
Sparse matrix-vector multiplication on GPGPU clusters:

A new storage format and a scalable implementation

Moritz Kreutzer∗, Georg Hager∗, Gerhard Wellein∗, Holger Fehske†, Achim Basermann‡ and Alan R. Bishop§

∗Erlangen Regional Computing Center, Erlangen, Germany
†Ernst-Moritz-Arndt University of Greifswald, Greifswald, Germany

‡German Aerospace Center (DLR), Simulation and Software Technology, Cologne, Germany
§Theory, Simulation and Computation Directorate, Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract—Sparse matrix-vector multiplication (spMVM) is
the dominant operation in many sparse solvers. We investigate
performance properties of spMVM with matrices of various
sparsity patterns on the nVidia “Fermi” class of GPGPUs.
A new “padded jagged diagonals storage” (pJDS) format is
proposed which may substantially reduce the memory overhead
intrinsic to the widespread ELLPACK-R scheme while making
no assumptions about the matrix structure. In our test scenar-
ios the pJDS format cuts the overall spMVM memory footprint
on the GPGPU by up to 70%, and achieves 91% to 130% of
the ELLPACK-R performance. Using a suitable performance
model we identify performance bottlenecks on the node level
that invalidate some types of matrix structures for efficient
multi-GPGPU parallelization. For appropriate sparsity pat-
terns we extend previous work on distributed-memory parallel
spMVM to demonstrate a scalable hybrid MPI-GPGPU code,
achieving efficient overlap of communication and computation.

Keywords-GPGPU; Sparse matrices; CUDA

I. INTRODUCTION AND RELATED WORK

A. Sparse matrix-vector multiplication on GPGPUs

The solution of large eigenvalue problems or extremely

sparse systems of linear equations is a central part of many

numerical algorithms in science and engineering. Sparse

matrix-vector multiplication (spMVM) is often the domi-

nating component in such solvers, and may easily consume

most of the total runtime. General-purpose computation on

graphics processing units (GPGPUs) is an attractive option

for this operation due to the large memory bandwidth avail-

able to high-end graphics chips and their inherent massive

parallelism. Implementations of spMVM on GPGPUs have

been a field of active research in recent years [1, 2, 3], and

several storage formats have been proposed. Out of those, the

ELLPACK-R format [3] has gained widespread acceptance.

However, although there is a long history of distributed-

memory parallel spMVM codes (see [4] and references

therein), there is to our knowledge no efficiency or feasibility

analysis of multi-GPU spMVM.

This work has two goals: It provides an alternative

sparse MVM storage format that has a significantly smaller

memory footprint than ELLPACK(-R) but provides better

performance in most cases on modern nVidia GPGPUs. Fur-

thermore, it extends previous work on distributed-memory

spMVM for general matrices to multiple GPGPUs.

B. Testbed

The nVidia “Fermi” class of GPGPU-based accelerators

(Tesla C/M20X0) used for the benchmarks implement the

“GF100” architecture and comprise 14 streaming multipro-

cessors (MPs), each with 32 in-order arithmetic logic units

(ALUs). One ALU can execute one single-precision (SP)

multiplication and one addition per cycle, which leads to

an overall peak performance of 896 flops per cycle on the

whole chip at clock frequencies above 1GHz. At double

precision (DP) the theoretical peak performance is halved.

The boards are currently available with device memory sizes

of 3 (C2050) or 6GB (C2070), and feature deactivatable

ECC protection. In streaming benchmarks the device mem-

ory delivers about 91GB/s sustained with ECC enabled

(120 GB/s w/o ECC) [5]. All MPs share a 768 kB L2 cache,

whose detailed specifications are undisclosed.

The ALUs in an MP are driven in a single instruction

multiple data (SIMD) manner (also termed SIMT model,

where “T” stands for “threads”). All threads running on an

MP are controlled by a simple instruction scheduler that can

switch quickly between chunks of threads called warps, in

order to hide latencies. A warp (or a subset of it) is the actual

SIMD unit on this device, and it is essential that consecutive

threads in a warp access consecutive memory locations (this

is called coalescing). Although still important, coalescing

constraints have been somewhat relaxed with the GF100

architecture due to its L2 cache, which was not present on

earlier models.

