see the right step in Fig. 7.4). This is called summation in QC terminology.
The sampling points, stored in subset S, are selected from all lattice points (ie. S ⊆ N).

As a result of summation, the expressions for the virtual-power and equality constraints
remain the same as in Eq. (7.26) & (7.27). The construction of the force columns and
stiffness matrices changes however. They are now expressed according to:
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i∈S

iw
uΨT int
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∑

p∈ iC

∂ pM
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∂z
zΨ, (7.29)

where iw is the weight factor of sampling point i, which equals the number of lattice
points that are represented by sampling point i (including sampling point i itself). The
superscript rs refers to the summed, condensed counterparts of the force columns and
stiffness matrices. Furthermore, the weight factor iw is introduced in the formulations of
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rsM cF and ∂ rs
M

c
F

∂ rz
to ensure that in the summed, condensed system the same amount

of dissipation occurs as in the condensed system (see Eq. (7.26) & (7.27)).

Summation in the QC method is only computationally beneficial if the number of sam-
pling points is substantially smaller than the number of lattice points in the full lat-
tice model (s ≪ n). Furthermore, to ensure a sufficient accuracy of the QC method
(i.e. to ensure that the summed, condensed governing equations are a good represen-
tation of the condensed governing equations), sampling points must be selected such
that the virtual-power of the sampling points approximates that of the lattice points
they represent. This entails that if for two neighboring lattice points in a large triangle
ru̇T uΨT ∂ iEi

∂u
≈ ru̇T uΨT ∂ i+1E

∂u
, then one of them can be used to sample the virtual-

power of the other lattice point.

The way in which the sampling points are selected, the computation of their weight
factors and the manner in which their potential energy, or here virtual-power, are de-
termined (locally or nonlocally) are established in so-called summation rules. Two
general classes of summation rules can be distinguished. Local-nonlocal summation
rules [82,108,109,114,115] compute the potential energy (here virtual-power) of sampling
points in coarse domains in a local fashion. In the fully resolved region the sampling
points are treated in a nonlocal fashion, so that the exact lattice model is captured in
these regions. Local-nonlocal summation rules come with internal interfaces between
coarse and fully resolved domains. Corrective procedures have been formulated for the
interfaces [108,109], involving additional assumptions.

Nonlocal summation rules treat all sampling points in a nonlocal fashion [9,11,36,43,64].
As a consequence, no internal interface occurs between coarse domains and fully resolved
domains. Therefore, no interface corrections are required. The relatively large lookup
tables that are involved can be considered as a disadvantage, but the fact that no
corrective procedures are required (and updated during remeshing) is a computational
advantage. More information on summation rules can be found for instance in [36,83]
and [11].

The summation rule employed in this chapter is the central summation rule [11], be-
cause it uses a small number of sampling points (s ≪ n) resulting in a high efficiency.
Furthermore, since all sampling points are treated in a nonlocal fashion, no internal
interface occurs. In the central summation rule, only one lattice point near the incenter
of each triangle is selected as an internal sampling point representing all lattice points
inside the triangle and half of those on triangle edges (this number determines its cor-
responding weight factor, iw ≥ 1), see Fig. 7.5. The reppoints are selected as discrete
sampling points, i.e. they only sample themselves (iw = 1). As a result, the exact lattice
model is recovered in the fully resolved regions as desired. Lattice points in triangles
in which no internal lattice points occurs, i.e. all lattice points of a triangle are located
on triangle edges, are selected as discrete sampling points as well (see Fig. 7.5). Hence,
for the central summation rule, it holds that R ⊆ S ⊆ N .

The central summation rule is appropriate to sample the virtual-power in the QC frame-
work presented here, because its fundamental principle also holds for the mixed formu-
lation proposed here. The ansatz of the central summation rule is that, except near
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Figure 7.5: The central summation rule applied to the lattice model (grey) with a triangula-
tion (black) that includes a fully resolved region around three missing horizontal
interactions. The discrete sampling points (with iw = 1) are shown as black dots
and internal sampling points (with iw ≥ 1) as large black dots.

triangle edges [9,11], the potential energies of all lattice points within an interpolation
triangle are equal, because each type of interaction (e.g. the horizontal interactions)
deforms the same inside a triangle due to the linear interpolation used. Since in the
method proposed here, the same linear interpolation is used for the displacements as
well as the sliding displacements, each type of interaction fully inside a triangle deforms
in the same way, which is the main principle of the central summation rule.

