27,068 research outputs found

    Sparse matrix-vector multiplication on GPGPU clusters: A new storage format and a scalable implementation

    Get PDF
    Sparse matrix-vector multiplication (spMVM) is the dominant operation in many sparse solvers. We investigate performance properties of spMVM with matrices of various sparsity patterns on the nVidia "Fermi" class of GPGPUs. A new "padded jagged diagonals storage" (pJDS) format is proposed which may substantially reduce the memory overhead intrinsic to the widespread ELLPACK-R scheme. In our test scenarios the pJDS format cuts the overall spMVM memory footprint on the GPGPU by up to 70%, and achieves 95% to 130% of the ELLPACK-R performance. Using a suitable performance model we identify performance bottlenecks on the node level that invalidate some types of matrix structures for efficient multi-GPGPU parallelization. For appropriate sparsity patterns we extend previous work on distributed-memory parallel spMVM to demonstrate a scalable hybrid MPI-GPGPU code, achieving efficient overlap of communication and computation.Comment: 10 pages, 5 figures. Added reference to other recent sparse matrix format

    Matrix-free GPU implementation of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs

    Get PDF
    Many problems in geophysical and atmospheric modelling require the fast solution of elliptic partial differential equations (PDEs) in "flat" three dimensional geometries. In particular, an anisotropic elliptic PDE for the pressure correction has to be solved at every time step in the dynamical core of many numerical weather prediction models, and equations of a very similar structure arise in global ocean models, subsurface flow simulations and gas and oil reservoir modelling. The elliptic solve is often the bottleneck of the forecast, and an algorithmically optimal method has to be used and implemented efficiently. Graphics Processing Units have been shown to be highly efficient for a wide range of applications in scientific computing, and recently iterative solvers have been parallelised on these architectures. We describe the GPU implementation and optimisation of a Preconditioned Conjugate Gradient (PCG) algorithm for the solution of a three dimensional anisotropic elliptic PDE for the pressure correction in NWP. Our implementation exploits the strong vertical anisotropy of the elliptic operator in the construction of a suitable preconditioner. As the algorithm is memory bound, performance can be improved significantly by reducing the amount of global memory access. We achieve this by using a matrix-free implementation which does not require explicit storage of the matrix and instead recalculates the local stencil. Global memory access can also be reduced by rewriting the algorithm using loop fusion and we show that this further reduces the runtime on the GPU. We demonstrate the performance of our matrix-free GPU code by comparing it to a sequential CPU implementation and to a matrix-explicit GPU code which uses existing libraries. The absolute performance of the algorithm for different problem sizes is quantified in terms of floating point throughput and global memory bandwidth.Comment: 18 pages, 7 figure

    GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU

    Full text link
    High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs because of three challenges: (1) the difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address some of these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based on sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear-algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first high-performance linear algebra-based graph framework on NVIDIA GPUs that is open-source. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model.Comment: 50 pages, 14 figures, 14 table

    Exponential Integrators on Graphic Processing Units

    Full text link
    In this paper we revisit stencil methods on GPUs in the context of exponential integrators. We further discuss boundary conditions, in the same context, and show that simple boundary conditions (for example, homogeneous Dirichlet or homogeneous Neumann boundary conditions) do not affect the performance if implemented directly into the CUDA kernel. In addition, we show that stencil methods with position-dependent coefficients can be implemented efficiently as well. As an application, we discuss the implementation of exponential integrators for different classes of problems in a single and multi GPU setup (up to 4 GPUs). We further show that for stencil based methods such parallelization can be done very efficiently, while for some unstructured matrices the parallelization to multiple GPUs is severely limited by the throughput of the PCIe bus.Comment: To appear in: Proceedings of the 2013 International Conference on High Performance Computing Simulation (HPCS 2013), IEEE (2013

    Efficient spares matrix multiplication scheme for the CYBER 203

    Get PDF
    This work has been directed toward the development of an efficient algorithm for performing this computation on the CYBER-203. The desire to provide software which gives the user the choice between the often conflicting goals of minimizing central processing (CPU) time or storage requirements has led to a diagonal-based algorithm in which one of three types of storage is selected for each diagonal. For each storage type, an initialization sub-routine estimates the CPU and storage requirements based upon results from previously performed numerical experimentation. These requirements are adjusted by weights provided by the user which reflect the relative importance the user places on the resources. The three storage types employed were chosen to be efficient on the CYBER-203 for diagonals which are sparse, moderately sparse, or dense; however, for many densities, no diagonal type is most efficient with respect to both resource requirements. The user-supplied weights dictate the choice

    CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPUs, GPUs and Xeon Phi. First, the CSR5 format is insensitive to the sparsity structure of the input matrix. Thus the single format can support an SpMV algorithm that is efficient both for regular matrices and for irregular matrices. Furthermore, we show that the overhead of the format conversion from the CSR to the CSR5 can be as low as the cost of a few SpMV operations. We compare the CSR5-based SpMV algorithm with 11 state-of-the-art formats and algorithms on four mainstream processors using 14 regular and 10 irregular matrices as a benchmark suite. For the 14 regular matrices in the suite, we achieve comparable or better performance over the previous work. For the 10 irregular matrices, the CSR5 obtains average performance improvement of 17.6\%, 28.5\%, 173.0\% and 293.3\% (up to 213.3\%, 153.6\%, 405.1\% and 943.3\%) over the best existing work on dual-socket Intel CPUs, an nVidia GPU, an AMD GPU and an Intel Xeon Phi, respectively. For real-world applications such as a solver with only tens of iterations, the CSR5 format can be more practical because of its low-overhead for format conversion. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSR5Comment: 12 pages, 10 figures, In Proceedings of the 29th ACM International Conference on Supercomputing (ICS '15
    corecore