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In fractured formations, the vastly different hydraulic properties of fractures and porous 
matrix lead to a considerable mass exchange between fracture and matrix, strongly affect- 
ing the flow and transport conditions in the domain of interest. This plays an important 
role for many environmental applications, e.g. the design of disposal systems for hazardous 
waste. 

In two papers, we display a new numerical concept describing saturated flow and trans- 
port processes in arbitrarily fractured porous media. An equidimensional approach is 
developed using elements of the same dimension for fracture and matrix discretisation. In 
Gebauer et al. (this issue, part I) we introduced a two-level multigrid method based on a 
hierarchical decomposition designed to solve equidimensional fracture-matrix-problems. 
In this paper we will discuss the effect of equidimensionality on the modelling results. 
Furthermore, the influence of the chosen transport discretisation technique will be shown. 

1. I N T R O D U C T I O N  

The simulation of groundwater flow and solute transport behaviour in fractured sub- 
surface systems is of major importance when investigating the longterm safety of legacies 
and waste disposal sites, the remediation of contaminant sites, or the safety of aquifers 
used as drinking-water reservoirs. The complex geometry as well as the vastly differ- 
ent hydraulic properties of fractures and the porous matrix lead to very heterogeneous 
flow and transport conditions. Numerical concepts employed to describe fractured porous 
formations have to take these conditions into account. 

In both parts of this paper, we will present a discrete model concept for flow and 
transport processes in fractured porous media. Steady-state flow and an ideal tracer 
transport are considered. We will introduce an equidimensional approach where fracture 
and matrix are discretized with elements of the same dimension (fig. 1). Compared to the 
classical lower-dimensional formulation, the equidimensional approach allows us to obtain 
flux continuity at the fracture-matrix interface and to determine unique and continuous 
streamlines. 
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Figure 1. Flux in fracture and matrix depending on the model concept. Left: lowerdi- 
mensional formulation. Right: equidimensional formulation. 

Part II of this paper will focus on the effects of equidimensional modelling of tracer 
transport and on transport modelling itself. The transport equation is discretized with 
a modified box scheme based on a method described by Noorishad et al. [9]. It is well 
suited to take the physical properties of the locally governing process into account and 
provides a stable solution while reducing artificial dispersion. The applicability of the 
newly developed model concept will be pointed out by a set of examples. The results of 
the equidimensional approach will be compared with the results of the lowerdimensional 
formulation. We will show the influence of the transport discretisation, and we will 
demonstrate the capability of the two-level multigrid approach introduced in part I. 

2. G O V E R N I N G  E Q U A T I O N S  

In accordance to Gebauer et al. (part I) we consider saturated flow in a confined aquifer. 
Incompressibility of the fluid and nondeformability of the fractured porous medium are 
assumed. Then the continuity equation in combination with the darcy formula yields 
the equation for saturated groundwater flow (part I, chapter 2). As from experimental 
data most often the pressure is obtained instead of the piezometric head, we will use 
the pressure formulation with p - p g ( h -  z), p is the pressure, p the fluid density, 
g the acceleration due to gravity, h the piezometric head and z the geodetic altitude. 
Furthermore, we will restrict ourselves to the steady state case" 

V . ( K f V p )  + p g V - ( K f V z )  + p g f  = 0 (1) 

v_f represents the Darcy velocity, f external sources and sinks and K f  the hydraulic 
conductivity tensor. 

Knowing the velocity field from equation (1), the advectiv-dispersive transport of an 
ideal tracer can be described as follows: 

Oc 
+ v .  - v .  ( D W )  = 0 (2) 

c stands for the tracer concentration, v_v_a for the interstitial velocity and D for the 
effective diffusion tensor defined by Scheidegger [10]. From the mathematical point of 
view, equation (2) inheres a mixed parabolic-hyperbolic character. Dominating dispersion 
induces a stable parabolic behaviour while strong advection leads to the hyperbolic form 
which easily excites oscillations. 
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3. T R A N S P O R T  M O D E L L I N G  

The transport simulations have been carried out with a conventional and a modified 
box scheme. These methods have the advantage of being monotonuous and locally mass 
conservative even on highly unstructured grids [8]. Hence they fulfill an important  crite- 
rion: they avoid the formation of oscillations which may lead to nonphysical results (e.g., 
negative concentrations). A BiCG-STAB procedure with a classical multigrid method as 
a preconditioner has been used to solve the transport discretisation. The transfer of the 
two-level multigrid approach (part I) to transport problems is object of current research 
of the authors. 