The parallel runs have been conducted on the Dirac1

GPGPU cluster at the National Energy Research Scientific

Computing Center (NERSC) in Berkeley. This cluster fea-

tures 50 GPU nodes, of which 44 contain one nVidia Tesla

C2050 card with 3GB of device memory.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/30999880?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

������� ��	
 ��

Figure 1: Derivation of the pJDS format from a sparse matrix. In the pJDS format a blocking size of br = 4 is used.

C. Test matrices

HMEp: This matrix originates from the quantum-

mechanical description (using the so-called Holstein-

Hubbard model) of a one-dimensional solid with six lattice

sites, populated with six electrons coupled to 15 phonons

(quantized lattice vibrations). The resulting matrix of di-

mension 6.2× 106 is very sparse, with approximately 15

non-zeros per row. It also contains contiguous off-diagonals

of length 15,000.

sAMG: This matrix was generated by the adaptive multigrid

code sAMG (see [6, 7], and references therein) for the irreg-

ular discretization of a Poisson problem on a car geometry.

Its matrix dimension is 3.4×106 with an average of Nnzr ≈ 7

entries per row.

DLR1: This matrix comes from an adjoint problem compu-

tation (turbulent transonic flow over a wing) with the TAU

CFD system of the German Aerospace Center (DLR). TAU

performs complex flow simulations on unstructured hybrid

grids. The associated grid had 46,417 points (6 unknowns in

each point), and the resulting matrix is nonsymmetric with a

dimension of 2.8×105 and an average of Nnzr ≈ 144 entries

per row.

DLR2: This matrix stems from a linear problem for an

aerodynamic gradients calculation. A transonic inviscid flow

over a wing was simulated with TAU. The associated grid

had 108,396 points, and the matrix is nonsymmetric with a

dimension of 5.4×105 and an average of Nnzr ≈ 315 entries

per row. It consists entirely of dense 5×5 subblocks.

UHBR: The last matrix originates from aeroelastic stability

investigations of an ultra-high bypass ratio (UHBR) turbine

fan with a linearized Navier-Stokes solver [9]. This solver

is part of the parallel simulation system TRACE (Turbo-

Machinery Research Aerodynamic Computational Environ-

ment) which was developed by DLR’s Institute for Propul-

sion Technology. Its matrix dimension is 4.5×106 with an

average of Nnzr ≈ 123 entries per row.

1http://www.nersc.gov/users/computational-systems/dirac/

II. GPGPU SPMVM

A. Introducing the padded JDS formats

ELLPACK-R [3] is a variant of the original ELLPACK

storage format [1, 10] and sets today the standard for

implementing spMVM operations on GPGPUs. ELLPACK(-

R) should be used if no regular substructures such as

off-diagonals or dense blocks can be exploited. The idea

is to compress the rows by shifting all non-zero entries

to the left (first step in Fig. 1) and storing the resulting

N×Nmax
nzr rectangular matrix2 column-by-column consecu-

tively in main memory, where Nmax
nzr is the maximum number

of non-zeros per row. Thus, in contrast to CPU storage

formats, ELLPACK contains zero entries (white boxes in

Fig. 1). Thread parallelization of the spMVM is row-wise

by assigning consecutive rows to the threads of a block (i.e.,

outer loop iterations in Listing 1 are mapped to threads in

a round-robin way).

Listing 1: The standard ELLPACK-R spMVM kernel

1 for(i=0; i < N; ++i)

2 for(j=0; j < rowmax[i]; ++j)

3 c[i] += val[j*N + i] *
4 rhs[col_idx[j*N + i]];

The increased memory footprint of the ELLPACK format

ensures load coalescing within thread warps for access to the

matrix entries (val[]) and the index array (col_idx[]),

which points to the right hand side (RHS) vector elements

(rhs[]). While data alignment became of minor impor-

tance with the latest nVidia GPGPU generations, load coa-

lescing is still a must for attaining reasonable data transfer

rates. In the original ELLPACK scheme the threads were still

loading and operating on the zero matrix entries, wasting

memory bandwidth and compute resources.

The ELLPACK-R scheme uses the same storage format,

but threads only execute non-zero contributions (the number

2Typically the matrix dimension N must also be padded to a multiple of
the warp size.