7.4 Performance of the QC framework

Two numerical test cases are considered to illustrate the computational gain and ac-
curacy that can be achieved with the proposed QC framework for bond failure and
frictional fiber sliding. Both numerical cases have a true multiscale character since local
mesoscale lattice defects (a small number of initially missing trusses) are present in an
otherwise perfectly regular large-scale network. The numerical examples are formulated
in a dimensionless setting.

7.4.1 Problem description

In both numerical examples the proposed QC method is used for a lattice model con-
taining 99 × 99 unit cells (see Fig. 7.6). The considered lattice model is based on
the equidistant X-braced lattice model with linear elastic trusses as formulated in Sec-
tion 7.2, whereby only horizontal trusses (fibers) can slide through lattice points. The
horizontal and vertical lengths of a unit cell are set to 1 (lattice spacing). Diagonal
trusses are thus of length

√
2. In the lower center of the model, 25 horizontal trusses

are missing, starting from the bottom of the model (see Fig. 7.6). These 25 horizontal
fibers can thus be regarded as initially broken. The fiber (truss) overlengths at these
points are so large that no pull-out occurs in the computations.
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Figure 7.6: Schematic representation of the numerical examples including the adopted trian-
gulation. The boundary conditions on the sliding displacements are shown by
dashed rectangles at the left and right edges. The zoom on the right shows the
central vertical row with missing trusses without interpolation triangles. Diagonal
fiber segments (trusses) are still present.

All bond strengths (and thus also all critical friction forces) are set to 1. This means
that all components of cF in Eq. (7.15) & (7.19) equal 1. Furthermore, the parameter
defining the arc tangent function in Eq. (7.15), κ, is set to 100. The stiffness per unit of
length of all trusses (Y A in Eq. (7.13)) is set to 106 in the first example and to 103 in
the second example. In this way, sliding displacements in a large number of points are
expected in the first example and only a few points are expected to slide in the second
example.

The boundary conditions applied to the model are shown in Fig. 7.6 as well. In the QC
computations the boundary conditions are applied to reppoints and in the direct lattice
computations they are applied to lattice points. It may be clear that the points on the
left edge are fixed in horizontal (x-)direction and vertical (y-)direction (see Fig. 7.6).
The points on the top, bottom and right edge are fixed in y-direction. The points on the
right edge are displaced in horizontal direction. Furthermore, the sliding displacements
of the points on the left and right edges of the model are constrained.

7.4.2 Computational efficiency

The computational efficiency of a QC framework directly depends on the triangulation
used. A fully resolved region is used in the domain in which sliding displacement
fluctuations are expected. This is the case close to the removed trusses, where large
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sliding displacement fluctuations are triggered, since the stiffness of the trusses is large
compared to the bond strength. Furthermore, it is expected that negligible sliding
displacements occur in the region above the centrally removed trusses. Therefore, a
discrete step in the sliding displacements (large sliding displacement fluctuations) is
expected over the entire width of the model at a height of 24 lattice spacings. Since this
cannot be accurately resolved by large interpolation triangles, this region is also fully
resolved.

In the direct lattice computation 10,000 lattice points are involved, resulting in 30,000
DOFs, of which 20,000 DOFs for the displacement components and 10,000 for the
horizontal sliding displacements. In the triangulation in Fig. 7.6, a relatively large
number of reppoints is present because of the relatively large fully resolved domain.
Accordingly, also a large number of sampling points is involved, since every reppoint is
a discrete sampling point as well (iw = 1). In total 1,655 reppoints are present in the
triangulation of Fig. 7.6 and 2,140 sampling points (see also ahead to the right image in
Fig. 7.7). Hence, the computational gain obtained by the QC framework is a factor of
6 in terms of DOFs (associated with the effort to solve the governing equations) and a
factor of 5 in terms of sampling points (related to the computational cost to construct
the governing equations). The expected computational gain is clearly significant, even
though a large part of the model is fully resolved.

7.4.3 Accuracy

The sliding displacements predicted by the direct lattice computation and QC compu-
tation are presented in Fig. 7.7 for an applied macroscopic horizontal strain of 1.5%
(corresponding to an applied horizontal displacement of 1.485 in terms of lattice spac-
ings). The stiffness per unit of length of each truss equals 106. Significant sliding
displacements occur in the domains next to the vertical row of missing trusses. No
sliding displacements are present above this domain.