3.1. Box  s cheme  w i t h  fully u p w i n d i n g  
The box scheme used here is based on a node centered finite-volume discretisation. 

Different from cell-centered methods it can be applied to any unstructured grid. Each 
element is divided into subcontrol volumes. The fluxes perpendicular to the boundaries 
of the box are determined at the integration points (fig. 2). In the context of a Galerkin- 

_ ~ j ~ i  k ei 
i 

', . . . . . . . . . . . .  ', _ _ = . . 1  

J i-1 i i+1 

integration point 

Figure 2. Patch at node i with box Vi, integration points, shape function N and test 
function W. 

finite-element derivation based on weighted residuals 

/ W . e d V  = O, with e = 7:)(5) and 5 = N .  (3) 

this corresponds to a formulation with the test function (fig. 2, right) 

1 i y z (4) 
w =  o i f  z r 1 8 8  

The approximation 5 - N.5  is determined for the accumulation term and the dispersion 
term by means of linear shape functions (fig. 2, right). For the advection term an upstream 
weighting is carried out (fig. 2, left): 

c = (1 - a~j)cij + aijC~,p with a~j = 1 (fully upwinding) and (5) 

{~ for v o > 0 (6) 
C~,p = c~ forvij  < 0  

cij is the concentration at the integration point of the subcontrol-volume-interface be- 
tween nodes i and j, c~ij is the belonging upwinding coefficient and vii is the corresponding 
velocity vector. The method is of first order accuracy for ~ -- 1 (fully upwindig) [6,8]. 
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3.2. Box scheme with s treamline  orientat ion 
Fully upwinding along the element edges provides the system with artificial diffusion 

which stabilises the solution. As the stabilising diffusion is only needed along the stream- 
lines, we want to minimize the crosswind diffusion. Therefore, we project the upwinding 
coefficient c~0 along the streamline onto the local normal flux across the interface of the 
subcontrol volumes of the corresponding nodes (fig. 3, right). Upwinding is still carried 

Vi Vi 

~ J 

Figure 3. Patch at node i with box Vi. Left: conventional upwinding. Right: projection 
of a0 onto n#. 

out along the element edge: 

c = ( 1 - a # ) c # + a # c i  for v i 3 > 0  (7) 

Projection of c~0 onto the direction of local flux by means of the normal vector nij yields 
c~ij: 

v,3 (8) aij = a0 ~ nij 

To optimise the amount of artificial diffusion along the streamline, the determination of 
a0 is subjected to the local governing physical processes. An overestimation of a0 leads 
to a smearing of the front while an underestimation results in oscillations. The derivation 
of a0 is not straightforward for multidimensional problems. The approach outlined here 
is based on a relationship defined by Noorishad et al. [9] and depends on the Courant- 
and Peclet-number: 

0 for C r .  Pe <_ 2 

a0 = C r - 2 / P e  for Cr Pe > 2 (9) 

Both Courant- and Peclet-number are computed for the n-dimensional space using ve- 
locity and dispersion transformed to local coordinates [3]. Noorishad et al. [9] use a 
Crank-Nicholson-Galerkin method. They reach an order of accuracy of two in space and 
time in areas of dominating dispersion and an order of two in time and of one in space 
elsewhere. The scheme implemented here is implicit in time. It reaches an order of accu- 
racy of two in time and of one in space for dominating dispersion and an order of one in 
space and time elsewhere [8]. 
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4. E X A M P L E S  

The discretisation- and multigrid methods presented in both parts of this paper have 
been realised within the software system MUFTE-UG. UG is a software toolbox provid- 
ing techniques for the numerical solution of partial differential equations [1]. MUFTE 
contains numerous discretisation methods and applications concerning single- and mul- 
tiphase processes [7,2]. For the domain discretisation the mesh generator ART [4,5] in 
combination with the module FRACMESH [8] has been used. ART produces triangular 
meshes of high geometric and combinatoric quality for arbitrarily fractured domains. 