(a) ELLPACK (b) ELLPACK-R (c) pJDS

Figure 2: Scheduling patterns and required storage size for

the different matrix formats assuming a four thread warp.

Arrows indicate computation and data accesses executed

by the threads. White boxes show redundant data storage,

and light boxes indicate redundant data storage and useless

hardware reservation.

of non-zeros per row is stored in rowmax[]), avoiding

redundant data transfers. However, all threads of a warp

occupy on-chip resources until the thread executing the

longest row has finished. Figures 2a and b compare the

overhead of the ELLPACK(-R) schemes assuming a warp

size of four threads. ELLPACK-R reduces computation and

data accesses to the possible minimum (arrows in Fig. 2b).

However, the imbalanced row lengths impose reservation of

unused hardware units (light boxes). Moreover the redundant

storage (indicated by white and light boxes) stays the same.

A simple idea, derived from the Jagged Diagonals Storage

(JDS) format used for vector computers, can drive the matrix

format towards better utilization of compute resources and

storage. First the rows of the ELLPACK scheme are sorted

according to the number of non-zeros, starting with the

longest row (“sort” step in Fig. 1). Then, blocks of br
consecutive rows (where br should be the warp size) are

padded to the longest row within the block (“pad” step

in Fig. 1). We call the result “padded Jagged Diagonals

Storage” (pJDS). This maintains load coalescing while most

of the zero entries can be eliminated. Since the columns typ-

ically have different lengths, a (small) array col_start[]

of size (Nmax
nzr ×4 byte) is required to store the starting offset

of each column. The pJDS kernel is shown in listing 2.

Listing 2: The spMVM kernel of the pJDS format

1 for(i=0; i < N; ++i)

2 for(j=0; j < rowmax[i]; ++j){

3 col_offset = col_start[j];

4 c[i] += val[col_offset + i] *

5 rhs[col_idx[col_offset + i]];

6 }

It maintains the structure and simplicity of the ELLPACK-R

kernel but provides potential for (substantial) data reduction

and better hardware utilization. The main drawback of the

format is that the spMVM operation needs to be performed

in a permuted basis. However, for most iterative spMVM

algorithms such as Krylov subspace methods, permutation

of the indices needs to be done only before the start and after

the end of the algorithm, while the complete iterative scheme

works on the permuted elements. On the downside, the

permutation of the matrix rows can destroy matrix structures

such as off-diagonals or local dense blocks, leading to a loss

of load coalescing or cache reuse on the RHS vector.

Compared to other formats such as, e.g., BELLPACK

[2] or ELLR-T [3], the pJDS format is suited for general

unstructured matrices and does not use any a priori knowl-

edge about the matrix structure. There are also no matrix-

dependent tuning parameters.

The sparsity pattern determines the data reduction po-

tential of pJDS. If the matrix has a constant row length

(rowmax[]=Nmax
nzr), ELLPACK and pJDS both have no

storage overhead (N×Nmax
nzr non-zeros). On the other hand,

if there is one fully populated row and a single entry in

all others, the plain ELLPACK format would store the full

matrix, i.e., N×N elements. In pJDS it is sufficient to hold

br×N+N−br = (br+1)×N−br entries. At a typical value

of br = 32 one can expect a substantial reduction of the

memory footprint for matrices with a wide variation in row

lengths.

The row length histograms (Fig. 3) for DLR1/2, sAMG,

and HMEp show that there is plenty of data reduction

potential for those matrices. DLR1 should benefit least from

the pJDS format since it has the lowest relative width

(max(rowmax[])/min(rowmax[])≈ 2) and most of

the weight is clustered close to the maximum row length, i.e.,

80% of the rows have a length of 0.8×Nmax
nzr . In contrast, the

longest row of sAMG is more than four times larger than

the smallest one, and short rows account for most of the

weight. The data reduction rates finally achieved by using

pJDS instead of ELLPACK follow this qualitative discussion

and are shown in Table I. Considering the limited amount

and high cost of device memory on GPGPUs, pJDS delivers

a useful shrink of the memory footprint for spMVM on

GPGPUs; e.g., the DLR2 matrix fits (in double precision) on

an nVidia Fermi C2050 GPGPU only when using the pJDS

format. The overhead of pJDS compared to a minimum

implementation (storing the non-zeros only) is less than

0.01% for the matrices considered here (choosing tb = 32).