Fig. 7.7 reveals that the sliding displacements predicted by the QC computation with
the triangulation shown in Fig. 7.6 are similar to those predicted by the direct lattice
computation. This includes the sliding near the missing trusses and the discrete jump
across a horizontal line above them. The accurate solution essentially results from the
use of a fully resolved region where needed.

The sliding displacements predicted by the QC computation in the coarse domain on
the left and right of the vertical row with missing trusses are adequately captured (see
Fig. 7.7). Note that if the sliding displacements would not be interpolated and kept
constant in each triangle (as done for the dissipation variables by [13]), the sliding
displacement field would not be captured accurately. The fact that the sliding displace-
ments are accurately resolved in the coarse domain, is emphasized by the left diagram in
Fig. 7.8, in which the sliding displacements computed by the direct lattice computation
and QC computation are shown along a horizontal line at a height of 13 lattice spacings.

In the right plot of Fig. 7.8 the sliding displacements are shown to be uniform for both
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Figure 7.7: Horizontal sliding displacements in the lattice - stiffness per unit of length of each
truss is 106. Left: direct lattice computation, right: QC computation.
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Figure 7.8: Sliding displacements in the lattice (stiffness per unit of length of each truss 106)
computed by the direct lattice computation (x) and the QC computation (o) along
a horizontal line (left) at a height of 13 lattice spacings, starting from the left edge
(at x = 0) and ending at the vertical row with missing trusses (at x = 49) and
(right) along a vertical line at a distance of 49 lattice spacings from the left edge
of the model, just to the left of the missing trusses (starting at y = 0 and ending
at y = 24).

computations along a vertical line at a distance of 49 lattice spacings from the left edge of
the model. This vertical line is thus (almost) in the center of the fully resolved domain.
These are the relevant sliding displacements, because the fully resolved domains are
typically the domains of interest in QC frameworks. Indeed, local mesoscale phenomena
are typically to be enclosed in fully resolved domains in a QC methodology.

The accuracy of the sliding displacements computed by the QC computation over this
vertical line is investigated in more detail. An average local relative error, relē, is
introduced according to:
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relē =
1
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i∈D

∣
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∣

∣

∣

· 100% (7.30)

where iv represents the variable of interest (i.e. the sliding displacement) in point i and
D is the subset that contains the considered lattice points (D ⊆ R ⊆ S ⊆ N). The
superscript qc refers to the solution of the QC framework and the superscript dlc refers
to the solution of the direct lattice computation. The resulting average local relative
error is only 0.004% for the sliding displacements along the considered vertical line. The
accuracy of the mixed formulation framework is excellent for these sliding displacements
with the adopted model parameters.

In Fig. 7.9 the relative horizontal displacements of the lattice points are presented (in
terms of lattice spacings). The horizontal displacements relative to the defect free
configuration, rel,xu, are determined according to:

rel,xu( i~x) = xu( i~x) − xxE ix, (7.31)

where xxE is the applied overall strain in x-direction and ix is the horizontal component
of the position vector of point i.

 
 

−0.002 0 0.002

Figure 7.9: The relative horizontal displacements in the lattice (stiffness per unit of length
of each truss 106) predicted by the direct lattice computation (left) and the QC
computation (right).

Fig. 7.9 reveals that the minimum and maximum relative horizontal displacements are
located between the center and the edges of the model and not in the center as one might
expect. This results from the fact that sliding occurs in all lattice points associated
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with the first 25 horizontal fibers, starting from the bottom of the model. The QC
computation is able to capture this relative displacement field relatively well, but not
exactly, as can be seen on the right in Fig. 7.9. These displacements are resolved in
relatively large triangles and they do not vary exactly linearly within these triangles.
The accuracy of the displacements is thus not as good as that of the sliding displacements
with this triangulation. Adaptivity - i.e. remeshing of these domains - can be used to
improve the accuracy of the relative displacement field, if these local fluctuations are to
be resolved more accurately.

The predicted sliding displacements for the second case, in which the stiffness per unit
of length is 103, are shown in Fig. 7.10 for the same applied macroscopic horizontal
strain of 1.5%. Sliding displacements occur only in the lattice points in and near the
vertical row of missing trusses due to the substantially smaller stiffness of the trusses.
With a stiffness that is 1000 times smaller than in the first example, significantly larger
truss deformations - requiring substantially larger macroscopic horizontal strains - are
required to obtain substantial sliding in a significant amount of lattice points.

