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Abstract: In low illumination situations, insufficient light in the monitoring device results in poor
visibility of effective information, which cannot meet practical applications. To overcome the above
problems, a detail preserving low illumination video image enhancement algorithm based on dark
channel prior is proposed in this paper. First, a dark channel refinement method is proposed, which
is defined by imposing a structure prior to the initial dark channel to improve the image brightness.
Second, an anisotropic guided filter (AnisGF) is used to refine the transmission, which preserves the
edges of the image. Finally, a detail enhancement algorithm is proposed to avoid the problem of
insufficient detail in the initial enhancement image. To avoid video flicker, the next video frames are
enhanced based on the brightness of the first enhanced frame. Qualitative and quantitative analysis
shows that the proposed algorithm is superior to the contrast algorithm, in which the proposed
algorithm ranks first in average gradient, edge intensity, contrast, and patch-based contrast quality
index. It can be effectively applied to the enhancement of surveillance video images and for wider
computer vision applications.

Keywords: dark channel prior; image detail preserving; low illumination; images; video

1. Introduction

With the development of science and technology, surveillance video plays an important
role in the field of public safety. However, in low light conditions at night, the light entering
the video device is insufficient, which results in a bad visual effect on the recorded video.
These negative effects may include low brightness and contrast, color distortion, and
poor visibility. To make better use of videos captured in low illumination, we have to
enhance them.

Videos are composed of multiple single-frame images presented in time, so video en-
hancement can be achieved by enhancing each low illumination image. Many enhancement
algorithms have been proposed based on certain characteristics of low illumination images.
To improve the brightness of low illumination images, some methods directly modified
the size and distribution of pixels, such as gray transformation methods and histogram
equalization (HE) methods [1,2]. The grayscale transformation algorithm improved the
brightness of the image by increasing the pixel value. However, the algorithm has poor
adaptability and limited enhancement ability, so it is often used in combination with other
algorithms, the most common of which are gamma transformation [3] and log transforma-
tion [4]. And the algorithm based on histogram equalization [5] is prone to color distortion.
Therefore, researchers proposed a series of enhancement algorithms based on Retinex [6] to
avoid the problem of directly adjusting the pixel values. For example, the multiscale color
recovery Retinex algorithm (MSRCR) [7] considered color fidelity, however, this method
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only served reflection beforehand, making the enhancement result unnatural. So, the subse-
quent Retinex combined illumination with reflectance as an enhancement achieved a good
effect [8,9]. However, the algorithm is prone to the phenomenon of insufficient/excessive
enhancement, which leads to the loss of image details.

In recent years, researchers have experimented with other ways to enhance low
illumination images. By using similarity between low illumination inverted images and
hazy images, many researchers have applied the dehazing algorithm [10] to enhance low
illumination images. However, similar to all algorithms mentioned above, this algorithm
also has the following problems:

(1) The enhancement results obtained by the algorithm contain less detailed informa-
tion and cannot effectively highlight the key information in the image.

(2) The edge retention ability of the enhanced image obtained by the algorithm is
poor, especially in brighter areas, and the image edge is blurred due to the phenomenon of
excessive enhancement.

(3) The brightness of the enhanced image obtained by some dehazing algorithms is
insufficient, and the light source is prone to overexposure, which results in the loss of
image information.

To solve the problems of the existing algorithms, a detail preserving low illumination
video image enhancement algorithm based on dark channel prior is proposed. First,
the low illumination image is inverted to obtain the dark channel, and then refine the
dark channel to improve the brightness of the low illumination image. Second, the global
atmospheric light and transmission are obtained from the refined dark channel, and then the
transmission is refined by using an anisotropic guided filter. Third, the refined transmission
and atmospheric light are substituted into the atmospheric scattering model to obtain
a clear image after dehazing, and then the clear image is reversed to obtain the initial
enhanced image. Finally, due to the insufficient details of the initial enhanced image, a
detail enhancement method is proposed, and the high frequency of the initial enhanced
image is added to itself. According to the low illumination image characteristics, the darker
the area in the image, the worse the visibility of details. Therefore, an S-type function is
defined as the high-frequency factor of the addition by using the visibility function, and
the final enhancement result is obtained.

Compared with existing algorithms, the main contributions of the proposed algorithm
in this paper are as follows:

(1) The dark channel is refined by imposing a structure prior to the initial dark channel
to obtain a well-structured dark channel map, which can better enhance the brightness of
low illumination images to achieve a better enhancement effect.

(2) Because local processing produces a blocking effect, it is necessary to refine the
initial roughly estimated transmission. Considering the edge-preservation problem, the
anisotropic guided filter is used instead of the original soft-matting refined algorithm to
better preserve the edges and significantly reduce the processing time.

