155 research outputs found

    Decoding the Encoding of Functional Brain Networks: an fMRI Classification Comparison of Non-negative Matrix Factorization (NMF), Independent Component Analysis (ICA), and Sparse Coding Algorithms

    Full text link
    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet mathematical constraints such as sparse coding and positivity both provide alternate biologically-plausible frameworks for generating brain networks. Non-negative Matrix Factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks for different constraints are used as basis functions to encode the observed functional activity at a given time point. These encodings are decoded using machine learning to compare both the algorithms and their assumptions, using the time series weights to predict whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. For classifying cognitive activity, the sparse coding algorithm of L1L1 Regularized Learning consistently outperformed 4 variations of ICA across different numbers of networks and noise levels (p<<0.001). The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy. Within each algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<<0.001). The success of sparse coding algorithms may suggest that algorithms which enforce sparse coding, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA

    Directional clustering through matrix factorization

    No full text
    This paper deals with a clustering problem where feature vectors are clustered depending on the angle between feature vectors, that is, feature vectors are grouped together if they point roughly in the same direction. This directional distance measure arises in several applications, including document classification and human brain imaging. Using ideas from the field of constrained low-rank matrix factorization and sparse approximation, a novel approach is presented that differs from classical clustering methods, such as seminonnegative matrix factorization, K-EVD, or k-means clustering, yet combines some aspects of all these. As in nonnegative matrix factorization and K-EVD, the matrix decomposition is iteratively refined to optimize a data fidelity term; however, no positivity constraint is enforced directly nor do we need to explicitly compute eigenvectors. As in k-means and K-EVD, each optimization step is followed by a hard cluster assignment. This leads to an efficient algorithm that is shown here to outperform common competitors in terms of clustering performance and/or computation speed. In addition to a detailed theoretical analysis of some of the algorithm's main properties, the approach is empirically evaluated on a range of toy problems, several standard text clustering data sets, and a high-dimensional problem in brain imaging, where functional magnetic resonance imaging data are used to partition the human cerebral cortex into distinct functional regions

    Non-negative matrix factorization with sparseness constraints

    Full text link
    Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based, linear representations of non-negative data. Although it has successfully been applied in several applications, it does not always result in parts-based representations. In this paper, we show how explicitly incorporating the notion of `sparseness' improves the found decompositions. Additionally, we provide complete MATLAB code both for standard NMF and for our extension. Our hope is that this will further the application of these methods to solving novel data-analysis problems

    Non-negative data-driven mapping of structural connections with application to the neonatal brain

    Get PDF
    © 2020 Mapping connections in the neonatal brain can provide insight into the crucial early stages of neurodevelopment that shape brain organisation and lay the foundations for cognition and behaviour. Diffusion MRI and tractography provide unique opportunities for such explorations, through estimation of white matter bundles and brain connectivity. Atlas-based tractography protocols, i.e. a priori defined sets of masks and logical operations in a template space, have been commonly used in the adult brain to drive such explorations. However, rapid growth and maturation of the brain during early development make it challenging to ensure correspondence and validity of such atlas-based tractography approaches in the developing brain. An alternative can be provided by data-driven methods, which do not depend on predefined regions of interest. Here, we develop a novel data-driven framework to extract white matter bundles and their associated grey matter networks from neonatal tractography data, based on non-negative matrix factorisation that is inherently suited to the non-negative nature of structural connectivity data. We also develop a non-negative dual regression framework to map group-level components to individual subjects. Using in-silico simulations, we evaluate the accuracy of our approach in extracting connectivity components and compare with an alternative data-driven method, independent component analysis. We apply non-negative matrix factorisation to whole-brain connectivity obtained from publicly available datasets from the Developing Human Connectome Project, yielding grey matter components and their corresponding white matter bundles. We assess the validity and interpretability of these components against traditional tractography results and grey matter networks obtained from resting-state fMRI in the same subjects. We subsequently use them to generate a parcellation of the neonatal cortex using data from 323 new-born babies and we assess the robustness and reproducibility of this connectivity-driven parcellation

    Investigating microstructural variation in the human hippocampus using non-negative matrix factorization

    No full text
    In this work we use non-negative matrix factorization to identify patterns of microstructural variance in the human hippocampus. We utilize high-resolution structural and diffusion magnetic resonance imaging data from the Human Connectome Project to query hippocampus microstructure on a multivariate, voxelwise basis. Application of non-negative matrix factorization identifies spatial components (clusters of voxels sharing similar covariance patterns), as well as subject weightings (individual variance across hippocampus microstructure). By assessing the stability of spatial components as well as the accuracy of factorization, we identified 4 distinct microstructural components. Furthermore, we quantified the benefit of using multiple microstructural metrics by demonstrating that using three microstructural metrics (T1-weighted/T2-weighted signal, mean diffusivity and fractional anisotropy) produced more stable spatial components than when assessing metrics individually. Finally, we related individual subject weightings to demographic and behavioural measures using a partial least squares analysis. Through this approach we identified interpretable relationships between hippocampus microstructure and demographic and behavioural measures. Taken together, our work suggests non-negative matrix factorization as a spatially specific analytical approach for neuroimaging studies and advocates for the use of multiple metrics for data-driven component analyses

    Modeling Latency and Shape Changes in Trial Based Neuroimaging Data

    Get PDF

    A novel diffusion tensor imaging-based computer-aided diagnostic system for early diagnosis of autism.

    Get PDF
    Autism spectrum disorders (ASDs) denote a significant growing public health concern. Currently, one in 68 children has been diagnosed with ASDs in the United States, and most children are diagnosed after the age of four, despite the fact that ASDs can be identified as early as age two. The ultimate goal of this thesis is to develop a computer-aided diagnosis (CAD) system for the accurate and early diagnosis of ASDs using diffusion tensor imaging (DTI). This CAD system consists of three main steps. First, the brain tissues are segmented based on three image descriptors: a visual appearance model that has the ability to model a large dimensional feature space, a shape model that is adapted during the segmentation process using first- and second-order visual appearance features, and a spatially invariant second-order homogeneity descriptor. Secondly, discriminatory features are extracted from the segmented brains. Cortex shape variability is assessed using shape construction methods, and white matter integrity is further examined through connectivity analysis. Finally, the diagnostic capabilities of these extracted features are investigated. The accuracy of the presented CAD system has been tested on 25 infants with a high risk of developing ASDs. The preliminary diagnostic results are promising in identifying autistic from control patients
    corecore