The improved hardware utilization by pJDS (compare

Figs. 2b and c) is also reflected in the performance numbers.

In most scenarios gains of up to 30% can be achieved with

pJDS, while the largest penalty is limited to 5%. Since

0 50 100 150 200
10

-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 s
h

a
re

0 100 200 300 400 500 600
10

-4

10
-3

10
-2

10
-1

10
0

0 5 10 15 20 25 30
non-zeros per row

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 s
h

a
re

0 5 10 15 20 25
non-zeros per row

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

DLR1 DLR2

HMEp

sAMG

N : 6201600
N

nz
: 92527872

N : 3405035
N

nz
: 24027759

N : 541980
N

nz
: 170610950

N : 278502
N

nz
: 40025628

Figure 3: Row length distribution histograms of the matrices described in Sect. I-C. The bin size is 1 for all cases.

DLR1 DLR2 HMEp sAMG

data reduction [%] 17.5 48.0 36.0 68.4

ELLPACK-R 22.1 15.2 15.8 14.6
SP ECC=0 pJDS 27.6 18.7 18.9 19.5

ELLPACK-R 18.0 13.2 12.1 11.6
SP ECC=1 pJDS 19.1 12.1 11.6 12.6

ELLPACK-R 18.7 11.7 12.3 11.1
DP ECC=0 pJDS 18.3 14.6 12.2 13.0

ELLPACK-R 12.9 9.6 7.9 7.8
DP ECC=1 pJDS 12.9 9.5 7.5 8.5

Westmere EP CRS (DP) 5.7 5.8 3.9 4.1

Table I: Data reduction of pJDS in comparison to the

ELLPACK format and performance (in GF/s, excluding data

transfers) of the different storage formats on an nVidia

Fermi C2070 GPGPU. The best performance for each matrix

and execution environment (DP/SP with ECC on/off) is

highlighted. The last row shows the performance of a dual-

socket (12 core) Intel Westmere node using the compressed

row storage (CRS) format. See [4] for implementation and

hardware details.

the row permutation may destroy regular substructures, the

DLR2 and HMEp matrices do show some performance drop

or only moderate speed-ups due to reduced cache reuse and

load coalescing for the RHS vector. This problem is more

severe on older GPGPU generations without L2 cache, such

as the Tesla C1060. Here it is also necessary to map the

array holding the column starting offsets (col_start[])

to the texture cache.

Although we did not encounter any failures during our

benchmarks, activating ECC on the GPU is appropriate for

all HPC applications where reliability is crucial. Thus we

present performance results with ECC enabled as well as

disabled. Note that there is no simple model to quantify

the impact of ECC on the performance (apart from a

general reduction of achievable memory bandwidth), since

the details of the ECC mechanism are undisclosed.

In summary, the pJDS format presents a very attractive

alternative to the ELLPACK-R scheme on modern GPGPUs

both in terms of performance and memory footprint. On

standard multicore CPUs, however, no blocked or plain JDS

variant is able to outperform the standard CRS format [8].

B. GPGPU performance model and PCIe transfer impact

Due to the small (or non-existent) data cache on GPGPUs,

the expected speedup compared to a multicore socket is

usually smaller than the ratio of memory bandwidths. The

worst-case code balance of the ELLPACK and pJDS kernels

for double precision is

BDP
W =

(

8+4+8α +16/Nmax
nzr

2

)

bytes

flop

=

(

6+4α +
8

Nmax
nzr

)

bytes

flop
.

(1)

The parameter 1/Nmax
nzr ≤α ≤ 1 quantifies the possible re-use

of RHS data from cache: If there is no cache, i.e., if each

load to the RHS vector goes to memory, we have α = 1.

Hence, cache is able to reduce the balance by some amount.

In the ideal case α = 1/Nmax
nzr each RHS element has to be

loaded only once. This corresponds to the κ = 0 case in

[4]. Note that BDP
W may change from block to block due to

different values of Nmax
nzr , and that the col_start[] array

is assumed to always come from cache. In the following we

assume an average value Nnzr for the number of non-zeros

per row.