(3) According to a large number of experiments, the details of the enhancement results
obtained by dehazing algorithms are insufficient. Therefore, a detail enhancement method
is proposed, which adds the high frequency of the initial enhanced image to itself. An
S-type function is defined as the high-frequency factor of the addition, which is based on
the low illumination image characteristics; that is, the darker areas in the image have poorer
detail visibility. The details and clarity of the low illumination video image are improved
better by the step.

(4) For video enhancement, a large difference in the brightness of each frame enhanced
image will cause the composite video to flicker. To avoid this, subsequent video frames
are adjusted based on the average brightness of the first enhanced frame to control the
enhancement of each frame and reduce the brightness difference between the front and
back frames.
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The results of qualitative and quantitative evaluations show that our method can
significantly improve the video captured in low illumination conditions and has better
results than other methods. It preserves the details in the original images.

The remainder of this paper is organized as follows. After describing the related work
in Section 2, the proposed algorithm is presented in Section 3. Along with presenting com-
parative results, Section 4 evaluates the performance of the proposed algorithm. Discussion
on the method is presented in Section 5 and conclusion in Section 6.

2. Related Work

At present, many algorithms for low illumination image and video enhancement have
been proposed and can be roughly divided into two categories: machine learning and
traditional algorithms.

In recent years, with the rapid development of machine learning, an increasing number
of researchers have applied it to video image processing [11–15]. Based on the theory of tra-
ditional algorithms, some learning models have been created. For example, Zhao et al. [11]
proposed a multi-path interactive network to enhance color images for more natural en-
hancement results. Kim et al. [16] built a Low-LightGAN using a generative antagonistic
network, whose training images were produced by local illumination. Zhang et al. [17]
enhanced low illumination images in CIELAB space, combining deep convolution and
generation of antagonistic networks to more accurately estimate the illumination map. The
main advantages of machine learning over traditional enhancement algorithms are that
they are easier to train on new data and achieve better performance. However, such meth-
ods require the support of large datasets, and images with good contrast corresponding to
low illumination video images are not easily available. In addition, the time complexity
of the algorithms increases with the complexity of the model. Therefore, many scholars
have performed innovative work on traditional low illumination video image enhancement
algorithms. For video enhancement, there are three types of algorithms [18,19]. The first
one is to divide the video into frames and synthesize the video after each frame image is
processed. The second method divided the video into foreground and background, and
only enhanced the background. The third approach is similar to the first, except that it
takes into account the correlation of adjacent frames, thus avoiding adverse phenomena
such as flickering in the synthesized video.

The first type of algorithms essentially enhanced a single image, including the Retinex-
based algorithm, the fusion-based algorithm, and the dehazing model-based algorithm,
etc. Many algorithms have been proposed based on the Retinex theory. Early Retinex
algorithms, such as single-scale Retinex (SSR) [20], multiscale Retinex (MSR) [21], and
the multiscale Retinex algorithm with color restoration (MSRCR) [7,22], directly used
the reflectance map as an enhancement map, resulting in unnatural results and over
enhancement. Therefore, in subsequent algorithms, the illumination map was compensated
to the reflectivity to obtain an enhanced image. For example, Guo et al. [23] proposed
low light image enhancement via illumination map estimation (LIME), which perfected
the initial illumination by imposing a structure on the initial illumination. However, the
algorithm is prone to overexposure and noise amplification. To solve the noise problem,
Hao et al. [24] added a regularization term to the reflectance to suppress the imaging noise.
Retinex algorithms have advantages for color image enhancement, but halos easily appear
at the edge of the enhanced image, and some results are too bright, losing details.

Recent fusion-based algorithms are often based on single-image fusion. Ren et al. [25]
combined the camera response model (CRM) and Retinex to obtain enhanced images
with less brightness and color distortion by adjusting low illumination images’ exposure.
Li et al. [26] proposed low illumination video image enhancement based on wavelet fusion,
which uses wavelet fusion in RGB space after increasing the brightness of the same frame
image 10 times. Fusion-based methods can effectively enhance the brightness of the image,
but this model is prone to over-enhancement and loss of detail.
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Using a relationship between low illumination images and hazy images, researchers
proposed a low illumination image enhancement algorithm based on the dehazing theory.
Kaiming He first proposed the dark channel prior concept [27], which is widely used
in the image field. Pang et al. [28] improved the dark channel dehazing algorithm by
introducing gamma correction to improve image contrast. Recently, Wang et al. [29]
proposed the absorption light scattering model (ALSM), which reasonably explained the
imaging process of low illumination images and obtained good enhancement results.
However, the algorithm based on the dehazing model has some disadvantages, such as
insufficient enhancement of dark areas, easy overexposure of bright areas, poor detail, and
edge preservation.

