283 research outputs found

    Game Theory Approaches in Taxonomy of Intrusion Detection for MANETs

    Get PDF
    MANETs are self configuring networks that are formed by a set of wireless mobile nodes and have no fixed network infrastructure nor administrative support. Since transmission range of wireless network interfaces is limited, forwarding hosts may be needed. Each node in a wireless ad hoc network functions is as both a host and a router. Due to their communication type and resources constraint, MANETs are vulnerable to diverse types of attacks and intrusions so, security is a critical issue. Network security is usually provided in the three phases: intrusion prevention, intrusion detection and intrusion tolerance phase. However, the network security problem is far from completely solved. Researchers have been exploring the applicability of game theory approaches to address the network security issues. This paper reviews some existing game theory solutions which are designed to enhance network security in the intrusion detection phase. Keywords: Mobile Ad hoc Network (MANET), Intrusion detection system (IDS), Cluster head, host based, Game theory

    Collaborative Profile Assessment to Secure MANET by DDOS Attack

    Get PDF
    In the Mobile Ad-hoc Network, nodes bind together in the centralised authority's absence because reliability is one of the main challenges. The MANETS protective architecture provides some consequential problems due to the specific features of MANETS. The DDoS attack in the network is not quickly detectable. A management infrastructure that guarantees extensive security and the required network performance from attacks must be developed to overcome the barriers. Direct methods cannot be found successfully in mobile ad hoc networks in which network topology differs animatedly. Different DDoS security systems boost the network's output in front of an attacker to deactivate mismanagement, like NTRS. In this study, the Distributed Profile Evaluation Mechanism (DPEAP) DDoS Attack Effect in the Network proposes that compromise packets tossed out of the network beyond the network's capacity. The NTRS was a modern methodology in the study, and the DPEAP suggested is a new technique. The DPEAP identifies the attacker's behaviour by matching an attacker's profile with the ordinary nodes on the network, provided that the Node Profile is regular in the foaming of the proper network data delivery. The DPEAP then declare that the attacker's network has no hazard. In contrast with NTRS in MANET, the DPEAP method is stable and efficient

    An Agent Based Intrusion Detection Model for Mobile Ad Hoc Networks

    Get PDF

    A Novel Cooperative Intrusion Detection System for Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks (MANETs) have experienced rapid growth in their use for various military, medical, and commercial scenarios. This is due to their dynamic nature that enables the deployment of such networks, in any target environment, without the need for a pre-existing infrastructure. On the other hand, the unique characteristics of MANETs, such as the lack of central networking points, limited wireless range, and constrained resources, have made the quest for securing such networks a challenging task. A large number of studies have focused on intrusion detection systems (IDSs) as a solid line of defense against various attacks targeting the vulnerable nature of MANETs. Since cooperation between nodes is mandatory to detect complex attacks in real time, various solutions have been proposed to provide cooperative IDSs (CIDSs) in efforts to improve detection efficiency. However, all of these solutions suffer from high rates of false alarms, and they violate the constrained-bandwidth nature of MANETs. To overcome these two problems, this research presented a novel CIDS utilizing the concept of social communities and the Dempster-Shafer theory (DST) of evidence. The concept of social communities was intended to establish reliable cooperative detection reporting while consuming minimal bandwidth. On the other hand, DST targeted decreasing false accusations through honoring partial/lack of evidence obtained solely from reliable sources. Experimental evaluation of the proposed CIDS resulted in consistently high detection rates, low false alarms rates, and low bandwidth consumption. The results of this research demonstrated the viability of applying the social communities concept combined with DST in achieving high detection accuracy and minimized bandwidth consumption throughout the detection process

    A Lightweight and Attack Resistant Authenticated Routing Protocol for Mobile Adhoc Networks

    Full text link
    In mobile ad hoc networks, by attacking the corresponding routing protocol, an attacker can easily disturb the operations of the network. For ad hoc networks, till now many secured routing protocols have been proposed which contains some disadvantages. Therefore security in ad hoc networks is a controversial area till now. In this paper, we proposed a Lightweight and Attack Resistant Authenticated Routing Protocol (LARARP) for mobile ad hoc networks. For the route discovery attacks in MANET routing protocols, our protocol gives an effective security. It supports the node to drop the invalid packets earlier by detecting the malicious nodes quickly by verifying the digital signatures of all the intermediate nodes. It punishes the misbehaving nodes by decrementing a credit counter and rewards the well behaving nodes by incrementing the credit counter. Thus it prevents uncompromised nodes from attacking the routes with malicious or compromised nodes. It is also used to prevent the denial-of-service (DoS) attacks. The efficiency and effectiveness of LARARP are verified through the detailed simulation studies.Comment: 14 Pages, IJWM

    Survey on Encroachment Sensing Scheme over the MANET

    Get PDF
    MANET (Mobile ad hoc network) is a collection of mobile nodes which dynamically self-organizes in erratic and transitory network topologies. Nodes in MANET can move autonomously in any direction and continuously changing the topology over the period. Each single node works evenly as a source and a recipient. MANET are more inclined towards security issues due to open medium and wide distribution of mobile nodes. It is vital to construct effective intrusion detection processes to preserve MANET from attacks. This paper introduces the various IDS schemes over MANETs, their pros and cons. This paper will be valuable to classify the suitable IDS scheme for a particular attack. DOI: 10.17762/ijritcc2321-8169.16048

    A Prey-Predator Defence Mechanism For Ad Hoc On-Demand Distance Vector Routing Protocol

    Get PDF
    This study proposes a nature-based system survivability model. The model was simulated, and its performance was evaluated for the mobile ad hoc wireless networks. The survivability model was used to enable mobile wireless distributed systems to keep on delivering packets during their stated missions in a timely manner in the presence of attacks. A prey-predator communal defence algorithm was developed and fused with the Ad hoc On-demand Distance Vector (AODV) protocol. The mathematical equations for the proposed model were formulated using the Lotka-Volterra theory of ecology. The model deployed a security mechanism for intrusion detection in three vulnerable sections of the AODV protocol. The model simulation was performed using MATLAB for the mathematical model evaluation and using OMNET++ for protocol performance testing. The MATLAB simulation results, which used empirical and field data, have established that the adapted Lotka-Volterra-based equations adequately represent network defense using the communal algorithm. Using the number of active nodes as a measure of throughput after attack (with a maximum throughput of 250 units), the proposed model had a throughput of 230 units while under attack and the intrusion was nullified within 2 seconds. The OMNET++ results for protocol simulation that use throughput, delivery ratio, network delay, and load as performance metrics with the OMNET++ embedded datasets showed good performance of the model, which was better than the existing conventional survivability systems. The comparison of the proposed model with the existing model is also presented. The study concludes that the proposed communal defence model was effective in protecting the entire routing layer (layer 2) of the AODV protocol when exposed to diverse forms of intrusion attacks
    • ā€¦
    corecore