The bandwidth model (1) is only valid for the kernel exe-

cution on the device, and does not include the data transfers

required to bring the RHS vector to the GPU and the result

back to the host. However, one can extend the model to

incorporate those overheads. Since two distinct bandwidths

are involved we now look at the expected wallclock times

for the pure spMVM (TMVM) and the required data transfer

of the RHS and LHS vectors over the PCIe bus (TPCI):

TMVM =
8N

BGPU

[

Nnzr

(

α +
3

2

)

+2

]

and

TPCI =
16N

BPCI
.

(2)

This shows that a low PCIe bandwidth has less impact on the

overall execution time if Nnzr is large, hence we can estimate

the range of favorable Nnzr values: Setting TMVM ≤ TPCI, i.e.,

assuming more than 50% penalty from the PCIe transfers,

we arrive at

Nnzr ≤
2(BGPU/BPCI−1)

α +3/2
. (3)

In the worst case, α = 1/Nnzr and BGPU & 20BPCI lead to

Nnzr ≤ 25. On the other hand, if α = 1 and BGPU ≈ 10BPCI

we have Nnzr ≤ 7. Thus we do not expect a significant

benefit from GPGPU acceleration for the HMeP and sAMG

matrices described above, since those have Nnzr ≈ 15 and 7,

respectively.

If we want less than 10% penalty from PCIe transfers

(TMVM ≥ 10TPCI) we get

Nnzr ≥
20BGPU/BPCI−2

α +3/2
, (4)

so at BGPU ≈ 10BPCI and α = 1 a value of Nnzr & 80 is

sufficient. This is certainly satisfied for all DLR matrices. In

the worst case, i.e., at BGPU ≈ 20BPCI and α = 1/Nnzr one

arrives at Nnzr & 266; in this case we can expect a measurable

impact of PCIe transfer overhead for all matrices considered

here.

III. DISTRIBUTED-MEMORY SPMVM PARALLELIZATION

As described in Sect. II-B, matrices with small Nnzr are no

good candidates for GPGPU acceleration since the required

PCIe transfers for the RHS and LHS vectors dominate the

runtime. Although this penalty is somewhat mitigated by the

fact that in some real applications parts of those vectors may

be kept on the device, all data that has to be communicated

using MPI must also cross the PCIe bus to the GPGPU.

For the HMEp (sAMG) matrix we arrive at a single-GPU

performance level of 3.7 (2.3) GF/s, which is already below

the capability of a typical dual-socket server node (see

Table I). Hence, we restrict the discussion in this section

to the DLR1 and UHBR matrices. Although they also suffer

from PCIe transfers to some extent (10.9GF/s vs. 12.9GF/s

for DLR1), there is still a substantial advantage over the

CPU version.

All runs were performed in double precision and with

active ECC on the NERSC Dirac cluster. The ELLPACK-R

format was used throughout, since the matrix storage format

is of minor importance for the double precision case (see

Table I) and for the concepts we want to demonstrate here.

An implementation of the multi-GPGPU code with the pJDS

format and an analysis of its performance implications is

ongoing work and will follow the strategy described in [11].

A. Multi-GPGPU spMVM

The basic design patterns and choices described in [4]

for distributed-memory parallel sparse MVM also apply

for the multi-GPGPU case. We distinguish between vector

mode, which resembles the programming style on vector-

parallel machines, and task mode, which dedicates host

resources (threads) to different tasks, i.e., communication

and computation. In this work we consider three alternatives:

• Vector mode without overlap of communication and

computation. The required communication to distribute

the nonlocal RHS elements among the processes is sep-

arate from the actual spMVM communication, which is

performed in a single step.

• Vector mode using naive overlap of communication and

computation by nonblocking MPI. The spMVM must

be split into a local and a nonlocal part, and the former

may be overlapped with MPI. Since the result vector

must be written twice, there is a slight increase in

memory traffic, which adds another 8/Nnzr bytes/flop to

the code balance (1). Due to the rather large Nnzr of the

DLR1 and UHBR matrices we expect a performance

penalty of below 10%, though. Since most MPI libraries

do not support asynchronous nonblocking point-to-

point communication, we do not expect this variant

to have any advantage even over vector mode without

overlap.

