1,093 research outputs found

    Artificial Neural Network Methodology for Modelling and Forecasting Maize Crop Yield

    Get PDF
    A particular type of “Artificial neural network (ANN)â€, viz. Multilayered feedforward artificial neural network (MLFANN) has been described. To train such a network, two types of learning algorithms, namely Gradient descent algorithm (GDA) and Conjugate gradient descent algorithm (CGDA), have been discussed. The methodology has been illustrated by considering maize crop yield data as response variable and total human labour, farm power, fertilizer consumption, and pesticide consumption as predictors. The data have been taken from a recently concluded National Agricultural Technology Project of Division of Agricultural Economics, I.A.R.I., New Delhi. To train the neural network, relevant computer programs have been written in MATLAB software package using Neural network toolbox. It has been found that a three-layered MLFANN with (11,16) units in the two hidden layers performs best in terms of having minimum mean square errors (MSE) for training, validation, and test sets. Superiority of this MLFANN over multiple linear regression (MLR) analysis has also been demonstrated for the maize data considered in the study. It is hoped that, in future, research workers would start applying not only MLFANN but also some of the other more advanced ANN models, like ‘Radial basis function neural network’, and ‘Generalized regression neural network’ in their studies.Crop Production/Industries,

    Artificial neural network based numerical solution of ordinary differential equations

    Get PDF
    In this investigation we introduced the method for solving Ordinary Differential Equations (ODEs) using artificial neural network. The feed forward neural network of the unsupervised type has been used to get the approximation of the given ODEs up to the required accuracy without direct use of the optimization techniques. The problem is formulated in such a manner that it satisfies the initial/boundary conditions by its construction. The trail solution of the ODE is the sum of two terms. The first term satisfies the initial or boundary conditions, while the second one is the feed forward neural output produced by n number of inputs and h number of hidden sigmoid units. The error gradient has been reduced by applying general learning method to get the desired output.The results have been verified for different problems and the convergence of Artificial Neural Network (ANN) output has been checked for arbitrary points. It may be noted that the interpolation is also possible through this process. The advantage of neuron processor is that the output can be produced to any arbitrary accuracy, while the targets or exact results are unknown or hard to find out

    Neural Network Characterization of Reflectarray Antennas

    Get PDF
    An efficient artificial neural network (ANN) approach for the modeling of reflectarray elementary components is introduced to improve the numerical efficiency of the different phases of the antenna design and optimization procedure, without loss in accuracy. The comparison between the results of the analysis of the entire reflectarray designed using the simplified ANN model or adopting a full-wave characterization of the unit cell finally proves the effectiveness of the proposed model

    Intelligent search for distributed information sources using heterogeneous neural networks

    Get PDF
    As the number and diversity of distributed information sources on the Internet exponentially increase, various search services are developed to help the users to locate relevant information. But they still exist some drawbacks such as the difficulty of mathematically modeling retrieval process, the lack of adaptivity and the indiscrimination of search. This paper shows how heteroge-neous neural networks can be used in the design of an intelligent distributed in-formation retrieval (DIR) system. In particular, three typical neural network models - Kohoren's SOFM Network, Hopfield Network, and Feed Forward Network with Back Propagation algorithm are introduced to overcome the above drawbacks in current research of DIR by using their unique properties. This preliminary investigation suggests that Neural Networks are useful tools for intelligent search for distributed information sources

    Neural Network Models and Interregional Telephone Traffic. Comparative Performance Comparisons between Multilayer Feedforward Networks and the Conventional Spatial Interaction Model

    Get PDF
    (no abstract avilable)Series: Discussion Papers of the Institute for Economic Geography and GIScienc

    Expert Systems and Artificial Neural Networks for Spatial Analysis and Modelling: Essential Components for Knowledge-Based Geographical Information Systems

    Get PDF
    Series: Discussion Papers of the Institute for Economic Geography and GIScienc

    Predicting Phishing Websites using Neural Network trained with Back-Propagation

    Get PDF
    Phishing is increasing dramatically with the development of modern technologies and the global worldwide computer networks. This results in the loss of customer’s confidence in e-commerce and online banking, financial damages, and identity theft. Phishing is fraudulent effort aims to acquire sensitive information from users such as credit card credentials, and social security number. In this article, we propose a model for predicting phishing attacks based on Artificial Neural Network (ANN). A Feed Forward Neural Network trained by Back Propagation algorithm is developed to classify websites as phishing or legitimate. The suggested model shows high acceptance ability for noisy data, fault tolerance and high prediction accuracy with respect to false positive and false negative rates

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks
    corecore