 
 

−0.12 0 0.12

Figure 7.10: Horizontal sliding displacements in the lattice (stiffness per unit of length of
each truss 103) predicted by the direct lattice computation (left) and the QC
computation (right).

The localization of sliding displacements is emphasized in Fig. 7.11, in which the sliding
displacements are shown along the horizontal line at a height of 13 lattice spacings and
along the vertical line at a distance of 49 lattice spacings from the left edge. In the
right plot of Fig. 7.11, it can be noticed that the sliding displacements are non-uniform
over the height. This is caused by the smaller stiffness of the trusses that results in less
uniform deformation.

If the sliding displacements along the vertical line predicted by both computations are
compared, some small discrepancies persist (see Fig. 7.11). The average local relative
error of the sliding displacements along this vertical line, computed by Eq. (7.30), is
larger than in the first example; namely 2.3% with a maximum local relative error of
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5.6% occurring in the lattice point at y = 0. This is however still quite satisfactory in
terms of accuracy.
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Figure 7.11: The sliding displacements in the lattice (stiffness per unit of length of each truss
103) computed by the direct lattice computation (x) and the QC computation
(o) along a horizontal line (left) at a height of 13 lattice spacings, starting from
the left edge (at x = 0) and ending at the initially missing trusses (at x = 49),
and (right) along a vertical line at a distance of 49 lattice spacings from the left
edge of the model, i.e. to the left of the missing trusses (starting at y = 0 and
ending at y = 24).

It is remarkable that the error in the sliding displacements is larger for the second
example, in which non-zero sliding displacements only seem to be present in the fully
resolved domain, whereas in the first example, non-zero sliding displacements are clearly
present in the fully resolved region and coarse domain. This is due to the small sliding
displacements that are present in coarse domains in the second example. The left di-
agram in Fig. 7.11 reveals no sliding displacements in the solution of the direct lattice
computation. However, because the dry friction is modeled continuously in this frame-
work, small sliding displacements are also present here, influencing those in the fully
resolved domain. Separate computations (not shown here) indicate that these sliding
displacements are not linearly distributed in space. Consequently, the mixed formula-
tion framework in which the sliding displacements are linearly interpolated is not able
to fully capture these non-linear small sliding displacements. This explains why the
accuracy in the fully resolved region in the second example is less good compared to
the first example, even though sliding displacements are only noticeable in the fully
resolved domain in the second example.

The relative horizontal displacements, computed using Eq. (7.30), for the second ex-
ample at an applied macroscopic horizontal strain of 1.5% are shown in Fig. 7.12. In
contrast to the first example, they clearly show their minimum and maximum values
close the vertical row with missing trusses. This is caused by the fact that (significant)
sliding is only present in this domain. Since the most pronounced relative horizontal
displacements are present in the fully resolved domain they are generally better cap-
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tured by the QC model than in the first example. However, non-zero relative horizontal
displacements also occur in coarse domains, which are not that accurately captured.
Here as well, adaptive remeshing can be used if such local details are of interest.

 
 

−0.074 0 0.074

Figure 7.12: The relative horizontal displacements in the lattice (stiffness per unit of length
of each truss 103) predicted by the direct lattice computation (left) and the QC
computation (right).

7.5 Conclusion

Lattice models employing trusses and beams can straightforwardly and accurately de-
scribe mechanical mesoscale phenomena of fibrous materials. Bond failure, including
subsequent frictional fiber sliding, is one of these mesoscale phenomena that are impor-
tant for the (macroscale) failure behavior of several fibrous materials. The disadvantage
of lattice models is the computational cost for macroscale (the engineering scale) compu-
tations, because of their solution and construction at the mesoscale. Different multiscale
techniques can be used to decrease the computational effort of lattice models but they all
have their specific scope. In this chapter, the quasicontinuum (QC) method is adopted
for lattice models with bond failure and subsequent fiber sliding. The QC method

• allows the accurate incorporation of the mesoscopic lattice model in regions of
interest,

• completely relies on the underlying discrete lattice model and not on a homoge-
nized continuum description that is difficult to obtain for dissipative fibrous ma-
terials

