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a b s t r a c t 

Mapping connections in the neonatal brain can provide insight into the crucial early stages of neurodevelopment that shape brain organisation and lay the foundations 
for cognition and behaviour. Diffusion MRI and tractography provide unique opportunities for such explorations, through estimation of white matter bundles and 
brain connectivity. Atlas-based tractography protocols, i.e. a priori defined sets of masks and logical operations in a template space, have been commonly used in the 
adult brain to drive such explorations. However, rapid growth and maturation of the brain during early development make it challenging to ensure correspondence 
and validity of such atlas-based tractography approaches in the developing brain. An alternative can be provided by data-driven methods, which do not depend on 
predefined regions of interest. Here, we develop a novel data-driven framework to extract white matter bundles and their associated grey matter networks from 

neonatal tractography data, based on non-negative matrix factorisation that is inherently suited to the non-negative nature of structural connectivity data. We also 
develop a non-negative dual regression framework to map group-level components to individual subjects. Using in-silico simulations, we evaluate the accuracy of 
our approach in extracting connectivity components and compare with an alternative data-driven method, independent component analysis. We apply non-negative 
matrix factorisation to whole-brain connectivity obtained from publicly available datasets from the Developing Human Connectome Project, yielding grey matter 
components and their corresponding white matter bundles. We assess the validity and interpretability of these components against traditional tractography results 
and grey matter networks obtained from resting-state fMRI in the same subjects. We subsequently use them to generate a parcellation of the neonatal cortex using 
data from 323 new-born babies and we assess the robustness and reproducibility of this connectivity-driven parcellation. 
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. Introduction 

The neonatal period is a critical time for brain development, dur-
ng which the refinement and maturation of white matter connections
ay the groundwork for later cognitive development ( Ball et al., 2015 ;
ounsell et al., 2008 ; Girault et al., 2019 ). With diffusion MRI (dMRI)
e can track these connections non-invasively and in vivo , which en-
bles us to study the early development of structural connectivity and
icrostructure, even during the first weeks of life (see ( Ouyang et al.,
019 ) for a recent review). 

DMRI studies of neonates have shown that the trajectory of fibre mat-
ration reflects the neurodevelopmental hierarchy, with primary motor
nd sensory tracts developing earlier than the association tracts that en-
ble higher order functioning ( Dubois et al., 2008 ; Kulikova et al., 2015 ;
artridge et al., 2004 ). Studies have also demonstrated the impact of
reterm birth ( Ball et al., 2015 ; Batalle et al., 2017 ; Brown et al., 2014 ;
irault et al., 2019 ) and maternal environment ( Deoni et al., 2013 ;
am et al., 2016 ) on the early development of white matter. 
∗ Corresponding author at: Sir Peter Mansfield Imaging Centre, School of Medicine
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Despite the large potential of diffusion imaging for exploring early
evelopmental stages of the brain, current analysis techniques follow
he paradigms that have been established for the adult brain. For in-
tance, dMRI tractography protocols for identifying specific white mat-
er bundles typically rely on delineation of regions of interest (ROIs) that
rovide a priori anatomical knowledge on the route of the tract; these
OIs can be defined relative to a template for automated delineation
 Bastiani et al., 2019 ; De Groot et al., 2013 ; Warrington et al., 2020 ). 

However, neonatal brains are not simply small adult brains
 Batalle et al., 2018 ), and this renders the above paradigm problematic.
he rapid growth and changes in brain morphology during the neonatal
eriod, as well as fast alterations in tissue composition that alter imag-
ng contrast over time ( Bastiani et al., 2019 ), render it challenging to
nsure correspondence between template-driven ROIs and tractography
rotocols at different stages of development ( Serag et al., 2012 ). Manual
elineation on a subject-by-subject basis could be an alternative, but it
s time-consuming, assumes very detailed knowledge of how neonatal
euroanatomy is depicted in MRI at various early development stages,
, University of Nottingham, Nottingham, United Kingdom. 
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nd becomes prohibitive for large cohorts, such as the developing hu-
an connectome projects ( Howell et al., 2019 ; Hughes et al., 2017 ). 

In this paper, we propose an alternative approach for simultane-
usly mapping white matter bundles and their corresponding grey mat-
er nodes in the neonatal brain using data-driven methods, which are
odel-free and are expected to be more immune to the challenges de-

cribed above. Independent component analysis (ICA) has been a com-
only used data-driven method for identifying brain networks from

esting-state functional MRI (fMRI) data ( McKeown et al., 1998 ), and
ecent work has shown that it can also be applied to dMRI tractogra-
hy data of the adult human brain ( O’Muircheartaigh and Jbabdi, 2017 ;
u et al., 2015 ) or of the non-human primate brain ( Mars et al., 2019 ).
e develop an alternative approach to ICA and explore its applicability

n the neonatal brain. 
One limitation of applying ICA to tractography data is that the es-

imated independent components and the respective mixing matrix can
ontain both positive and negative values, whereas structural connectiv-
ty data are inherently non-negative. This leads to challenges in the in-
erpretation of negative weights. To address this problem, we present an
lternative data-driven method that can be used to identify non-negative
onnectivity components. Our approach is based on non-negative ma-
rix factorisation (NMF) ( Lee and Seung, 2001 ). Like ICA, NMF is an
nsupervised technique that estimates a pre-defined number of com-
onents from the data. However, the elements and their weights are
onstrained to take non-negative values. Sparsity constraints in the de-
omposition allow identifiability and further provide an indirect means
f requiring independence between the estimated components. This re-
ults in a set of components whose weighted summation represents the
hole system. Due to these advantageous properties, NMF has been re-

ently used to identify networks of structural covariance ( Ball et al.,
019 ; Sotiras et al., 2017 , 2015 ) from MRI data. 

In this study, we present for the first time an NMF-based framework
or extracting connectivity components from diffusion MRI data, both
t the group and the individual level. We apply this approach within
he context of mapping patterns of structural connections in new-born
abies, aged 37 to 44 weeks post-menstrual age (PMA) at scan, using
ublicly-released data provided by the developing Human Connectome
roject (dHCP) ( Hughes et al., 2017 ; Hutter et al., 2018 ). First, we de-
cribe the theory for decomposing whole-brain tractography-induced
onnectivity matrices into grey matter networks and their corresponding
hite matter bundles. We subsequently use simulations to quantitatively

valuate the behaviour of the method and assess its performance against
CA. We explore the validity and interpretability of i) the automatically
etected white matter patterns against results from standard tractogra-
hy protocols available through the dHCP ( Bastiani et al., 2019 ) and ii)
he grey matter patterns against components obtained from data-driven
apping of resting-state fMRI in the same subjects. Finally, we use the

xtracted structural connectivity components from a group of 323 new-
orn babies to derive connectivity-driven cortical parcellations of the
eonatal brain and assess their robustness and reproducibility. 

. Theory 

Let X be an M × N dense 1 “connectivity ” matrix, with X ij { i = 1:M,

 = 1:N} carrying information on the likelihood of structural connections
xisting between locations i and j in the brain. Without loss of generality,
et us assume that locations i represent the whole brain and comprise of
ll imaging voxels, and that locations j represent grey matter and reside
n the cortical white/grey matter boundary (WGB) and in subcortical
rey matter. Diffusion MRI tractography can provide such a matrix if
e seed streamlines from N seeds on the WGB and subcortical nuclei,
nd record visitation counts to M voxels across the brain, such that each
1 By “dense ” we refer to voxel-wise / vertex-wise representations rather than 
real-wise nodes, i.e. N and M are in the order of thousands. 
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olumn of X describes the connectivity profile of a grey matter location
 . A data-driven decomposition of X can identify K components based
n similarity of connectivity profiles. Different numbers of components
an be obtained depending on the desired properties of the estimated
omponents. 