• Task mode using a dedicated thread for MPI in order

to implement reliably asynchronous communication.

Figure 4 shows an event timeline that visualizes the

different tasks executed on two host threads (or more

if there are multiple GPGPUs in a node) and the

GPGPU. Depending on the ratio of communication to

computation time, the possible performance benefit can

be at most a factor of two. At strong scaling we expect

task mode and vector mode performance to converge.

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

0th
re

a
d
s 1

time

G
P

G
P

U

MPI_
Irecv

Upload

 RHS

Launch

 kernel

spMVM

Compute nonlocal

MPI_
Isend

Local
gather

Dnload

 LHS

Launch

 kernel

Upload

 RHS

Compute local spMVM

MPI_Waitall GPU sync

GPU sync

Figure 4: Timeline for GPGPU-based spMVM kernel including host data transfers with a dedicated host thread for

asynchronous MPI communication (thread 0). The “local gather” is the collection of data to be sent to other processes

into a contiguous buffer.

0 4 8 12 16 20 24 28 32
nodes (GPGPUs)

0

20

40

60

80

100

P
e

rf
o

rm
a

n
c
e

 [
G

F
/s

]

Vector mode Isend/Irecv

Naive overlap

Task mode

10.9 GF/s

(a) DLR1

0 4 8 12 16 20 24 28 32
nodes (GPGPUs)

0

40

80

120

160

200

240

280

P
e

rf
o

rm
a

n
c
e

 [
G

F
/s

]

44.6 GF/s

(b) UHBR

Figure 5: Strong scaling results for DLR1 (a) and UHBR

(b) on the Dirac cluster. Due to memory restrictions on the

C2050 cards it was not possible to run the UHBR case on

fewer than five nodes.

B. Performance results

Figures 5a and 5b show strong scaling results for the

DLR1 and UHBR matrices, respectively, on the Dirac clus-

ter. Task mode achieves better performance than any of

the vector modes in both cases; however, the details differ

considerably:

DLR1 has a rather small dimension of 2.8×105, so that

only 8750 rows (about 1.3× 106 non-zeros) are left per

GPGPU at 32 nodes. The smallness of the per-GPGPU

subproblem leads to a substantial performance drop, which

mainly originates from the nonlocal part in the naive vector

and task mode versions. It can, however, be partially com-

pensated by asynchronous communication. At larger node

counts the performance of all variants starts to converge, as

expected.

UHBR has a much larger number of non-zeros at a similar

Nnzr as DLR1, and thus does not show an analogous per-

GPGPU performance breakdown when scaling up the node

count. Scalability is very good in task mode with a parallel

efficiency of 84% at 32 nodes (about 70% with naive overlap

vector mode). Since the communication requirements are

weaker than for DLR1, we do not see a similarly large

benefit from overlapping communication at the node counts

accessible on the cluster used.

IV. CONCLUSIONS AND OUTLOOK

We have introduced a new “padded JDS” sparse matrix

format, which is suitable for sparse matrix-vector multipli-

cation on GPGPUs at similar or better performance levels

than the popular ELLPACK-R format, with a potential for

significant memory savings.

Via suitable performance models we have derived a condi-

tion for the average number of non-zeros per matrix row that

guarantees a useful performance benefit of GPGPU-based

spMVM in comparison to standard server nodes, the main

parameter being the ratio between PCI express bandwidth

and GPGPU memory bandwidth.

Finally we have extended previous work on efficient

distributed-memory hybrid (MPI+OpenMP) spMVM paral-

lelization to the multi-GPGPU case. Using dedicated host

threads for explicitly asynchronous MPI communication we

were able to improve significantly over naive “vector-like”

approaches and show the potentials and limitations of this

solution.

Future work will cover more extensive scaling studies

on larger GPGPU clusters, an implementation of the pJDS

format in the multi-GPGPU code, a thorough investigation

of the performance degradation with strong scaling, and the

application of our results to a production-grade eigensolver.

During the preparation of the manuscript it came to our

attention that other research groups have devised sparse

matrix formats that share some features with pJDS, most

notably the “sliced ELLPACK” and “sliced ELLR-T” for-

mats [12, 13]. A thorough comparison of pJDS with those

alternative approaches is work in progress.