• does not require a coupling or handshaking procedure (in the proposed frame-
work).
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QC methods are based on (i) interpolation of the lattice displacements to decrease
the number of degrees of freedom and (ii) summation rules in which a small number of
lattice points is sampled to approximate the governing equations. Most QC methods are
based on energy minimization and cannot deal with dissipative mechanisms, which are
intrinsic to lattice models with bond failure and fiber sliding. To this end, the virtual-
power-based QC method proposed in the previous chapter is exploited that can deal with
dissipative (non-conservative) lattice models. In this chapter, the virtual-power-based
QC framework is equipped with a mixed formulation, because bond failure and fiber
sliding are intrinsically nonlocal dissipative mechanisms and the previously introduced
virtual-power-based QC framework can only deal with local dissipative mechanisms.

The internal dissipation variables (the sliding displacements) are interpolated in the
proposed methodology, next to the kinematic variables (the regular displacements),
ensuring their direct mutual coupling. The same interpolation triangles are used for this,
which has the advantage that previously proposed summation rules remain applicable.
Consequently, the new QC framework with the mixed formulation has a similar efficiency
and accuracy as previously defined QC methodologies. This is shown for the predicted
sliding displacements in two multiscale test cases in which local mesoscale defects are
included in an otherwise perfectly regular large-scale lattice.





Chapter eight

Conclusions and outlook

The aim of this thesis was to develop a computational multiscale tool that can predict
the mechanical behavior of fibrous materials. Discrete network models, in particular
those with a periodic structure (i.e. lattice models), have been used in this thesis, be-
cause they are able to capture mechanical mesoscale phenomena of fibrous materials
as a result of their discrete mesostructure. The discrete elements of mesoscale network
models, such as trusses or beams, represent fiber and yarn segments, whereas the nodes
represent interfiber bonds. The proposed computational tool had to be multiscale, since
discrete network models are constructed at the mesoscale, making macroscale, physi-
cally relevant computations expensive. The quasicontinuum (QC) method, originally
proposed for discrete atomistic computations [114], is adopted to reduce the computa-
tional cost of discrete models of fibrous materials in macroscale computations.

The QC method, in contrast to other multiscale approaches, such as computational
homogenization schemes and approaches in which discrete models are coupled to con-
tinuum descriptions, combines the following advantages:

• the mesoscopic discrete model can be used in regions of interest,

• it only requires the discrete model and no accompanying continuum description
and

• coarse domains can be connected to fully resolved domains, in which the mesosopic
discrete model is used, without a coupling or handshaking procedure.

8.1 Summary of the results

In the first two chapters of this thesis, two lattice models of fibrous materials are formu-
lated. The first is constructed for woven fabrics, such as electronic textile. Its formu-
lation guarantees a separate experimental identification of the three families of discrete
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elements by three tensile tests. The predicted mechanical responses are not only sig-
nificantly more accurate than those predicted with the use of continuum descriptions,
but the physical meaning of the material parameters is clearer and large rotations are
naturally incorporated in the lattice model [37,39,96,117,118]. The second lattice model
describes bond failure and subsequent fiber sliding in fibrous materials. It is formulated
in a thermodynamical setting, that allows the methodical investigation of the influence
of mesoscale parameters, such as the fiber length and the bond strength. The investi-
gation of such mesoscale parameters is not trivially performed with continuum models.
The resulting lattice model is a discrete non-local elastoplastic description.

The computational cost of lattice computations is reduced by the QC method in this
thesis. This method uses interpolation to reduce the number of degrees of freedom
(DOFs) and a small selection of lattice points to estimate the governing equations, in-
stead of determining them exactly by regarding all lattice points. Different selection
procedures of sampling points (i.e. summation rules) have been proposed in literature
[36,43,64,83,108,109,114], but in this thesis two new rules are formulated that are based
on a clear comprehension of the relation between the interpolated lattice and the gov-
erning equations. This comprehension leads to a first summation rule in which the
sampled governing equations are exact. Because a relatively large number of sampling
points is regarded in this rule, a second, ’central’ summation rule is proposed that uses
significantly less sampling points. As in the well-known cluster summation rules [36,64],
no interface procedures need to be employed, while it is computationally more efficient
and more accurate than the cluster rules [36,64]. Results in this thesis indicate that the
computational gain achieved by the central summation rule is a factor of 5-20 in terms
of sampling points (effort to construct the governing equations), whereas errors of only
0-5% are observed.