Independent component analysis (ICA) imposes statistical inde-
endence between the components to perform a linear decomposition.
n observed matrix X is represented as X = AS , where S is the indepen-
ent sources matrix (each row k corresponds to a source/component)
nd A the weights or mixing matrix (each column k corresponds to the
eights of source k ). As this is an ill-posed problem in general, ICA uses

ource independence to estimate an un-mixing matrix W , that best ap-
roximates A 

− 1 , to recover the original sources from the observed data:
X ≈ S . This process is entirely data-driven by the statistical properties

f the mixture, with no prior knowledge of the mixing matrix or the
ignals. The first step of all ICA algorithms is to centre and whiten the
ata, for normalisation. This can be achieved with a principal compo-
ent analysis (PCA) ( Wold et al., 1987 ) or singular value decomposition
SVD) ( De Lathauwer et al., 2000 ). Then we seek an orthogonal rota-
ion V to apply to the whitened data to optimise the statistical indepen-
ence of the estimated components. This cannot be done analytically
ut there are a number of different methods of solving the problem iter-
tively. The FastICA algorithm ( Hyvärinen and Oja, 2000 ), which uses
on-Gaussianity as a proxy for independence, is one of the typically used
lgorithms. 

ICA has been used to identify networks from resting-state functional
RI data ( McKeown et al., 1998 ), where M = T, the number of time-

oints, and the decomposition results into K spatial maps (covering all
 brain voxels), each with a weight vector of length T. Each weight w ik 

epresents how much component k contributes to activity recorded at
ime point i . ICA has also been used recently in the case of dMRI tractog-
aphy, where N is the number of seed locations ( O’Muircheartaigh and
babdi, 2017 ). In that case, the decomposition provides K spatial maps
covering all N points on the grey matter), each representing a compo-
ent with shared connectivity profile through white matter, associated
ith a weight vector of length M . Each weight w ik represents in this case
ow much component k contributes to the connection patterns of voxel
 . 

Non-negative matrix factorisation is an alternative decomposition
echnique, where a matrix X is factorised into the product of two ma-
rices A and H , under the constraint that all three contain only positive
alues ( Lee and Seung, 1999 ). This is more naturally suited for use with
tructural connectivity data, which is inherently non-negative. In gen-
ral, NMF is an ill-posed problem and there exist multiple solutions in
ost cases. The linear superposition of components, combined with the
on-negativity constraint, lead to an implicit sparsity constraint in the
lgorithm (requesting a signal to be explained as a linear combination
f non-negative regressors will lead to many weights close to zero). Ad-
itional explicit sparsity constraints can be applied to further constrain
he solution space and improve the identifiability of the decomposition
 Hoyer, 2004 ). Specifically, the cost function C to minimise is of the
orm: 

 = 

1 
2 
‖𝐗 − 𝐀𝐇 ‖𝐹 + 𝛼1 ‖𝐀 ‖𝐿 1 + 𝛼2 ‖𝐇 ‖𝐿 1 , (1)

here ‖X ‖F is the Frobenius norm, ‖x ‖L 1 is the L 1 -norm, used to explic-
tly promote sparsity, and 𝛼1 and 𝛼2 are tuning parameters that allow us
o control the degree of regularisation on the mixing matrix and com-
onent matrix, respectively. Higher values of 𝛼’s lead to more sparsity
n the resultant decomposition. The NMF can be initialised with a non-
egative SVD, which has been shown to improve the accuracy of the de-
ompositions ( Boutsidis and Gallopoulos, 2008 ). Most NMF algorithms
se a two-block coordinate descent approach to optimise C over A and H
lternatively, while keeping the other fixed. Each block is a convex prob-
em that can be solved using non-negative least squares ( Cichocki and
han, 2009 ). 



E. Thompson, A.R. Mohammadi-Nejad and E.C. Robinson et al. NeuroImage 222 (2020) 117273 

Fig. 1. Data-driven matrix decomposition methods applied to resting-state functional MRI and structural connectivity data. a) N functional time-courses of length T 
are recorded from points in the grey matter. We can apply a matrix decomposition technique, such as ICA, to this matrix, yielding an T ×K mixing matrix of time 
courses and a K ×N matrix of spatial components. b) an M ×N connectivity matrix describes the likelihood of structural connections existing between each of N grey 
matter seeds and M locations in the brain. The equivalent decomposition applied to this matrix gives us an M ×K mixing matrix of spatial maps, and a K ×N matrix 
of components in the grey matter. 
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.1. From group to subject decompositions - Non-negative dual regression 

When considering data matrices X from multiple subjects (e.g., by
veraging across subjects in the simplest case), the components and mix-
ng matrices will represent the group. Dual regression can then be used
o generate subject-level representations of the group components and
ixing matrices ( Beckmann et al., 2009 ; Nickerson et al., 2017 ), both for

CA and NMF decompositions. Dual regression comprises of two steps: 

i) Identify the subject-specific mixing matrix 𝐀̃ from the group-level
grey matter components S , using the subject-level connectivity ma-
trix 𝐗̃ (where S † denotes the pseudoinverse of S ): 

𝐗̃ = 𝐀̃ 𝐒 → 𝐀̃ = 𝐗̃ 𝐒 †

ii) Find the subject-level grey matter components 𝐒̃ , using the subject-
specific mixing matrix 𝐀̃ : 

𝐗̃ = 𝐀̃ ̃𝐒 → 𝐒̃ = 𝐀̃ 

†𝐗̃ 

In previous work, this multivariate regression has been achieved
y taking the pseudo-inverse of the group-level components and the
ubject-level mixing matrix ( O’Muircheartaigh and Jbabdi, 2017 ), as
llustrated in Suppl. Fig. 1. However, taking the pseudoinverse intro-
uces negative values into the components and their weights, which
eads to mixed-sign subject-level representations of the original non-
egative group-level components, as shown in Fig. 2 . Instead, we have
eveloped a “non-negative dual regression ” technique for back project-
ng NMF results, using non-negative least squares (NNLS) ( Ling et al.,
977 ) for the regression steps. NNLS solves an equation of the form
𝑟𝑔𝑚𝑖 𝑛 𝐱 ||𝐁𝐱 − 𝐲 ||2 subject to x ≥ 0, in which x and y are vectors, and
 is a matrix. Thus, the optimisation has to be performed separately for
ach target voxel in step (i) and each grey matter seed in step (ii) (see
uppl. Fig. 2), but this process can be parallelised to reduce computa-
ion time. This provides an entirely non-negative framework for dual
egression that retains the sparse characteristics of the group-level NMF
omponents, as shown in Fig. 2 . 

. Methods 

We present the development of the above frameworks to map struc-
ural connectivity in the neonatal brain. We first give an overview of
he data employed. We then describe a set of simulations that allow
rincipled evaluation of the decomposition frameworks and we finally
escribe the methods we use to illustrate the benefits of our approach. 