ACKNOWLEDGMENTS

Discussions with Jan Treibig and Thomas Zeiser are grate-

fully acknowledged. We are indebted to Matthias Griessinger

for initial implementations of the GPGPU spMVM kernels,

to Gerald Schubert for providing CPU comparisons, and to

K. Stüben and H. J. Plum for providing and supporting the

sAMG test case. This research used the Dirac GPGPU clus-

ter of the National Energy Research Scientific Computing

Center, which is supported by the Office of Science of the

U.S. Department of Energy under Contract No. DE-AC02-

05CH11231. Part of this work was supported by the com-

petence network for scientific high performance computing

in Bavaria (KONWIHR) via the project HQS@HPC-II.

REFERENCES

[1] N. Bell and M. Garland: Implementing sparse matrix-
vector multiplication on throughput-oriented processors.
Proc. SC’09. DOI:10.1145/1654059.1654078

[2] J.W. Choi, A. Singh, and R.W. Vuduc: Model-driven
autotuning of sparse matrix-vector multiply on GPUs.
Proc. PPoPP’10. DOI:10.1145/1693453.1693471

[3] V. Vázquez, J. J. Fernández, and E.M. Garzón: A new
approach for sparse matrix vector product on NVIDIA
GPUs. Concurrency and Computation: Practice and
Experience 23(8), 815–826 (2011). DOI:10.1002/cpe.1658

[4] G. Schubert, G. Hager, H. Fehske, and G. Wellein:
Hybrid-parallel sparse matrix-vector multiplication with
explicit communication overlap on current multicore-based
systems. Parallel Processing Letters 21(3), 339–358 (2011).
DOI:10.1142/S0129626411000254

[5] J. Habich, C. Feichtinger, H. Köstler, G. Hager, and G.
Wellein: Performance engineering for the Lattice Boltz-
mann method on GPGPUs: Architectural requirements and
performance results. Accepted for publication in Comput-
ers & Fluids. Preprint: http://arxiv.org/abs/1112.0850

[6] K. Stüben: An Introduction to Algebraic Multigrid. In:
U. Trottenberg et al. (Eds.): Multigrid: Basics, Parallelism
and Adaptivity, Academic Press (2000).

[7] http://www.scai.fraunhofer.de/en/business-research-areas/
numerical-software/products/samg.html

[8] G. Schubert, G. Hager and H. Fehske: Performance
limitations for sparse matrix-vector multiplications on
current multicore environments. In: S. Wagner et al., High
Performance Computing in Science and Engineering,
Garching/Munich 2009. Springer, ISBN 978-3642138713
(2010), 13–26. DOI:10.1007/978-3-642-13872-0 2

[9] A. Basermann et al.: HICFD - Highly Efficient Implemen-
tation of CFD Codes for HPC Many-Core Architectures.
In: Proceedings of CiHPC, Springer 2011 [in print]

[10] R. Grimes, D. Kincaid, and D. Young. ITPACK User’s
Guide. Technical Report CNA-150, Center for Numerical
Analysis, University of Texas, Aug. 1979. http://rene.ma.
utexas.edu/CNA/ITPACK/

[11] G. Wellein, G. Hager, A. Basermann, and H. Fehske: Fast
sparse matrix-vector multiplication for TFlop/s computers.
In: J. Palma, J. Dongarra (Ed.): High Performance
Computing for Computational Science — VECPAR2002,
LNCS 2565, Springer Berlin (2003). DOI:10.1007/3-540-
36569-9 18

[12] A. Monakov, A. Lokhmotov, A. Avetisyan: Automatically
Tuning Sparse Matrix-Vector Multiplication for GPU
Architectures. In: Y. Patt, P. Foglia, E. Duesterwald,
P. Faraboschi, X. Martorell (Eds.): Lecture Notes in
Computer Science, Springer, ISBN 978-3-642-11514-1
(2010), 111–125. DOI:10.1007/978-3-642-11515-8 10

[13] A. Dziekonski, A. Lamecki, M. Mrozowski: A Memory
Efficient and Fast Sparse Matrix Vector Product on a
GPU. Progress In Electromagnetics Research 116, 49–63
(2011). DOI:10.2528/PIER11031607