Previously proposed QC methodologies [36,43,64,83,108,109,114] can only deal with
conservative lattice models, because they are only used for (conservative) atomistic lat-
tice computations. They are based on the minimization of the potential energy or on
force equilibrium, that results from energy minimization. Discrete models of fibrous
materials however, often involve dissipation and are thus non-conservative. In this
thesis, a QC framework is proposed that is based on the virtual-power statement of
non-conservative lattice models, so that dissipation can accurately be accounted for.
Consequently, discrepancies in the governing equations of force-based QC frameworks,
that at first sight seem to be suitable for non-conservative lattice models, are avoided.
Because lattice models may include not only local, but also non-local dissipative mech-
anisms, as that for bond failure and subsequent fiber sliding proposed in Chapter 3,
the virtual-power-based QC methodology is also equipped with a mixed formulation.
In the mixed formulation, the kinematic variables are interpolated, as well as the in-
ternal variables related to dissipation. Although it is not necessary to use the same
interpolation for both sets of variables, the advantage of using the same interpolation
is that previously defined summation rules can directly be used. It must be noted that
this also depends on the formulation of the stored energy. A complex interplay between
both interpolations may occur, if they are different from each other, which ultimately
may lead to the necessity to define new summation rules. This will also influence the
computational gain and accuracy observed in this thesis.
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8.2 Application of the virtual-power-based QC method

The virtual-power-based QC frameworks proposed in this thesis can directly be applied
to a number of fibrous materials. A requirement however is that the fibrous materials
can be represented by regular truss networks with local and/or nonlocal dissipative
mechanisms. One example is the electronic textile considered in Chapter 2, that can
be represented by a network of nonlinear elastoplastic trusses. The influence of a stiff
electronic component on the compliant electronic textile is investigated in Chapter 6
using the virtual-power-based QC method, substantially reducing the computational
effort.

The second and last example mentioned here, because it incorporates several mesoscale
mechanisms that also occur in lattice models of other fibrous materials, is paper and
paper materials, such as paperboard and corrugated cardboard. The mechanical be-
havior of paper is generally considered to result from three mesoscale phenomena: (i)
the mechanical response of the individual fiber is elastoplastic [93], (ii) a significant
number of interfiber bonds break [44,52,55,56,67,73], followed by frictional fiber sliding
[52,67] and (iii) a small number of fibers break [73]. Here, the dependence on strain
rate, temperature and moisture are neglected, although they can be incorporated in
lattice models and therefore, most likely also in QC methods. These three mesoscale
phenomena can be captured in the virtual-power-based QC frameworks. Elastoplastic
behavior of fibers and bond failure and subsequent fiber sliding are yet incorporated
in the virtual-power-based QC method. Only fiber failure is not incorporated in the
proposed QC frameworks, but this can possibly straightforwardly be included, since this
has been studied elaborately [26,72,73]. Furthermore, the proposed use of virtual-power
in QC methodologies guarantees a correct incorporation of already proposed fiber failure
models and the dissipation involved.

8.3 Future developments

A topic of great interest is the initiation and growth of local mesoscale phenomena in
fibrous materials, such as consecutive bond failures and fiber failures. If local discrete
events occur in coarse domains in QC methodologies, they cannot properly be described.
Hence, local events are only allowed to take place in fully resolved regions. Because it
is not always known a priori where they take place, an adaptive interpolation and sum-
mation should be used. This is not considered in this thesis, although the summation
rules in Chapter 4 and 5 are proposed such that no internal interface corrections are
present and they therefore also need not be updated during remeshing. Adaptivity has
been studied extensively for the finite element method [58,80,81,90], as well as for QC
methodologies [64,69,83,94,108] and therefore, several starting points can be found to
include this in the virtual-power-based QC frameworks.

The QC methodologies in this thesis only treat regular (periodic) discrete models, al-
though numerous irregular fibrous materials exist [4,20,24]. Regular discrete models
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can to some extent still be used to describe fibrous materials consisting of irregular
mesoscale fiber networks [73], since they at least incorporate the intrinsic discreteness
of fibrous materials. However, irregular discrete models are clearly more suitable for
these materials and cannot be incorporated in the proposed QC frameworks, because the
interpolation enforces an affine deformation to them and the summation rules employ
periodicity.