.1. Data 

We used structural, dMRI, and fMRI data made publicly
vailable by the developing Human Connectome Project (dHCP)
 www.developingconnectome.org ). Briefly, data were acquired during
atural sleep on a 3T Philips Achieva with a dedicated neonatal imaging

http://www.developingconnectome.org
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Fig. 2. Example dual regression results for a compo- 
nent from a K = 50 NMF decomposition. On the left, 
the component has been dual regressed onto two sub- 
jects’ data with the standard approach using the pseu- 
doinverse. On the right, the component has been dual 
regressed with our non-negative method that uses non- 
negative least squares. In all volumetric images, left is 
left. 
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ystem, including a neonatal 32 channel head coil ( Hughes et al., 2017 ;
utter et al., 2018 ). Diffusion MRI data were acquired over a spherically
ptimised set of directions on three shells (b = 400, 1000 and 2600
/mm 

2 ). A total of 300 of volumes were acquired per subject, including
0 with b = 0 s/mm 

2 . For each volume, 64 interleaved overlapping
lices were acquired (in-plane resolution = 1.5 mm, thickness = 3 mm,
verlap = 1.5 mm). The data were then super-resolved along the
lice direction to achieve isotropic resolution of 1.5 mm 

3 ( Kuklisova-
urgasova et al., 2012 ). Pre-processing was carried out according to the

HCP diffusion processing pipeline ( Bastiani et al., 2019 ). This includes
otion correction and distortion correction ( Andersson et al., 2016 ;
ndersson and Sotiropoulos, 2016 ). Cortical surface reconstruction was
arried out from T2w images with an isotropic resolution of 0.5 mm 

3 ,
sing a pipeline specifically adapted for neonatal structural MRI data
 Makropoulos et al., 2018 ). Resting-state functional MRI data were
cquired for 15 minutes (TE/TR = 38/392 ms, 2300 volumes) with
n acquired resolution of 2.15 mm isotropic. fMRI pre-processing was
arried out as detailed in ( Fitzgibbon et al., 2019 ), with an automated
ipeline including fieldmap pre-processing to estimate susceptibility
istortion; registration steps; susceptibility and motion correction; and
enoising with ICA-FIX. 

Data were considered from a group of 323 subjects born at term
ge (175 male, 148 female). Median (range) birth age was 40.1 (37.0,
2.3) postmenstrual weeks and age at scan 40.9 (37.4, 44.4) weeks. Pre-
rocessed data are available through the latest dHCP’s data release 2 . 
2 www.developingconnectome.org/second-data-release 

2  

q  

W  

t  
.2. Data processing and whole-brain tractography 

Pre-processed data were further analysed to obtain structural con-
ectivity matrices. To ensure alignment between subjects, we regis-
ered the anatomical surfaces to a representative template space before
erforming tractography. First, we used a surface registration pipeline
 https://github.com/ecr05/dHCP _ template _ alignment ), based on the
ulti-modal surface matching (MSM) algorithm ( Robinson et al., 2018 ,
014 ). Cortical folding was used to drive the alignment of neona-
al WGB, cortical mid-thickness, and pial surfaces to the dHCP 40-week
MA surface templates ( Bozek et al., 2018 ). This aligned vertices on the
GB surface to ensure consistent seed points for tractography across

ubjects. We then applied a previously computed non-linear volumetric
egistration (ANTs, Avants et al., 2011 ) to all MSM-derived surfaces to
egister them to 40-week PMA volumetric template space ( Serag et al.,
012 ). This step was necessary to ensure that the tractography seeds
ere aligned to the target space, because the volumetric and surface-
ased neonatal templates are not aligned ( Bozek et al., 2018 ; Serag et al.,
012 ). 

Once the surfaces were aligned, we obtained connectivity matrices X
or each subject, by performing whole-brain probabilistic tractography
sing FSL ( Behrens et al., 2007 ; Hernandez-Fernandez et al., 2019 ). Fi-
re orientations (up to 3 per voxel) were estimated using a model-based
econvolution against a zeppelin response kernel, to accommodate for
he low anisotropy inherent in data from this age group ( Bastiani et al.,
019 ; Hernández et al., 2013 ; Sotiropoulos et al., 2016 ). We subse-
uently seeded 10,000 streamlines from each of 58,551 vertices on the
GB of both hemispheres (average vertex spacing 1.2 mm, excluding

he medial wall) and from each of 2548 subcortical 2 mm voxels (bilat-

http://www.developingconnectome.org/second-data-release
https://github.com/ecr05/dHCP_template_alignment
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ral amygdala, caudate, hippocampus, putamen and thalamus), giving
s a total of N = 61,099 seeds. This type of grey matter seeding has
een shown to suffer less from the gyral bias in tractography, compared
o whole-brain white matter seeding, even if gyral bias is less promi-
ent in the neonatal brain ( Thompson et al., 2019 ). Visitation counts
ere recorded between each seed point and each of M = 50,272 voxels

n a whole-brain mask with the ventricles removed, down-sampled to 2
m 

3 . The pial surface was used as a termination mask to prevent stream-
ines from crossing between gyri, and streamlines were not allowed to
ross the WGB more than twice (once at the seed point and again at ter-
ination), to reduce false positives ( Hernandez-Fernandez et al., 2019 ;

mith et al., 2012 ). All masks (seeds, targets, exclusions) were defined
n 40 post-menstrual weeks volume template space ( Serag et al., 2012 ),
owever tractography was carried out in native space with results re-
ampled directly to template space. Visitation counts were multiplied by
he length of the pathway to correct for compound uncertainty in the es-
imated trajectories ( O’Muircheartaigh and Jbabdi, 2017 ). The resulting
ense matrices describe the likelihood of a white matter connection be-
ween each grey matter seed and the rest of the brain. The connectivity
atrices were normalised by the total number of viable streamlines be-

ore being averaged across the group. Connectivity matrices were saved
nd averaged in a sparse format to reduce computation time and mem-
ry requirements. 

.3. Dimensionality reduction and back-projection 

We evaluated data-driven connection mapping using both ICA and
MF. Large M (i.e. large number of imaging voxels) can pose computa-

ional and numerical convergence challenges for ICA. We therefore used
CA to reduce the M × N matrix X , into a P × N matrix X r of principal
omponents. Applying ICA to this reduced matrix results in a K × N set
f components S , and a P × K mixing matrix in PCA space A r . In order
o obtain the mixing matrix in the original space of M imaging voxels,
e can take the pseudoinverse of the component matrix S and project it
ack onto the original data to obtain the tract space mixing matrix, i.e.
 = XS † , where S † denotes the pseudoinverse of S (see Suppl. Fig. 3). We

ollowed this approach for the ICA analysis in both simulations and on
eal data, to cope with excessive memory requirements of the full con-
ectivity matrix. However, the dimensionality reduction step was not
ecessary for NMF. 

.4. Simulations 

We evaluated the performance of the decomposition frameworks (us-
ng NMF and ICA) in numerically simulated data, before applying them
o real data. We simulated datasets X with a known number of underly-
ng sources S , to observe how the behaviour of the decompositions over
ifferent model orders reflects the true dimensionality of the data. 

To find a realistic generative distribution to use for our sources,
e used the spatial maps from standard tractography protocols in the
eonatal brain ( Bastiani et al., 2019 ) to generate connectivity blueprints
 Mars et al., 2018 ) as proxies for the source spatial maps in grey mat-
er space ( Fig. 1 ), and fit several distributions to the intensities of these
aps (unwrapped to 1D). We found that log-beta distributions best de-

cribed the data. The sources were therefore drawn from log-beta dis-
ributions, whose parameters in turn were drawn from Gaussian dis-
ributions according to the fits to the measured data. These sources are
andom and sparse, features that indirectly ensure a high degree of inde-
endence. Sources were scaled to lie in the range 0-1. The mixing matrix
as randomly generated, normalised so the columns sum squared to 1.
he simulated data was calculated as the product of the mixing matrix
ith the source matrix. Zero-mean, additive Gaussian noise was applied

o that product via a logit transform, to maintain non-negativity. 
.4.1. Varying L 1 -norm regularisation in NMF 

The NMF decomposition can be regularised with L 1 -norm terms
o promote sparsity in the components (see Eq. (1) ) ( Févotte and
dier, 2011 ). We first tested NMF on the simulated data with varying
evels of regularisation to assess its effect on the accuracy and robust-
ess of the decomposition. Data were simulated with 50 sources, and
verall dimensions of N = 1200 and M = 1000, with noise added with
2 = 0.05 to best match the real data. We used the same regularisation
arameter for the mixing matrix and the components, i.e. 𝛼1 = 𝛼2 = 𝛼,
ollowing the implementation in scikit-learn ( Pedregosa et al., 2011 ).
MF was applied with model orders from 1 to 100 and with regularisa-

ion parameters, 𝛼 = 0, 0.1, 0.25, 0.5. This process was repeated with
00 noisy realisations of the data in each case. 

