20 research outputs found

    A Review of Remote Sensing Image Dehazing.

    Full text link
    Remote sensing (RS) is one of the data collection technologies that help explore more earth surface information. However, RS data captured by satellite are susceptible to particles suspended during the imaging process, especially for data with visible light band. To make up for such deficiency, numerous dehazing work and efforts have been made recently, whose strategy is to directly restore single hazy data without the need for using any extra information. In this paper, we first classify the current available algorithm into three categories, i.e., image enhancement, physical dehazing, and data-driven. The advantages and disadvantages of each type of algorithm are then summarized in detail. Finally, the evaluation indicators used to rank the recovery performance and the application scenario of the RS data haze removal technique are discussed, respectively. In addition, some common deficiencies of current available methods and future research focus are elaborated

    Retinex theory for color image enhancement: A systematic review

    Get PDF
    A short but comprehensive review of Retinex has been presented in this paper. Retinex theory aims to explain human color perception. In addition, its derivation on modifying the reflectance components has introduced effective approaches for images contrast enhancement. In this review, the classical theory of Retinex has been covered. Moreover, advance and improved techniques of Retinex, proposed in the literature, have been addressed. Strength and weakness aspects of each technique are discussed and compared. An optimum parameter is needed to be determined to define the image degradation level. Such parameter determination would help in quantifying the amount of adjustment in the Retinex theory. Thus, a robust framework to modify the reflectance component of the Retinex theory can be developed to enhance the overall quality of color images

    Detail Preserving Low Illumination Image and Video Enhancement Algorithm Based on Dark Channel Prior

    Get PDF
    In low illumination situations, insufficient light in the monitoring device results in poor visibility of effective information, which cannot meet practical applications. To overcome the above problems, a detail preserving low illumination video image enhancement algorithm based on dark channel prior is proposed in this paper. First, a dark channel refinement method is proposed, which is defined by imposing a structure prior to the initial dark channel to improve the image brightness. Second, an anisotropic guided filter (AnisGF) is used to refine the transmission, which preserves the edges of the image. Finally, a detail enhancement algorithm is proposed to avoid the problem of insufficient detail in the initial enhancement image. To avoid video flicker, the next video frames are enhanced based on the brightness of the first enhanced frame. Qualitative and quantitative analysis shows that the proposed algorithm is superior to the contrast algorithm, in which the proposed algorithm ranks first in average gradient, edge intensity, contrast, and patch-based contrast quality index. It can be effectively applied to the enhancement of surveillance video images and for wider computer vision applications

    A Systematic Literature Review on SOTA Machine learning-supported Computer Vision Approaches to Image Enhancement

    Get PDF
    Image enhancement as a problem-oriented process of optimizing visual appearances to provide easier-toprocess input to automated image processing techniques is an area that will consistently be a companion to computer vision despite advances in image acquisition and its relevance continues to grow. For our systematic literature review, we consider the major peer-reviewed journals and conference papers on the state of the art in machine learning-based computer vision approaches for image enhancement. We describe the image enhancement methods relevant to our work and introduce the machine learning models used. We then provide a comprehensive overview of the different application areas and formulate research gaps for future scientific work on machine learning based computer vision approaches for image enhancement based on our result
    corecore