
Agricultural Economics Research Review

Vol. 21 January-June 2008 pp 5-10

Artificial Neural Network Methodology for Modelling and

Forecasting Maize Crop Yield

Rama Krishna Singh and Prajneshu*

Biometrics Division, Indian Agricultural Statistics Research Institute (ICAR), New Delhi - 110 012

Abstract

A particular type of “Artificial neural network (ANN)”, viz. Multilayered feedforward artificial neural

network (MLFANN) has been described. To train such a network, two types of learning algorithms,

namely Gradient descent algorithm (GDA) and Conjugate gradient descent algorithm (CGDA), have

been discussed. The methodology has been illustrated by considering maize crop yield data as response

variable and total human labour, farm power, fertilizer consumption, and pesticide consumption as

predictors. The data have been taken from a recently concluded National Agricultural Technology

Project of Division of Agricultural Economics, I.A.R.I., New Delhi. To train the neural network,

relevant computer programs have been written in MATLAB software package using Neural network

toolbox. It has been found that a three-layered MLFANN with (11,16) units in the two hidden layers

performs best in terms of having minimum mean square errors (MSE) for training, validation, and test

sets. Superiority of this MLFANN over multiple linear regression (MLR) analysis has also been

demonstrated for the maize data considered in the study. It is hoped that, in future, research workers

would start applying not only MLFANN but also some of the other more advanced ANN models, like

‘Radial basis function neural network’, and ‘Generalized regression neural network’ in their studies.

Introduction

Multiple linear regression (MLR) modelling is

a very powerful technique and is widely used to

estimate linear relationship between response

variable and predictors. Its main limitation is that it

is useful only when the underlying relation between

response and predictor variables is assumed to be

“linear”. However, in a realistic situation, this

assumption is rarely satisfied. Also, if there are

several predictors, it is well nigh impossible to have

an idea of the underlying non-linear functional

relationship between response and predictor

variables. Fortunately, to handle such a situation, an

extremely versatile approach of “Artificial neural

networks” (ANNs) is developing rapidly. Cheng and

Titterington (1994) have reviewed the ANN

methodology from a statistical perspective, while

Warner and Misra (1996) have laid emphasis on the

understanding of ANN as a statistical tool.

A distinguishing feature of ANNs that makes

them valuable and attractive for a statistical task is

that, as opposed to traditional model-based methods,

ANNs are data-driven self-adaptive methods in that

there are a few a-priori assumptions about the models

for problems under study. This modelling approach

with ability to learn from experience is very useful

in many practical problems since it is often easier to

have data than to have good theoretical guesses about

the underlying laws governing the systems from

which data are generated. Recently, Zhang (2007)

has discussed various pitfalls in the ANN modelling

work, which must be avoided.

*Author for correspondence, Email: prajneshu@yahoo.co.in

This paper has been drawn from Ph.D. thesis of first author

under the guidance of second author, submitted to Indian

Agricultural Research Institute, New Delhi, in 2007.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7026144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6 Agricultural Economics Research Review Vol. 21 January-June 2008

Most widely used ANN is multilayered

feedforward artificial neural network (MLFANN);

and this paper aims to thoroughly discuss its various

aspects. As an illustration, the methodology has been

applied for modelling and forecasting of maize crop

yield on the basis of four predictor variables, viz.

total human labour, farm power, fertilizer

consumption, and pesticide consumption, by taking

a part of data from Singh et al. (2004). MLFANN

with zero, one, and two hidden layers have been

considered. Optimum numbers of hidden layers as

well as optimum numbers of units in each hidden

layer have been found by computing MSEs.

Methodology

Preliminaries of ANN

ANN can be considered as an interconnected

assembly of simple processing elements (or units/

nodes/neurons). The processing ability of network

is stored in the inter-unit connection strengths or

weights obtained by a process of learning from a set

of training patterns. A typical ANN consists of one

input layer, one output layer and hidden layers. Each

layer can have several units whose output is a

function of weighted sum of their inputs. Input into

a node is a weighted sum of outputs from nodes

connected to it. Thus, net input into a node is given

by Equation (1):

() ijiji uoutput*wNetinput +=∑ …(1)

where, wij are weights connecting neuron j to neuron

i; outputj is the output from the unit j; and ui is a

threshold for neuron i. The threshold-term is baseline

input to a node in the absence of any other inputs. If

weight wij is negative, it is termed ‘inhibitory’ because

it decreases net input, otherwise it is called

‘excitatory’.