.4.2. Varying number of sources 

We performed the simulations with varying number of sources in the
ata to check how this affects the results. The data were generated with
2 = 0.05 and with 25, 50 and 75 sources. ICA and NMF were applied
ith model orders from 1 to 100. For NMF, we used a regularisation
arameter of 𝛼 = 0.1 (see Simulation Results for justification). This was
lso repeated 100 times. ICA was first initialised with a PCA with P = 100
omponents, as described in the Dimensionality Reduction section. 

.4.3. Varying noise levels 

Finally, we tested the impact of varying noise levels on the decompo-
itions. Data were simulated as above. Gaussian noise was added to the
ata with varying 𝜎2 = 0.0005, 0.005, 0.05, and 0.5. 100 noisy realisa-
ions were generated in each case. The data were decomposed with ICA
nd NMF, with model orders K from 1 to 100. ICA was first initialised
ith a PCA with P = 100 components, as above. 

.4.4. Assessing Performance 

We used three different metrics to assess the success of the decompo-
itions on the simulated data: i) Reconstruction error: the sum of squared
rrors between the reconstructed data after decomposition and the orig-
nal data: i.e. Σ( X – AS ) 2 . This gives us a measure of the information lost
hrough the decomposition. ii) Source-component correlation: the corre-
ation between each original source and the estimated components. The
est-matched component to each source was identified and the mean of
he maximum correlation values for each component was considered.
his describes how well the decompositions have characterised the un-
erlying signals in the data, and is sensitive to overfitting, as redundant
omponents that are not well matched to sources will bring the value
own. iii) Sparsity: Following the approach in Hoyer (2004 ), Sotiras et al.
2015 ), we used a sparsity measure for the derived components based
n the relationship between the L 1 -norm and the L 2 -norm: 

par sity ( 𝑥 ) = 

√
𝑁 − 

∑||𝑥 𝑖 ||∕ 
√ ∑

𝑥 2 
𝑖 √

𝑁 − 1 
(2) 

This returns values between 0 and 1, with 1 signifying a maximally
parse component with only one non-zero element. This was calculated
or each component vector in S , and we report the mean value across all
omponents. Sparse components are desirable because they provide an
asily interpretable representation of the data with minimal redundant
nformation. In the case of NMF, sparsity constraints also make results
ore reproducible, by constraining the solution space. For ICA, sparsity

an be thought of as a proxy for independence. 

.5. In-vivo data decompositions 

For real data, we decomposed group-average tractography matrices,
sing independent component analysis (ICA) and non-negative matrix
actorisation (NMF), with a range of model orders K . ICA was initialised
ith regular PCA, in which the first 500 components were retained (ex-
laining 97% of the total variance). ICA was applied to the reduced
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ataset using the FastICA algorithm ( Hyvärinen and Oja, 2000 ), with in-
ependence imposed in the seed domain. The pseudo-inverse of this ma-
rix was projected back onto the group-level connectivity matrix to yield
he corresponding components in target space (notice that although we
se a whole-brain target mask for tractography, the bulk of the tractog-
aphy data - and therefore the data-driven components - are in white
atter, so we refer to these spatial maps as the white matter compo-
ents throughout the rest of the text). To deal with the sign ambiguity
f ICA, components that were negative in the long tail of their distri-
ution were sign-flipped, for consistency with the other methods (i.e.
o that the main mass of the distribution was in the positive valued do-
ain). 

NMF was performed with a coordinate descent algorithm
 Cichocki and Phan, 2009 ), a Frobenius norm cost function (see
q. (1) ), and an L 1 -norm regularisation parameter 𝛼 = 0.1. In NMF,
he connectivity matrix is decomposed directly into the M × K mixing
atrix and the K × N component matrix so there is no need for the

ack-projection step that was carried out for ICA after the PCA. 
All decompositions were implemented using scikit learn

 Pedregosa et al., 2011 ) and the code is available on GitHub
 https://github.com/ethompson93/Data- driven- tractography ). An
MF decomposition on a group average matrix takes around two hours
nd 80 GB of RAM on a single CPU. 

.6. Comparison to tractography-derived white matter tracts 

To assess validity and interpretability of the extracted components,
e compared the automatically extracted white matter components
ith results obtained from standard, template-driven tractography pro-

ocols, developed for neonatal subjects, as described in Bastiani et al.
2019 ). 28 tracts (13 bilateral) were mapped in each subject. The tracts
ncluded in this analysis were: acoustic radiation (AR), anterior thala-
ic radiation (ATR), cingulate gyrus part of cingulum (CGC), parahip-
ocampal part of cingulum (CGH), cortico-spinal tract (CST), forceps mi-
or (FMI), forceps major (FMA), fornix (FOR), inferior fronto-occipital
asciculus (IFO), inferior longitudinal fasciculus (ILF), medial lemniscus
ML), posterior thalamic radiation (PTR), superior longitudinal fasci-
ulus (SLF), superior thalamic radiation (STR), and uncinate fasciculus
UNC). These were registered to a 40-week template and down sampled
o 2 mm for comparison with the tract space representations of our data-
riven components. Each tract was averaged across all subjects within
 split half, and we calculated the Pearson’s correlation coefficient be-
ween each of the average tracts with each of the data-driven compo-
ents from the K = 100 decompositions. A one-to-one matching was
erformed between the standard tractography results and the compo-
ent maps, based on the correlation scores, with the results displayed
n Fig. 6 and Supplementary Figure 4. 

.7. Split-half reliability analysis 

We performed a split-half analysis on a cohort of 323 term-age sub-
ects to see how robust and reproducible our decompositions were across
ifferent model orders. We evaluated a number of model orders: K = 5,
0, 25, 50, 100, 200. For each value of K , we performed a one-to-one
atching of components across the split-half, based on the Pearson’s

orrelation coefficients of their spatial maps, recording the correlation
oefficients of the matched pairs as a measure of their similarity. This
as repeated for the grey matter and white matter maps. We also mea-

ured the reconstruction error and the sparsity of the components for
oth ICA and NMF, as in the simulations. 

.8. Comparison to functional resting-state networks 

The cortical patterns of structural connectivity from our NMF com-
onents were compared with resting state networks from fMRI. For this
nalysis, we selected a group of 55 subjects all born and scanned be-
ween 40 weeks and 41 weeks PMA (i.e. all subjects within this age
ange who had both structural and functional data available). 

We first mapped the functional data onto the cortical surface,
roadly following the fMRISurface pipeline outlined in Glasser et al.
2013 ). The native WGB, midthickness and pial surfaces were affine
egistered to the same space as the functional data. The fMRI time-
eries were then mapped onto the cortical surface using a partial volume
eighted ribbon-constrained volume to surface mapping algorithm, as

mplemented in HCP’s connectome workbench ( Marcus et al., 2011 ).
hese data were then downsampled from the native mesh and regis-
ered to the 32k resolution template (using the same MSM transform as
or the WGB surface used to seed tractography). Spatial smoothing was
pplied over the cortical surface with a Gaussian kernel, FWHM = 2 mm.

Temporally-concatenated group-ICA was performed using FSL’s
elodic ( Beckmann and Smith, 2004 ), with Melodic’s Incremental
roup PCA (MIGP) for the PCA step ( Smith et al., 2014 ). MIGP uses an

ncremental approach to closely approximate PCA of very large datasets
ut with a reduction in the amount of memory required. We specified 50
ndependent components. We performed NMF on the group-averaged
tructural connectivity matrices of the same group of subjects, with
 = 50, for comparison. The similarity between the resultant grey matter
patial maps was assessed using Pearson’s correlation coefficient. 