The second type of algorithms can be divided into two categories according to whether
or not a video with good daylight illumination is required. Rao et al. [30] proposed fusing
night video and daytime background brightness in a gradient-domain to obtain enhanced
images. Soumya et al. [31] used wavelet fusion to fuse night video frames with daytime
background frames to effectively highlight the illumination area. Lee et al. [32] divided
the video frame into the dark target area and bright background area and then fused the
adjusted dark area with the bright area to enhance the video. Because these algorithms
only adjust the background area of an image, they can effectively preserve image details
and edge information. However, if the background image is not extracted accurately, the
enhanced image may be distorted.

The third method incorporates specific processing to make the enhanced video more
natural. To save video processing time, Dong et al. [33] used the same transmission for
similar frames, which also avoided to some extent video flickering. Zhang et al. [34] used
spatiotemporal filtering to eliminate video noise and avoid flicker artifacts. Ko et al. [35]
proposed an algorithm to recover low light video using similar blocks between time adjacent
frames, using average brightness and improved color allocation to reduce enhanced video
color distortion and flicker. Zhang et al. [36] proposed a video enhancement method based
on region system and image fusion, which maintains temporal consistency by propagating
zone regions from the previous frame to the current frame. Buades et al. [37] proposed
a denoising algorithm for real video scenes. Using the self-similarity and redundancy of
adjacent frames, motion compensation is used to stabilize video sequences by regularized
optical flow method. Ren et al. [38] proposed the LR3M model, which was the first to add a
low-rank decomposition model in the decomposition process. It can remove noise from
low illumination images very well, but the algorithm is more complex and may blur the
image details. When processing video, the illumination consistency between frames was
enhanced to reduce video flicker by introducing a coherence term.

Aiming at overcoming the shortcomings of the existing algorithms, our proposed
method offers new features, such as

(1) Low illumination video images in different scenes are considered, including overall
darker video images, local brighter video images, and video images with light sources. The
proposed algorithm is tested in these scenes. The results show that the proposed algorithm
can better balance the degree of brightness enhancement and edge detail retention, suppress
overexposure to a certain extent, and obtain more natural enhancement results. The
proposed algorithm can be applied to different low light scenes and has wider applicability.

(2) The dehazing algorithm is improved based on the dark channel to be applied to
low illumination video image enhancement. A dark channel refining method is proposed
to improve the brightness of low illumination images. The anisotropic guided filter is used
to refine the transmission, resulting in a finer transmission and better preservation of the
edges and details of the enhanced image.

(3) Detail enhancement method is proposed. By defining an S-type function as the coef-
ficients of the high-frequency part, the high-frequency part is added to the initial enhanced
image to obtain the enhanced image with prominent detail and better visual effect.
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(4) Subsequent video frames brightness is adjusted based on the average brightness
of the first frame to make the average brightness of the video frame sequence consistent,
thereby reducing flickering.

3. Proposed Method

In this section, based on the similarity between low illumination inverted images and
hazy images, a detail preserving low illumination video image enhancement algorithm
based on dark channel prior is proposed to enhance the video images captured in low
illumination conditions. First, invert the low illumination image, calculate the dark channel
of the inverted image, and refine the dark channel by imposing a structure prior to obtaining
a well-structured dark channel map, which better enhances the brightness of the low
illumination image. Second, the atmospheric light and transmission are obtained from
the refined dark channel, and the transmission is refined by the anisotropic guide filter.
Then, based on the inversion of the results from the atmospheric scattering model, an initial
enhanced image is obtained. Finally, the initial enhanced image is optimized for details,
and the final enhanced image with good details is obtained. The flowchart of the proposed
method is shown in Figure 1.
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Figure 1. Flowchart of the proposed method. Among it, in the dark channel estimation and refinement
module (a) is the dark channel estimation result, (b) is the dark channel refinement result; in the
transmission estimation and refinement module (a) is the transmission estimation result, (b) is the
transmission refinement result; in the dehazing image reverse module (a) is the dehazing image, and
(b) is the initial enhanced image obtained by reverse.

3.1. Atmospheric Scattering Model

The classic atmospheric scattering model [39] is described as

I(x) = J(x)t(x) + A(1− t(x)) (1)

where I(x) is a hazy image, J(x) is a scene radiance, A is the global atmospheric light, and
t(x) is the medium transmission describing the portion of the light that is not scattered and
reaches the camera.