Each unit takes its net input and applies an

activation function to it. For example, output of the

j th unit, also called activation value of the unit, is

()∑ iji xwg

, where () . g is activation function

and ix is output of the ith unit connected to unit j.

Two important activation functions commonly used

are :

(i) Pureline:

() ()netinput.ttanconsnetinputg

= …(2)

(ii) Sigmoidal:

() ()[]netinputexp11netinputg −+= …(3)

With no hidden units, an ANN can classify only

linearly separable problems (ones for which possible

output values can be separated by global

hyperplanes). However, it has been shown by

Cybenko (1989) that with one hidden layer, an ANN

can describe any continuous function (if there are

enough hidden units), and that with two hidden

layers, it can describe any function.

The weights in an ANN, similar to coefficients

in a regression model, are adjusted to solve the

problem presented to ANN. Learning or training is

used to describe the process of finding values of these

weights. Two types of learning with ANN are:

Supervised and Unsupervised learning. The

supervised learning occurs when there is a known

target value associated with each input in the training

set. Output of ANN is compared with a target value,

and this difference is used to train ANN (alter the

weights). The unsupervised learning is needed when

training data lack target output values corresponding

to input patterns. ANNs discussed so far are

constructed with layers of units, and thus are termed

Multilayered ANNs. A layer of units in such an ANN

is composed of units that perform similar tasks.

Multilayered Feedforward Artificial Neural

Network (MLFANN)

An MLFANN is one in which units in one layer

are connected only to units in the next layer, and not

to units in a preceding layer or units in the same

layer. An MLFANN can have a number of hidden

layers with a variable number of hidden units per

layer. When counting layers, it is a common practice

not to count input layer because it does not perform

any computation, but simply passes data onto the

next layer. So, an MLFANN with an input layer, one

hidden layer, and an output layer is termed as a two-

layered MLFANN.

The MLFANN is the most popular network

architecture. It is the type of network in which units

Singh & Prajneshu : Artificial Neural Network Methodology for Forecasting Maize Crop Yield 7

are arranged in a layered feedforward topology. The

network thus has a simple interpretation as a form

of input-output model, with weights and thresholds

(biases) as free parameters of the model. Such

networks can model functions of almost arbitrary

complexity, with the number of layers, and the

number of units in each layer, determining the

function complexity.

Neural networks are constructed by learning

from repeated presentation of inputs (the x’s) and

outputs (the y’s) and adjusting internal parameters

so as to minimize error between fitted and desired

y’s. Neural network can be seen as a general way to

parameterize data through arbitrary non-linear

functions from space of predictor variables to the

space of response variables. The utility and flexibility

of neural network arise from the application of

learning algorithms that allow the network to

construct correct weights, and hence, the desired

function, for a given set of observations.

Learning Algorithms

As the input–output vectors are presented to the

network, a learning algorithm adjusts connection

weights until the system converges on a function that

correctly reproduces the output. Optimal connection

weights may be obtained by using gradient descent

algorithm or conjugate gradient descent algorithm

with a view to minimizing sum of the squared error

functions of the network output.

Gradient Descent Algorithm (GDA)

To optimize weights, the objective function to

be minimized is generally taken as a sum of squared

errors defined by Equation (4):

()2pkpk Yy5.0E ∑∑ −= …(4)

where, subscript p refers to patterns (observations)

with a total of n patterns, subscript k to output unit

with a total of O output units, and y and Y are

observed and estimated responses, respectively.

As input units simply pass information to the

hidden units, input into the jth hidden unit, hpj, is given

by Equation (5):

pijipj xwh ∑= …(5)

Here, wji is the weight from input unit i to hidden

unit j, and xpi is value of the ith input for pattern p.

The jth unit applies an activation function say,

sigmoid function, given by Equation (3) to its net

input and outputs:

())]hexp(1[1hgv pjpjpj −+== …(6)

Similarly, output unit k receives a net input of

pk kj pjf W v=∑ …(7)

Here,

kjW

 represents weight from the hidden unit j

to output k. The unit then outputs quantity expressed

by relation (8):

())]fexp(1[1fgY pkpkpk −+== …(8)

Equations (5) to (8) demonstrate that objective

function given by Equation (4) is a function of

unknown weights wji and Wji . So, we evaluate partial

derivative of objective function with respect to

weights, and then move weights in a direction down

the slope, continuing until error function no longer

decreases. Mathematically, this can be expressed by

Equation (9):

kjkj WEW ∂∂−=∆ η …(9)