.9. Cortical parcellations using structural connection patterns 

We used the grey matter components to generate a parcellation of
he cortex with K clusters, using a “winner-takes-all ” approach, whereby
ach vertex on the cortical surface was labelled according to the compo-
ent that had the highest weighting at that point. This results in a hard
arcellation where each cluster corresponds to a component that best
haracterises the connection patterns of the vertices contained within it.
e tested the robustness of these parcellations by calculating the Dice

oefficient between parcellations generated on each of the split-halves.
ice coefficients measure the overlap between two clusters, normalised
y the number of elements in each cluster. Subject-level parcellations
ere generated from the dual-regressed subject-level grey matter com-
onents. We assessed the variability of the subject-level parcellations
y calculating the Dice coefficient between equivalent parcels in the
ubject-level and group-level parcellations. 

We also assessed the parcellation using a Silhouette coefficient,
hich assesses the similarity of the vertices in a cluster in relation to

he vertices in other clusters ( Rousseeuw, 1987 ). We used (1 - Pearson’s
) as a distance metric for the connectivity profiles of different vertices.
 successful parcellation would group vertices with similar connectivity
rofiles, which are distinct from the connections in other parcels. 

Results from our data-driven parcellations were benchmarked
gainst a “null distribution ” of 100 random Voronoi parcellations of
he same model order ( Aurenhammer, 1991 ). Voronoi parcellations
re spatially-continuous and geodesic-distance based and were gener-
ted from seeds randomly distributed over the surface of two spheres,
apped to the surface of each hemisphere of the cortex. Each vertex on

he sphere is labelled according to its nearest seed point on the surface.
he spherical parcellations were projected onto the cortex, providing
andom parcellations with a set number of contiguous spatial regions. 

. Results 

.1. Simulations 

We performed simulations to evaluate the performance of ICA and
MF decompositions on a synthetic dataset in which the underlying

ources were known. We first looked at the effect of varying the degree
f L 1 -norm regularisation in NMF. We then investigated how the number
f sources and the noise level in the data affected results. 

https://github.com/ethompson93/Data-driven-tractography
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Fig. 3. Simulation experiment to assess the effect of L 1 -norm regularisation on NMF. The degree of regularisation increases from left to right across the plots ( 𝛼 = 0.0, 
0.1, 0.25, 0.5). Different metrics are shown from top to bottom: reconstruction error, correlation between derived components and underlying sources, sparsity of 
components. The true number of underlying sources ( K = 50) is denoted by a vertical dashed line. Noise variance was 𝜎2 = 0.05. Results are shown averaged over 
100 noisy realisations of the data. 
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.1.1. Varying L 1 -norm regularisation 

Increasing the regularisation parameter, 𝛼, increases sparsity, but
lso increases the reconstruction error, as shown in Fig. 3 . The NMF de-
omposition breaks down for high regularisation ( 𝛼 = 0.5), with high er-
or and very low source-component correlation. Smaller amounts of reg-
larisation improve the agreement between the components and sources
nd reduce the reconstruction error at the cost of reducing sparsity. A
ood middle-ground solution is shown ( 𝛼 = 0.1), balancing reconstruc-
ion accuracy and sparsity. We therefore opted to use 𝛼 = 0.1 for subse-
uent experiments. 

.1.2. Varying number of sources 

We carried out the decompositions on data with varying numbers
f underlying sources. Fig. 4 shows that reconstruction error increases
ith the number of sources, so more information is lost between the
ecomposition and the original data as the data become more complex.
or the source-component correlation, we can see two different regimes.
hen the number of components, N , is lower than the true number of

ources in the data, K , the average correlation between the components
nd the true sources rises quickly for very low N , then plateaus until
 = K . When N > K , the extra components overfit to the noise and bring
own the average correlation with the sources. NMF achieves overall
ery high correlations between the reconstructed components and the
rue non-negative sources. NMF component sparsity increases rapidly
or low N , then increases more slowly once the number of components
xceeds the number of sources. In the case of ICA, sparsity reaches a peak
hen the number of components is equal to the number of underlying
ources, then decreases. 

.1.3. Varying SNR 

Overall, reconstruction error increases with noise level. In general,
econstruction error decreases as the model order approaches K , the
rue number of underlying sources, and then plateaus for higher model
rders. The mean correlation between the components and the under-
ying non-negative sources increases as the number of components ap-
roaches K , and then decreases as the models overfit to noise. The spar-
ity of the components exhibits a relatively stable pattern for low and
id-levels of noise, but it becomes considerably reduced in the high
oise scenario ( 𝜎2 = 0.5). 

Figs. 4 and 5 also enable us to compare the performances of ICA and
MF on simulated, non-negative data. ICA shows a lower reconstruction
rror than NMF, particularly when model order exceeds the number of
rue sources. This could, however, signify that ICA is overfitting to noise
ore than NMF, particularly since ICA also exhibits a lower correlation

etween its components and the underlying sources than NMF, at all
odel orders. This reflects the better suitability of NMF for identify-

ng inherently non-negative patterns within the data, in contrast to ICA,
hich generates components that contain both positive and negative
alues. NMF also generates components with consistently higher spar-
ity than those from ICA. 

To summarise, we evaluated the performance of ICA and NMF on
 simulated dataset with non-negative sources. Based on the results of
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Fig. 4. Simulation results to show how decompositions vary with differing numbers of underlying sources. The dotted vertical line shows the number of underlying 
sources in each case (from left to right: K = 25, 50, 75). Results are shown from ICA and NMF decompositions, in orange and blue, respectively. 𝜎2 = 0.05 and 𝛼 = 0.1 
for NMF. 
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hese simulations, we have chosen a regularisation parameter of 𝛼 = 0.1
or NMF to use on the real data, as this promotes sparsity in the compo-
ents, without compromising too much accuracy in the reconstruction.
e have found that NMF has a number of advantages over ICA for non-

egative data: it generates components that are more closely matched
o the real sources, with higher sparsity and potentially less overfitting
o noise. 

.2. In-vivo results - Comparison between ICA, NMF and standard 

ractography 

To investigate the interpretability and validity of the extracted com-
onents, we compared the white matter components from both ICA and
MF with the group-averaged results from standard tractography pro-
ocols. A number of our data-driven components exhibit strong spatial
imilarity to known white matter pathways ( Fig. 6 ). In fact, all the con-
idered 28 tracts have well-matching components (Suppl. Fig. 4). Both
CA and NMF are able to identify spatially separate regions of grey mat-
er (i.e. networks), along with their underlying white matter connec-
ions, for example in the forceps minor, the inferior longitudinal fasci-
ulus and the various thalamic projections. 

These examples demonstrate the advantages of using NMF over ICA.
MF components are inherently sparser (ICA-derived spatial maps typ-

cally cover the whole brain) and by construction non-negative. The
ain body of the anatomically relevant information conveyed by ICA

omponents is present with NMF decompositions but in an inherently
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Fig. 5. Simulation results to assess the effect of varying noise levels on the ICA (orange) and NMF (blue) decompositions. The noise level increases from left to right 
across the plots ( 𝜎2 = 0.0005, 0.005, 0.05, 0.5). Different metrics are shown from top to bottom: reconstruction error, correlation between derived components and 
underlying sources, sparsity of components. The true number of underlying sources ( K = 50) is denoted by a vertical dashed line. 
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on-negative manner. This suggests that the NMF sparsity constraints
ffectively enforce independence in the composition, similarly to ICA.
n addition, we can observe qualitative improvements of NMF over ICA
or a number of tracts. For instance, the NMF component correspond-
ng to the right IFO has a stronger peak in the occipital lobe than the
quivalent ICA component, and NMF has fewer false positive frontal
rojections in the left ILF. These features are seen in the results from
oth split-halves of the cohort. Further detailed comparison between
MF and ICA components with differences between matched pairs is

hown in Suppl. Fig. 6. This figure demonstrates that the NMF results
onvey different information that the ICA results, even when the latter
re thresholded to only retain positive values. 