A future development that will increase the applicability of QC frameworks for fibrous
materials, is thus to establish a QC methodology that can deal with irregular discrete
models. It is questionable if the displacements of all lattice points can be interpolated
for these irregular models, as this might lead to a too stiff response. Possibly, the
displacements of only a small number of lattice points need to be strictly interpolated,
while internal displacements are incorporated for the remaining lattice points that are
consequently interpolated in a ’loose’ sense. Internal displacements have been used for
QC modelling of carbon nanotubes, although to a limited extent, since only one internal
displacement needs to be incorporated for this [94,95]. Another route that may lead to
QC frameworks that can deal with irregular networks, might be to define representative
volume elements to which periodic boundary conditions are applied [4,113]. However,
separation of scales must be valid for this, which is not the case in the transition region
from coarse domains to fully resolved domains in QC triangulations. Hence, this is not
trivially incorporated.

Only trusses are incorporated in the QC frameworks proposed here. A significant de-
velopment that can help to increase the QC method’s applicability is to define QC
variants in which networks of beams can be used. The bending stiffness of individual
fibers may be relevant for several fibrous materials, such as paper [20]. This depends
on the ratio of the length of the fiber segments in between two consecutive bonds and
the cross-sectional area of the fibers. In case the length of the fiber segments is small
compared to their cross-sectional area, the fiber segments need to be modeled as beams.

One possible way to incorporate beams is to interpolate the rotations of the lattice
points, besides the displacements. This will lead to a variant that is akin to Cosserat
theory in continuum mechanics [21]. It is clear that the incorporation of beams (with
rotations) in QC methods that only interpolate displacements is not evident.

Hence, future steps to make the QC method even more compatible with discrete network
models of fibrous materials, are not trivial. However, difficulties in continuum models of
fibrous materials are avoided, as well as the unnatural step to describe a discrete fiber
network with a continuum, that is subsequently discretized with finite elements. More
importantly, the demonstrated advantage of a discrete basis will remain.
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Partitioning of the linearized system

The linearized system in Eq. (3.17) can be reformulated as:

(
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δFs

)

=
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Kuu Kus
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δu
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. (A.1)

Partitioning of this system of equations on the basis of the free-constrained and active-
passive distinctions, as explained in Section 3.3.2, results in:
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By using δuc = 0 and δsp = 0, this system can be simplified to:
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. (A.3)

The equations in this system that correspond to δuc and δsp (the second and fourth
equations) are left out of consideration. This can be done since the solution δuf and
δsa is found by specifying the terms δFu,f and δFs,a and solving the first and third
equations of this system. These equations can be reformulated as:

δFu,f = Kuu,ffδuf + Kus,faδsa

δFs,a = Ksu,afδuf + Kss,aaδsa. (A.4)
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Samenvatting

Structurele roostermodellen en discrete netwerkmodellen bestaande uit staven of balken
worden met regelmaat gebruikt om de mechanica van vezelmaterialen te beschrijven.
De discrete elementen representeren individuele vezels en draden op de mesoschaal op
een natuurlijke manier. Als gevolg daarvan kunnen relevante mesoscopische fenomenen,
zoals de breuk van individuele vezels en bindingen, resulterend in totale, macroscopische
breuk, adequaat in rekening worden gebracht. Zelfs macroscopische fenomenen, zoals
grote rotaties van draden en de resulterende evoluerende anisotropie, worden automa-
tisch gegenereerd in roostermodellen, terwijl ze apart verdisconteerd moeten worden in
continue modellen van vezelmaterialen.

Een ander voordeel van roostermodellen is, dat ze op relatief simpele wijze kunnen wor-
den aangepast, opdat elke familie van discrete elementen de mechanische respons in een
karakteristieke richting van een vezelmateriaal beschrijft. Dit zorgt voor een duidelijke,
experimentele identificatie van de parameters van de elementen. In dit proefschrift is
een dergelijke methode ontwikkeld voor een roostermodel van elektronisch textiel. Een
roostermodel voor het falen van bindingen tussen draden en het eropvolgende glijden
van draden is ook geformuleerd. De thermodynamische basis van dit roostermodel staat
ervoor in dat het op een consistente manier gebruikt kan worden om de effecten van
mesoscopische parameters, zoals de bindingssterkte en vezellengte, op de macroscopische
respons te onderzoeken.

