3,299 research outputs found

    Autonomous 3D object modeling by a humanoid using an optimization-driven Next-Best-View formulation

    Get PDF
    International audienceAn original method to build a visual model for unknown objects by a humanoid robot is proposed. The algorithm ensures successful autonomous realization of this goal by addressing the problem as an active coupling between computer vision and whole-body posture generation. The visual model is built through the repeated execution of two processes. The first one considers the current knowledge about the visual aspects and the shape of the object to deduce a preferred viewpoint with the aim of reducing the uncertainty of the shape and appearance of the object. This is done while considering the constraints related to the embodiment of the vision sensors in the humanoid head. The second process generates a whole robot posture using the desired head pose while solving additional constraints such as collision avoidance and joint limitations. The main contribution of our approach relies on the use of different optimization algorithms to find an optimal viewpoint by including the humanoid specificities in terms of constraints, an embedded vision sensor, and redundant motion capabilities. This approach differs significantly from those of traditional works addressing the problem of autonomously building an object model

    Active Vision for Scene Understanding

    Get PDF
    Visual perception is one of the most important sources of information for both humans and robots. A particular challenge is the acquisition and interpretation of complex unstructured scenes. This work contributes to active vision for humanoid robots. A semantic model of the scene is created, which is extended by successively changing the robot\u27s view in order to explore interaction possibilities of the scene

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic

    Active Vision for Scene Understanding

    Get PDF
    Visual perception is one of the most important sources of information for both humans and robots. A particular challenge is the acquisition and interpretation of complex unstructured scenes. This work contributes to active vision for humanoid robots. A semantic model of the scene is created, which is extended by successively changing the robot's view in order to explore interaction possibilities of the scene

    Multimodal Hierarchical Dirichlet Process-based Active Perception

    Full text link
    In this paper, we propose an active perception method for recognizing object categories based on the multimodal hierarchical Dirichlet process (MHDP). The MHDP enables a robot to form object categories using multimodal information, e.g., visual, auditory, and haptic information, which can be observed by performing actions on an object. However, performing many actions on a target object requires a long time. In a real-time scenario, i.e., when the time is limited, the robot has to determine the set of actions that is most effective for recognizing a target object. We propose an MHDP-based active perception method that uses the information gain (IG) maximization criterion and lazy greedy algorithm. We show that the IG maximization criterion is optimal in the sense that the criterion is equivalent to a minimization of the expected Kullback--Leibler divergence between a final recognition state and the recognition state after the next set of actions. However, a straightforward calculation of IG is practically impossible. Therefore, we derive an efficient Monte Carlo approximation method for IG by making use of a property of the MHDP. We also show that the IG has submodular and non-decreasing properties as a set function because of the structure of the graphical model of the MHDP. Therefore, the IG maximization problem is reduced to a submodular maximization problem. This means that greedy and lazy greedy algorithms are effective and have a theoretical justification for their performance. We conducted an experiment using an upper-torso humanoid robot and a second one using synthetic data. The experimental results show that the method enables the robot to select a set of actions that allow it to recognize target objects quickly and accurately. The results support our theoretical outcomes.Comment: submitte
    corecore