Interpretability can be also illustrated for components that do not
atch any tracts from the set we reconstructed using standard tractog-

aphy protocols. An example is demonstrated in Fig. 7 , where ten com-
onents from the K = 100 NMF decomposition have been identified as
orresponding to different segments of the corpus callosum. For each
omponent, the grey matter (seed space) map is shown, along with the
M spatial map (tract space). 

.3. Assessing the reliability and accuracy of the decompositions 

To assess the reproducibility of the derived components, we per-
ormed a split-half reliability analysis for the ICA and NMF decom-
ositions. Fig. 8 presents histograms of correlations between the best-
atching components across the split-halves, for both ICA and NMF. In
p  
ll cases, the median value lies above 0.8, which shows that both meth-
ds are robust to different subject groups. Even if patterns are more
ariable for lower model orders ( K < 25), both methods perform simi-
arly for higher K (50, 100, 200). Similar behaviour is observed for grey
atter components and white matter mixing matrices. 

We also computed the reconstruction error and component spar-
ity. In line with the results from the simulations, reconstruction er-
or decreases with increasing numbers of components, with ICA having
lightly higher reconstruction accuracy than NMF (Suppl. Fig. 5). Spar-
ity is much higher for NMF than for ICA, as we would expect from a
ualitative examination of the components in Fig. 6 . Sparsity increases
apidly from 5 to 50 components and increases after 100 components
ecome smaller. Both measures have been calculated for both splits, and
onfidence intervals are displayed but very small, which indicates that
hese measures are stable for different groups of subjects. 

We explored how increasing the model order in the decomposition
ffects the splitting of components (Suppl. Fig. 7). Equivalent compo-
ents were identified across model orders by calculating the correlations
etween their spatial maps. We can see that the more coarse-grained
onnectivity patterns from the low dimensionality decompositions are
roken down into more sparse, fine-grained spatial maps as we increase
he number of components. For example, in the left panel of Suppl.
ig. 7, we show an NMF component and the associated white matter spa-
ial map from the K = 5 decomposition that delineates the left pyramidal
ract. As we increase the number of components from K = 5 to K = 50,
e see this bundle split into sub-components that characterise different
arts of corona radiata projections. We can also see the increase in spar-



E. Thompson, A.R. Mohammadi-Nejad and E.C. Robinson et al. NeuroImage 222 (2020) 117273 

Fig. 6. Example group level results from NMF and ICA 

(model order = 100), displayed alongside their match- 
ing tract from the standard protocols. Data-driven com- 
ponents are un-thresholded to enable the compari- 
son between the negative values in the ICA com- 
ponents and the sparse, non-negative representations 
from NMF, whereas the maps from standard protocols 
are lower thresholded at 0.001 for clearer visualisation 
of the tract. All tractography and data-driven results 
are taken from split 1 of the split-half analysis. The full 
set of 28 tracts with their matched data-driven compo- 
nents are shown in the supplementary material. 
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ity between the low and the high order components (which agrees with
he quantitative results - Suppl. Fig. 5b). 

Having ascertained the reliability of the data-driven framework for
 large group of subjects, we explored the behaviour of smaller groups.
e performed a K = 50 decomposition on a single subject’s data, and

hen for groups of 5, 10, 50 and 200 subjects. The white matter and grey
atter spatial maps from two of the resultant components are shown in

ig. 9 . This shows that the patterns are robust even at the single-subject
evel, although the patterns are noisier with fewer subjects. A quantita-
ive analysis of the similarity between the small group-size results and
he full cohort components is shown in Suppl. Fig. 8, from which we
an see that components from 10 subjects and 50 subjects have simi-
arly very strong correspondence with the full cohort, while even the
ingle-subject results are reasonable. 

Finally, we compared the results from single-subject NMF decompo-
itions with the results from non-negative dual regression on the same
ubjects against a group NMF decomposition, as shown in Suppl. Fig. 9 .
e found that there is a strong agreement between the component maps

btained from these different approaches, which is reassuring and high-
ights the benefit of using non-negative dual-regression against a group
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Fig. 7. Ten components from the K = 100 NMF de- 
composition that correspond to segments of the corpus 
callosum. For each component, the grey matter (seed 
space) map is shown, along with the WM spatial map 
(tract space) rendered in 3D to aid visualisation. All 
rendered WM segments are shown at the top. 

Fig. 8. Split-half reliability analysis for ICA and NMF. Pearson’s correlation scores were calculated between the best-matched components in each split for the white 
matter spatial maps (a) and the grey matter maps (b). The dotted lines on the violin plots indicate the 25 th and 75 th percentiles and the median is represented by a 
dashed line. 
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Fig. 9. Two components and their corresponding white matter pathways from K = 50 group-level decompositions with varying numbers of subjects. Component 1 
correlates well with the tractography-delineated cortico-spinal tract, and component 2 with the inferior longitudinal fasciculus. 
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ecomposition in ensuring consistency in the components between sub-
ects, but also preserving individual subject features. A small number of
ases (lower end of the depicted distribution in Suppl. Fig. 9a) exhibit
elatively lower agreement between the two sets of results. We antici-
ate that imperfections in registration and/or alignment of the surfaces
o the volumetric template are reflected in these disagreements; but even
n these cases (Subject B as representative example), the spatial maps of
he components do not look too dissimilar, demonstrating the robustness
f the approach. 

.4. Comparison with functional resting-state networks 

As an extra indirect validation, we compared the grey matter maps
rom the NMF decompositions of the tractography data, with resting-
tate networks (RSNs) obtained from ICA decomposition of fMRI data.
e performed group-level ICA ( K = 50) on fMRI data from 55 subjects
nd compared the resultant resting-state networks to those from a K = 50
MF decomposition of the structural connectivity data from the same

ubjects. Through visual inspection, 24 of the functional components
ere found to contain noise or artefacts, so were discarded. We mea-

ured the similarity of the remaining 26 RSNs to our structural grey
atter components using Pearson’s correlation coefficient, r, to identify

he best matching pairs. 
Most functional components were well matched to at least one struc-

ural component, with the lowest correlation value between an RSN and
 tractography component being r = 0.2. Over half (14 out of the 26 net-
orks identified) had a correlation value r > 0.5 with their best-matched

tructural component. The correlation matrix in Fig. 10 is sparse, which
ndicates that there is specificity in the matching. Where RSNs were
trongly associated with multiple structural components, this was ei-
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Fig. 10. Left: correlation matrix between the fMRI RSNs and their 26 best-matched tractography NMF components. Right: examples of the functional networks 
and their most spatially similar grey matter components from structural NMF. These correspond to the columns outlined in yellow on the correlation matrix. The 
corresponding white matter patterns are shown as maximum intensity projections. 
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her a bilateral network split into the two hemispheres (e.g. Fig. 10 b
nd c) or structural networks that overlapped with different regions of
he RSN ( Fig. 10 a and d). 

.5. Parcellations 

The grey matter components from NMF were used to generate hard
arcellations of the cortex, using a winner-takes-all approach. This pro-
ess was carried out on each of the split-half groups to assess how ro-
ust the parcellations are to different groups of subjects. Fig. 11 a illus-
rates the parcellation results for different values of K . We can observe
igh reproducibility of the parcels between the two split-halves, and
arcellation schemes are robust across different model orders. We also
how a subject-specific parcellation generated from the results of a non-
egative dual regression that demonstrates qualitatively how the group
esults correspond to single subjects. In order to quantify the variability
f these group parcellations across subjects, we calculated the Dice co-
fficient between the equivalent parcels in the group-level and subject-
evel parcellations. The average coefficient for each parcel of the K = 100
arcellation is shown in Fig. 11 b, alongside two example subject-level
arcellations, with the lowest and highest average (across parcels) Dice
core, respectively. We can see that most parcels are relatively stable
cross subjects (average Dice > 0.7). 