Roosterberekeningen op fysisch relevante, grote schaal zijn rekenkundig duur, omdat
roostermodellen zijn geconstrueerd op de mesoschaal. Hierdoor, vereisen berekeningen
op grote schaal een grote hoeveelheid vrijheidsgraden en uitgebreide inspanningen om
de systeemvergelijkingen op te stellen. Principes van de quasicontinue (QC-)methode
worden aangewend in dit proefschrift om de rekentijd van roosterberekeningen op grote
schaal te verminderen. De QC-methode staat de directe en precieze beschrijving toe
van lokale mesoscopische fenomenen in interessante gebieden (regions of interest), terwijl
elders aanzienlijke besparingen worden gerealiseerd. Een ander voordeel is dat de QC-
methode geheel uitgaat van het roostermodel en geen formulering van een equivalent
continu model vereist.

De QC-methode gebruikt interpolatie om het aantal vrijheidsgraden te beperken en som-
matieregels om de rekentijd die noodzakelijk is voor het opstellen van de systeemverge-
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lijkingen te verminderen. Grote interpolatiedriehoeken worden gebruikt in gebieden
met kleine verplaatsingsfluctuaties. In volledig beschreven gebieden zijn de afmetingen
van de interpolatiedriehoeken dusdanig klein dat het exacte roostermodel wordt gerep-
resenteerd. Sommatieregels worden gebruikt om de bijdrages van alle knooppunten aan
de systeemvergelijkingen te benaderen, waarbij gebruik wordt gemaakt van een klein
aantal knooppunten. In dit proefschrift wordt een sommatieregel voorgesteld die de
systeemvergelijkingen exact bepaalt, hoewel een grote vermindering van het aantal rele-
vante knooppunten wordt bereikt. Deze sommatieregel is efficiënt voor structurele roost-
ermodellen met uitsluitend interacties tussen directe buren, maar hij is inefficiënt voor
atomaire roosterberekeningen die interacties over langere afstanden bevatten. Daarom
wordt nog een tweede, ’centrale’ sommatieregel voorgesteld, waarin beduidend minder
knooppunten worden gebruikt om de numerieke efficiëntie te vergroten, dit ten koste
van de kwaliteit van de benadering.

De QC-methode is oorspronkelijk voorgesteld voor (conservatieve) atomaire rooster-
modellen en is gebaseerd op energieminimalisatie. Roostermodellen voor vezelmateri-
alen daarentegen, zijn vaak niet-conservatief en dus kunnen QC-methodes die gebaseerd
zijn op energieminimalisatie niet simpelweg aangewend worden. Voorbeelden hiervan
zijn het roostermodel voorgesteld voor geweven stoffen en het roostermodel dat het
falen van bindingen tussen draden en het eropvolgende glijden van draden beschrijft.
Daarom wordt een algemener QC-raamwerk voorgesteld dat is gebaseerd op de virtueel-
vermogensbalans van een niet-conservatief roostermodel. Als gevolg hiervan, kunnen
dissipatieve mechanismes worden opgenomen in het QC-raamwerk, terwijl dezelfde som-
matieregels volstaan. De geldigheid van het raamwerk wordt aangetoond voor een
roostermodel met elastoplastische staven. De QC-methode die gebaseerd is op virtueel
vermogen is ook gebruikt voor het roostermodel dat het falen van bindingen tussen
draden en het eropvolgende glijden van draden beschrijft, dat gepresenteerd is in dit
proefschrift. In tegenstelling tot elastoplastische interacties die intrinsiek lokaal zijn,
brengt het falen van bindingen tussen draden en het daaropvolgende glijden van draden
niet lokaal dissipatieve mechanismes mee. Daarom is de QC-methode die gebaseerd is
op virtueel vermogen ook uitgerust met een gemengde formulering waarin niet alleen
de verplaatsingen worden gëınterpoleerd, maar ook de interne variabelen die verbonden
zijn met dissipatie.



Acknowledgements

It may be clear that this thesis would have looked different if I would not have had the
help and support of a number of people.

Als eerste ben ik mijn promotor, prof. Marc Geers, dankbaar voor zijn supervisie in de
afgelopen jaren bij de vele technische details, het overzicht over de mechanica wereld
dat hij met mij heeft gedeeld en de vrijheid die hij mij heeft gegeven. Het was grappig
om te zien hoe hij regelmatig tussen mij en mijn copromotor Ron Peerlings in kwam te
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