The η term is known as learning rate and simply

scales step size. Substituting Equations (5) to (8) in

Equation(4) and expanding Equation (9) using chain

rule, we get:

() ()pkpkpkpkpk Y1YfgfY −=′=∂∂ …(10)

and

pjkjpk vWf =∂∂ …(11)

Substituting these results back in Equation (9),

change in weights from the hidden units to output

units is given by Equation (12):

() pjpkpkpkpkkj vY1Y)]Yy)1[(W −−−−= η∆

…(12)

8 Agricultural Economics Research Review Vol. 21 January-June 2008

Weights are updated as

() () kjkjkj WtW1tW ∆+=+ …(13)

Similarly, calculations for weights from inputs to the

hidden units can be carried out as given in Warner

and Misra (1996). Finally, the algorithms, following

similar lines as given by Hertz et al. (1991) are as

follows:

(i) Initialize the weights to small random values.

This puts the output of each unit around 0.5.

(ii) Choose a pattern p and propagate it forward.

This yields values for pjv
 and pkY , the outputs

from the hidden layer and output layer.

(iii) Compute the output errors:

() ()pkpkpkpk fgYy ′−=δ

(iv) Compute the hidden layer errors:

()pjpikjpkpj v1vW −=∑δψ

(v) To update the weights, compute:

pjpkkj vW ηδ=∆ and pipjji iw ηψ=∆

Repeat the steps for each pattern.

Conjugate Gradient Descent Algorithm

(CGDA)

 The basic GDA adjusts weights in steepest

descent direction (negative of gradient). This is the

direction in which performance function decreases

most rapidly. It turns out that, although function

decreases most rapidly along negative of gradient,

this does not necessarily produce the fastest

convergence. In CGDA, search is performed along

conjugate directions, which produce generally faster

convergence than steepest descent directions.

In most of the training algorithms, a learning

rate is used to determine length of weight update

(step size). In CGDA, step size is adjusted at every

iteration. A search is made along conjugate gradient

direction to determine step size, which minimizes

performance function along that line. As CGDA

requires only a little more storage than GDA, this is

often a good choice for networks with a large number

of weights (greater than 100).

An Illustration

Singh et al. (2004) have carried out a study

dealing with various aspects of the maize crop. In

the present illustration, part of the data from the state

of Uttar Pradesh covering 170 farmers, for whom

complete data were available, has been considered:

Specifically, response variable taken was ‘maize crop

yield’, while four predictors were: total human labour

(Rs/ha), farm power (Rs/ha), fertilizer consumption

(kg/ha) and pesticide consumption (Rs/ha).

Neural Network Toolbox in MATLAB® (2006)

available at IASRI, New Delhi, was employed to

train the MLFANN. Before training, input and target

values were pre-processed using suitable scaling, so

that they fell within a specified range. Available 170

observations were divided into three subsets: (i) First

sub-set was training set comprising 130 observations,

which was used for computing gradient and updating

the network weight and biases, (ii) Second sub-set

of 30 observations comprised validation set, and (iii)

Test set comprised the remaining 10 observations.

MLFANN was trained using both GDA and

CGDA. Several possibilities were tried. When no

layer was taken as the hidden layer, only input and

output layers were used. Activation function

employed was “Pureline”. When one hidden layer

was considered, activation function between input

layer and hidden layer was taken as “Sigmoidal”,

while that between hidden layer and output layer,

“Pureline” activation function was used. Further,

with two hidden layers, Sigmoidal activation

functions in the hidden layer and a linear transfer

function in the output layer were used. The purpose

of doing so was that if the last layer of a MLFANN

had sigmoid neurons, then the outputs of the network

were limited to a small range because of the

“squashing” property of sigmoid function. If linear

output neuron were used, the network output could

take on any value.

Performance of the trained network can be

measured by mean square on the training, validation

and test sets, but it is often useful to investigate the

network response in more details. One option is to

perform a regression analysis between network

response and the corresponding targets. A large

number of networks were trained, and the correlation

Singh & Prajneshu : Artificial Neural Network Methodology for Forecasting Maize Crop Yield 9

coefficient values obtained between network output

and target values for training data have been reported

in Table 1. It was noticed that the MLFANN model

was able to approach the “best” possible fit quite

closely. We used MSE for network performance

evaluation. In Table 2, MSEs for training as well as

validation sets have been summarized for both GDA

and CGDA.