Fig. 12 a further quantifies the similarity between split-half group
arcellations by showing the distributions of Dice scores across all gen-
rated parcels. This can be compared against distributions of Dice scores
btained from 100 random Voronoi parcellations (with spatial continu-
ty enforced) of the same order as the decomposition used in each case.
he parcellations using the NMF components are significantly more con-
istent than the equivalent randomly generated parcellations. 

To further gain insight into the validity of these parcellations, we
alculated the mean Silhouette score across parcels for the NMF-based
arcellations at each model order, and for each split-half of the cohort.
or comparison, we also computed the measure for 100 randomly gener-
ted Voronoi parcellations with the same number of parcels. A silhouette
core measures the similarity of the data within a parcel, relative to their
issimilarity to data in other parcels. From Fig. 12 b, we can see that the
ean Silhouette score across parcels for our data-driven parcellations is
onsistently higher than for the equivalent random parcellations. Fur-
hermore, we can see that the validity of the parcellations increases with
ncreasing numbers of parcels in data-driven parcellations. On the con-
rary, for random parcellations, the Silhouette score peaks at K = 25,
nd then decreases for greater values of K . Our results show that our
ata-driven parcellations provide a more meaningful clustering of the
ata than random parcellations, even when the random parcellation has
patial contiguity enforced. 

. Discussion 

We have developed and demonstrated a non-negative framework for
imultaneously mapping white matter connections and corresponding
rey-matter networks from diffusion MRI data in a data-driven man-
er. We presented this approach within the context of mapping struc-
ural connectivity in the neonatal brain. Non-negative matrix factorisa-
ion (NMF) is a powerful alternative to traditional tract delineation that
as no parametric assumptions, no dependence on predefined ROIs and
asks in a template space, and is inherently suited to the non-negative
ature of tractography data. We directly evaluated the performance of
he framework using numerical simulated scenarios and indirectly ex-
lored the validity of the extracted components by comparing them
gainst known tracts and against networks obtained from a different
odality (resting-state fMRI). We also developed a non-negative dual

egression approach to allow group NMF decomposition results to be
onsistently applied to individual subjects and confirmed the similar-
ty of dual-regressed results with single-subject decompositions. Finally,
e showed benefits of the NMF framework compared to a similar-in-

pirit approach that used ICA to map connections in the adult brain
 O’Muircheartaigh and Jbabdi, 2017 ). NMF is an alternative decompo-
ition method that provides more interpretable and accurate reconstruc-
ions of non-negative sources than ICA. 

Our work falls within the family of other data-driven approaches
or mapping structural connections from whole-brain tractograms, such
s ( Garyfallidis et al., 2012 ; O’Donnell and Westin, 2007 ; Siless et al.,
018 ). Our approach extends these efforts by allowing simultaneous
econstructions of white matter bundles and the corresponding grey-
atter networks that these bundles connect. Furthermore, none of the
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Fig. 11. a) Hard parcellations of the cortical surface from NMF, from each split-half of the cohort and from dual regression of the group-level results onto a single 
subject. The left hemisphere displayed only. Parcels are colour matched according to the correlation values between the original grey matter components. b) Left: 
variability of the K = 100 parcellation borders, colour coded according to the average Dice score between the group level parcellations with the subject level 
parcellations from split 1 of the cohort (dark red: small overlap of parcel across subjects, bright yellow: large overlap of parcel across subjects). Right: examples of 
subject-level parcellations with low and high average Dice score with the group parcellation. 
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Fig. 12. a) Dice scores of matching parcels across the split-half analysis. For comparison, we also calculated the Dice score between one of the splits’ NMF parcellations 
and 100 randomly generated Voronoi parcellations of the same model order. b) Mean Silhouette score across clusters for NMF and Voronoi parcellations with model 
orders of 5, 10, 25, 50, 100 and 200. 
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revious data-driven approaches have been applied for mapping con-
ections from diffusion MRI data of the neonatal brain, as shown here. 

.1. Validation using Simulations 

We used simulations to investigate the behaviour of the decomposi-
ions in controlled scenarios, in which the ground truth was known, and
e could evaluate performance as a function of preselected features. In
rder to generate realistic simulations for such a decomposition frame-
ork, we therefore learned properties of the sources from distributions
btained from in vivo data, and mixed non-negative sources to generate
ynthetic data with a known number of components. 

We first looked at the effect of adding an L 1 -norm regularisation
erm to the objective function for NMF (see Eq. (1) ). Increasing the reg-
larisation reduces the accuracy of the data reconstruction, but a small
mount ( 𝛼 = 0.1) improves the correlations between the sources and
he components at lower model orders and promotes component spar-
ity. We decided to use an alpha value of 0.1 for subsequent work, as
e deemed this to be a good compromise between higher component

parsity and source reproduction, with only a minimal impact on re-
onstruction accuracy. Increasing the sparsity of components has been
hown to generate features that are inherently more independent, while
onstraining the NMF solution space to make the decomposition more
eliable ( Hoyer, 2004 ). 

We also looked at the effect of adding varying levels of Gaussian
oise to the data. As expected, the reconstruction error of the decom-
ositions increased with increasing noise, but the correlation between
omponents and true sources was fairly stable, particularly at low model
rders. Comparing the results from ICA and NMF, both were able to re-
onstruct the original data (using the dot product of the mixing matrix
nd component matrix) with good accuracy, but the components from
CA were less well matched to the true non-negative sources themselves
han those from NMF. This is because the components from ICA contain
egative values that are not found in the real sources, although mu-
ual cancellation of positive and negative values in the components and
ixing matrix allows the data matrix to be reconstructed accurately. 

.2. Indirect Validation 

White matter spatial maps of the NMF components show strong spa-
ial similarity to known white matter pathways ( Figs. 6 , 7 , Suppl. Fig. 4).
ach of the 28 tracts that were considered had a corresponding compo-
ent from the K = 100 decomposition. The tractography-matched pat-
erns from ICA and NMF have similarities, as seen in Fig. 6 . This hints
owards NMF being able to separate spatially independent components,
n an analogous manner to ICA, despite not having independence con-
traints enforced explicitly. This is because the sparsity constraint on
he NMF decomposition implicitly promotes non-Gaussianity in the re-
ultant components, which is used as a proxy for independence in the
astICA algorithm ( Hyvärinen and Oja, 2000 ). Indeed, sparsity and inde-
endence criteria have previously been shown to generate very similar
asis sets across several different data types ( Saito et al., 2000 ). 

Despite the overall similarity between the results from the two meth-
ds, there are some noticeable differences between the spatial maps
rom ICA and NMF, shown in Supplementary Figures 4 and 6. For ex-
mple, the component corresponding to the forceps major extends more
trongly into the right hemisphere in the NMF component than in ICA
omponent. In addition, the inferior longitudinal fasciculus component
rom ICA extends into the frontal lobe, mixing with the inferior fronto-
ccipital fasciculus, which is not seen in the NMF result. Supplementary
igure 6 shows further examples and illustrates the effects different lev-
ls of thresholding on the ICA results. We can see from these results that
) the NMF results convey different information than the ICA results,
ven when the latter are thresholded to only retain positive values, b)
ifferent ICA components would require different levels of thresholding
o match the results from NMF. 

There are also some tracts which are not so well-characterised by
ither method, such as the acoustic radiation, which contains a mix-
ure of the middle longitudinal fasciculus, and the superior longitudi-
al fasciculus, which does not have separate lobes in the grey matter
omponents. However, it is worth noting that the data-driven methods
resented here are not meant to replace tractography for major bundle
elineation, particularly in cases where we have well-defined tractog-
aphy protocols. Instead, they can provide complementary ways to con-
urrently extract GM and WM connectivity patterns from all the data
imultaneously, particularly for cases where this delineation of bundles
s challenging or incomplete. This can potentially be a powerful novel
ay of summarising the information content of tractography data for
pplications other than bundle delineation, such as connectivity-driven
unctional localisation (for example ( Mars et al., 2018 )). 