4.1. C o m p a r i s o n  of l o w e r -  and equ id imens iona l  approach  
The effect of equidimensional modelling on the results of tracer simulation is demon- 

strated by the following two examples. Domain A is a rather simple one, a homogeneous 
matrix with an almost verticle fracture (fig. 4, left). Fracture width is e = 0.005[m]. 
Lower and upper domain boundaries are no-flow-boundaries, on the left and the right 
hand side dirichlet conditions are imposed with a pressure difference of Ap = 100[Pal. 
The hydraulic conductivities of fracture and matrix differ by three orders of magnitude. 
Porosity is set to ne = 0.3[-] for the fracture and ne = 0.2[-] for the matrix. Molecular 
diffusion is assumed to be Dm = 1.0. lO-9[m2/s], dispersivities are at = at = 0.01[m] 
in the matrix and at = 0.1[m], at = 0.001[m] in the fracture. Tracer enters the domain 
across the left hand side boundary for 9960[s] with a concentration of 1.O[kg/m3]. 

Fig. 4 shows domain A with the coarse grid (left) and the pressure distribution which is 
very similar for the lower- and equidimensional approach at the pictured scale. Neverthe- 
less, the influence of the 2d-fracture on the tracer distribution is obvious when comparing 
the results in fig. 5. 
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Figure 4. Left: domain A with fracture. Right: pressure distribution. 
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Figure 5. Tracer distribution after 24000[s]. Left: 1d-fracture. Right: 2d-fracture. 
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Domain B is shown in fig. 6. A fracture network is surrounded by a homogeneous 
matrix. Boundary conditions and material properties are chosen just  as for domain A. 
The fracture width is set to e - 0.01[m]. Fig. 6 pictures the fractured domain with 
the pressure distribution and the velocity distribution in the uppermost fracture crossing. 
The vector plot indicates that the flux is not only moving from the lower left into the 
lower right fracture of the crossing but that there is a certain amount of mass driven into 
both the upper fractures of the crossing. This effect cannot be handled with l d-fractures. 
Consequently, much more tracer is moving into the dead end fractures (that is, in the 
upper fractures of the crossing) when using the equidimensional approach (fig. 7). 
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Figure 6. Domain B. Left: fractures, pressure distribution. Right" velocity distribution 
in upper fracture crossing. 
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Figure 7. Tracer distribution after 10000Is]. Left: ld-fractures. Right: 2d-fractures. 

4.2. Comparison  of upwinding strategies 
To demonstrate the influence of the upwinding strategy used for transport modelling, 

fully upwinding (fu) and streamline orientation (so) are both applied to the example of 
domain A for different multigrid levels. The fully upwinding scheme has been used up 
to level 4 (which means, after all, that the coarse grid depicted in fig. 4, left, has been 
refined four times), the streamline orientation scheme up to level 3. Fig. 8 shows the tracer 
distribution after 24000[s] for both upwinding strategies applied to level 2. Apparently, 
with streamline orientation we get a steeper front approximation and a higher peak. This 
can be expected as most of the domain is matrix, allowing for only small velocities and 
therefore leaving the box method to second order accuracy. Scanning the tracer profile 
after 24000[s] and the breakthrough curves from the right hand side domain boundary 
in fig. 9, it can be seen that the curves not only converge towards a certain value but 
that using streamline orientation on level 2 leads to a better approximation than fully 
upwinding on level 4. 
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Figure 8. Tracer distribution after 24000[s]. Left" fully upwinding (fu). Right: streamline 
orientation (so). 
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Figure 9. Left: tracer profile at y=0.3[m]. Right" breakthrough curves. 

4.3. Convent iona l  mul t igr id  and hierarchical  d e c o m p o s i t i o n  
Domain B has been chosen to show the capability of the two-level multigrid approach 

introduced in part I of this paper. Material coefficients and boundary conditions are as 
before. The fracture width is set to e = 1.0.10-4[m].  Fig. 10 represents the pressure 
distribution computed on grid level 3. It is obvious that the BiCG-STAB using a conven- 
tional multigrid method as a preconditioner yields a wrong solution while the problem 
solved with the two-level multigrid approach remains stable. 
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Figure 10. Pressure distribution. Left: conventional multigrid. Right" hierarchical de- 
composition. 

5. C O N C L U S I O N S  

We have introduced a new numerical concept to describe flow and transport processes 
in fractured porous media. The equidimensional approach enables flux continuity at the 
fracture-matrix interface, streamline tracing and a better approximation of the velocity 
field. This is most important as the velocity is a very sensitive parameter to tracer trans- 
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port. The two-level multigrid method has turned out to provide reliable solutions for 
decreasing fracture width. Future work will focus on employing h-adaptive refinement, 
the transfer of the two-level multigrid approach to the transport problem and the devel- 
opment of particle methods for the equidimensional transport simulation. 

We thank the Deutsche Forschungsgemeinschaff (DFG) for the funding of this project 
(see Neunhduserer et al. [8]). 
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