The computer programs were written in

MATLAB to train MLFANN using the two training

algorithms and may be obtained from the first author

on request. As CGDA is a faster learning method

than GDBP, therefore, the number of epochs used to

train the MLFANN using CGDA was less than that

for GDA. The MSEs for best trained MLFANN (11-

16-1) using CGDA and for traditionally used MLR

were computed as 12.94 and 69.01, respectively;

thereby clearly demonstrating superiority of

MLFANN (11-16-1) over MLR for data under

consideration. Finally, for the test data comprising

10 observations, predicted values of response

variable using MLFANN (11-16-1) model along with

actual values were obtained and have been reported

in Table 3. Evidently, predicted and actual values

are quite close. Thus, it could be concluded that

artificial neural network methodology is successful

in describing the given data.

Conclusions

The potential of artificial neural network

methodology has been highlighted for successfully

tackling the realistic situation in which exact non-

linear functional relationship between response

variable and a set of predictors is not known.

Although ANNs may not be able to provide the same

level of insight as many statistical models do, it is

not correct to treat them as “black boxes”. In fact,

one active area of research in ANN is ‘understanding

the effect of predictors on response variable’. It is

hoped that, in future, research workers would start

applying not only MLFANN but also some of the

Table 3. Performance of MLFANN (11-16-1) model for

test data

Observation Predicted Actual

number values values

161 15.23 17.75

162 39.23 38.21

163 27.49 28.75

164 34.96 32.02

165 40.38 39.94

166 39.48 38.97

167 21.46 26.46

168 18.50 13.75

169 37.56 39.34

170 48.46 52.50

Table 1. Correlation coefficients between output and

target yield values

Number of neurons Training methods

in hidden layers GDA CGDA

(i) No hidden layer 0.437 0.639

(ii) One hidden layer

8 0.705 0.811

12 0.691 0.847

15 0.698 0.874

(ii) Two hidden layers

(5, 10) 0.738 0.793

(8,13) 0.773 0.916

(11,16) 0.808 0.933

Table 2. MSE for training and validation data using

both learning algorithms

Number of neurons Training methods

in hidden layers GDA CGDA

(i) No hidden layer Training 69.01 69.01

Validation 41.40 41.38

(ii) One hidden layer

8 Training 55.61 33.00

Validation 29.98 0.013

12 Training 54.54 32.46

Validation 35.68 0.003

15 Training 54.78 22.86

Validation 14.73 0.003

(ii) Two hidden layers

(5, 10) Training 52.88 43.05

Validation 14.35 0.22

(8,13) Training 46.72 18.68

Validation 17.92 0.004

(11,16) Training 40.32 12.94

Validation 20.39 0.003

10 Agricultural Economics Research Review Vol. 21 January-June 2008

other more advanced ANN models, like ‘Radial basis

function neural network’, and ‘Generalized

regression neural network’ in their studies.

Acknowledgements

The authors are grateful to the referee for

valuable comments and thank Dr A.K. Vasisht for

providing the data.

References

Cheng, B. and Titterington, D. M. (1994). Neural

networks: A review from a statistical perspective.

Statistical Science, 9: 2-54.

Cybenko, G. (1989). Approximation by superpositions of

a sigmoidal function. Mathematics of Control, Signals

and Systems, 2: 303-14.

Hertz, J., Krogh, A. and Palmer, R.G. (1991). Introduction

to the Theory of Neural Computation. Reading, MA:

Addison-Wesley.

Matlab® (2006). Neural Network Toolbox User’s Guide.

USA: The Math Works, Inc.

Singh, R.P., Kumar, R., Singh, B.B., Awasthi, P.K.,

Atibudhi, H.N., Chahal, S.S., Varghese, K.A., Singh,

R.K. and Maurya, S.P. (2004). Technological Change

and Production Performance in Irrigated Maize-

based Agro-ecosystem: The Interplay of Economic,

Technological and Institutional Factors.

N.A.T.P.(PSR-61). New Delhi: Division of

Agricultural Economics, IARI, Research Report

2004-01, pp. 1-107.

Warner, B. and Misra, M. (1996). Understanding neural

networks as statistical tools. American Statistician,

50: 284-93.

Zhang, G. P. (2007). Avoiding pitfalls in neural network

research. IEEE Transactions on Systems, Man and

Cybernetics— Part C: Applications and Reviews, 37:

3-16.