We explored a range of model orders from 5 to 200. The lower
odel orders generate more distributed components that contain mul-

iple white matter bundles, whereas the higher model orders give more
pecificity, as shown in Suppl. Fig. 7. The components from lower model
rders (eg. K = 5) are split into smaller constituent parts for higher
odel orders, providing a component hierarchy as K increases. At higher
odel orders, we also see additional components that do not have
atching predefined tracts from the standard protocols. We show ex-

mples of these “unassigned ” NMF components in Suppl. Fig. 10. Many
f these components are bilateral, and show short range connections
n the frontal lobe, such as the fronto-marginal tract (bottom row, first
wo columns) ( Catani et al., 2012 ). Others may reflect false positive con-
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ections, such as the thalamic loops in the fifth row. Interpreting and
otentially classifying these components is an interesting topic for fu-
ure exploration and similar ideas applied to fMRI ICA-based classifica-
ion ( Salimi-Khorshidi et al., 2014 ) could be aimed for here, particularly
ith respect to the NMF model order used. 

We performed a quantitative analysis of the components, shown in
uppl. Fig. 5, looking at the reconstruction error and the sparsity of
he components. Reconstruction error decreases with more components
nd the sparsity of the components increases. This reflects the higher
egree of freedom afforded by more components that permit a more
etailed reconstruction of the original data, and components that are
ore tightly localised around fine-grained regions of similar connectiv-

ty. NMF components are sparser than those from ICA, which indicates
hat the former is able to localise connectivity patterns more effectively,
isregarding redundant information and keeping non-negativity in the
econstruction. 

The grey matter maps of the NMF components were also shown to
lign well to resting-state networks from fMRI. This provides further
vidence that these data-driven results are anatomically meaningful. It
lso opens up future possibilities for devising a multi-modal data-driven
ramework that can fuse information across modalities and perform de-
ompositions simultaneously for dMRI and fMRI data. 

.3. Parcellations 

We used the grey matter maps of the NMF components to gener-
te a connectivity-based cortical parcellation scheme. Specifically, each
ertex on the cortical mesh was labelled according to the component
ith the strongest weighting at each point. This leads to a parcellation

n which clusters share similar patterns of structural connectivity to the
est of the brain. Depending on the model order of the decomposition,
he parcellation can be coarse or more fine-grained (see Fig. 11 a). An
dvantage of this approach is that it is entirely data-driven, so the par-
ellations are not biased by any subjective measures. It can also be used
o generate subject specific parcellations, by using the subject-level grey-
atter maps from dual regression. 

We also performed a split-half reliability analysis of the parcella-
ions, using Dice Score as a similarity measure, to see how reproducible
he parcellations are for different model orders. We compared the re-
ults with the Dice score between one split and a set of randomly gen-
rated Voronoi parcellations. For all model orders, the data-driven par-
ellations were more consistent than random parcellations. In addition,
e used Silhouette score as a measure of the parcel validity, and again

ompared the performance of the NMF-based parcellations against 100
andom Voronoi parcellations. Silhouette score measures the similarity
f the connectivity profile of a given grey matter vertex to others in
ts parcel, relative to the connectivity of vertices in other parcels. We
ound that our data-driven parcellations consistently scored higher on
his measure than the random parcellations (see Fig. 12 ). 

Despite this evidence provided by our results, validating a cortical
arcellation is extremely challenging. Existing schemes for the neonatal
rain have been derived from manual segmentation of high-resolution
ata ( Alexander et al., 2019 , 2017 ), or compared against expert manual
egmentations ( Adamson et al., 2020 ; Oishi et al., 2011 ). While these are
xtremely useful pieces of work, as they stem from traditional invasive
arcellation approaches, they are based on gyral and sulcal landmarks.
hese landmarks may not necessarily coincide with functional bound-
ries (see e.g. ( Van Essen and Glasser, 2018 ) for a recent review). The
ope is that connectivity patterns can provide additional information
hat is closely linked to non-invasive functional delineation, as shown
n Glasser et al. (2016 ). The NMF framework presented here may be
xtremely useful for providing another connectivity-based modality, in
ddition for instance to functional connectivity approaches, and further
ugment multi-modal parcellations. 
.4. Decomposition domain 

In the results presented here, we have been applying decompositions
n the grey matter seed domain, allowing white matter tract overlap. We
lso tried applying the decompositions to the transpose of the connec-
ivity matrix, X 

T , which meant decomposing (and in the case of ICA
nforcing independence) in the tract domain. ICA and NMF were per-
ormed on the transpose of the split 1 connectivity matrix, with K = 50.
ooking at the similarity between the results from both methods (see
uppl. Fig. 11), we can see that the ICA components are most affected
y this change. Most NMF components are nearly identical to the orig-
nal results. This agrees with expectations, as in NMF the sparsity and
on-negativity constraints are enforced in both the mixing matrix and
he components (see Eq. (1 )). 

.5. Limitations 

Our decomposition framework uses whole-brain tractography data
nd its performance can therefore be challenged by tractography limi-
ations, which are important to keep in mind when interpreting results.
ractography is an indirect measure of anatomy that is prone to identify-

ng false positive connections ( Maier-Hein et al., 2017 ). False positives
n tractography can be demonstrated in two ways: a) In a noisy fash-
on, causing false paths that are inconsistent either spatially or across
ubjects. These are less likely to be major drivers of data-driven decom-
ositions, b) In a biased fashion, i.e. consistent false positives that have
 certain spatial extent and are reproducible across subjects. These can
orm the basis of extracted components in NMF, even at the group level.

e however performed a number of indirect validations to gain confi-
ence in the validity and interpretability of the results. NMF decomposi-
ions, without any constraints or anatomical knowledge imposed, iden-
ified patterns that resembled constrained tractography results in white
atter and patterns obtained from an independent modality (rfMRI) in

rey matter, and provided whole-brain connectivity-based parcellations
hat were reproducible across subjects. 

It has also been shown that tractography streamlines are biased to-
ards terminations in the gyri rather than the sulci ( Schilling et al.,
018 ; Van Essen et al., 2013 ), although the effects of this “gyral bias ”
an be minimised by seeding from the cortical surface rather than the
hole brain ( Donahue et al., 2016 ; Schilling et al., 2018 ), as we have
one here. We have also shown in previous work that the effects of
yral bias are less prevalent in neonates than in adults due to the less
eveloped cortical folding ( Thompson et al., 2019 ) and we therefore
xpect less direct influence of such biases into the NMF performance
n the neonatal brain. In fact, our parcellation borders did not show a
onsistent overlap with sulcal fundi or gyral crowns (Suppl. Fig. 12). 

Data-driven decompositions can be more computationally demand-
ng than standard tractography approaches, as they consider all data at
nce and extract all white-matter and grey-matter maps simultaneously,
ithin the same decomposition. To reduce the memory requirements
nd the computational burden, we binned the whole brain tractography
ata into a 2 mm spatial grid, which subsequently defined size M in the
ecompositions ( Fig. 1 ), rather than using the native 1.5 mm spatial grid
f the dMRI data. This provides WM components at a lower resolution
han available in the original data but does not change any trends or
onclusions drawn from the presented analyses. 

. Conclusions 

We have shown that data-driven methods can be used to jointly map
hite matter bundles and their corresponding grey matter networks

rom dMRI tractography data from neonatal subjects. In particular, we
how that non-negative matrix factorisation provides a robust decom-
osition that is a natural fit for the inherently non-negative structural
onnectivity data. 
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