In this paper, hazy image I(x) is the inversion of low illumination image M(x), defined
as follows:

I(x) = 1−M(x) (2)

3.2. Dark Channel and Its Prosed Modification
3.2.1. Basic Concept of Dark Channel

For a color image F(x), at least one-color channel has some pixel that tends to be zero,
which is called the dark channel. It can be defined as follows:

Fdark(x) = min
yεΩ(x)

(
min
cε{r,g,b} Fc(y)

)
(3)
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If F is a haze-free image, except for the sky region, the intensity of F’s dark channel is
low and tends to be zero Fdark(x)→ 0 . Conversely, if F is a hazy image, its dark channel
does not tend to zero. Shadow portions, dark objects, and low reflectivity objects in the
image are all important factors contributing to the existence of dark channels.

By observing the hazy image, it can be seen that the brightness of the hazy image is
higher than that of the haze-free image because of the additional light effect. Therefore,
the intensity of the dark channel is higher where the haze is denser. For inverted low
illumination images, the lower the illumination, the higher the haze of the inverted image,
and the higher the intensity of the dark channel, as shown in Figure 2.
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3.2.2. Proposed Refined Method for Dark Channel

Dark channel maps of low-illumination inverted images are the basic layer of low
illumination inverted images, so dark channel maps should be as smooth as possible and
keep the overall structure of the image. However, the initial dark channel map obtained by
minimizing operation does not conform to this concept, so the dark channel is refined by
imposing a structure on the initial dark channel to obtain a well-structured dark channel
map. Based on the initial dark channel Idark, we solve the following optimization problem:

min
Îdark ‖ Idark − Îdark ‖2

F +α ‖W·∇ Îdark ‖1 (4)

where α is a custom factor used to balance the correlated terms in Formula (4), and ‖ · ‖F
and ‖ · ‖1 designate the Frobenius and `1 norms. In addition, W is the weight matrix,
and ∇ Îdark is the first derivative of Îdark in the horizontal (∇h Îdark) and vertical (∇v Îdark)
directions. In the objective (4), the first term considers the fidelity between the initial dark
channel Idark and its refined channel Îdark, and the second considers the smoothness.

In problem (4), a fast algorithm can be used to solve the problem without iteration,
which greatly improves the processing speed. The second term ‖ W·∇ Îdark ‖ 1, which
contains the `1 norm and derivation, is the more complex term. To simplify the operation,
the following formula can be used:

lim
ε→0+

∑
x

∑
dε{h,v}

Wd(x)(∇d Îdark(x))
2∣∣∇d Idark(x)

∣∣+ ε
=‖W·∇ Îdark ‖ 1 (5)
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Based on the above formula, ∑
x

∑
dε{h,v}

Wd(x)(∇d Îdark(x))
2

|∇d Idark(x)|+ε
can be used instead of ‖W·∇Îdark ‖

1 to rewrite problem (4) as follows:

min
Îdark ‖ Idark − Îdark ‖2

F +α ∑
x

∑
dε{h,v}

Wd(x)(∇d Îdark(x))
2∣∣∇d Idark(x)

∣∣+ ε
(6)

Similar to the original function, the objective function after transformation is to extract
the structure of the initial dark channel Idark. Specifically, when the gradient of the initial
dark channel

∣∣∣∇d Idark(x)
∣∣∣ is small, the target gradient is also suppressed. In contrast, when

the gradient of the initial dark channel
∣∣∣∇d Idark(x)

∣∣∣ is strong, the suppression is alleviated.
In this way, the edge of the dark channel map can be effectively kept.

Problem (6) only involves quadratic terms. Therefore, the problem can be solved
directly by solving the following:E + ∑

d∈{u,v}
DT

d Diag(w̃d)Dd

îdark = idark (7)

where E is the identity matrix, w̃d is the vector representation of W̃d, and W̃d ←
Wd(x)

|∇d Idark(x)|+ε
.

Diag(w̃d) is a diagonal matrix composed of w̃d.
The weight of each position is defined as follows:

Wh(x)← ∑
yεΩ(x)

Gσ(x, y)
|∑yεΩ(x) Gσ(x, y)∇h Idark(y)|+ ε

Wv(x)← ∑
yεΩ(x)

Gσ(x, y)
|∑yεΩ(x) Gσ(x, y)∇v Idark(y)|+ ε

(8)

where Gσ(x, y) is generated by a Gaussian kernel function with standard deviation σ.
Gσ(x, y) is expressed in the following:

Gσ(x, y) ∝ exp
(
−dist(x, y)

2σ2

)
(9)

where dist(x, y) denotes the spatial Euclidean distance between x and y. Different from
RTV, the weight matrix in Equation (8) is constructed based on the given Idark rather
than updated iteratively according to Îdark. Therefore, the weight here only needs to be
calculated once.

3.3. Transmission and Its Refined Method
3.3.1. Transmission Estimation

For any low illumination inverted image, select the top-1 percent brightest pixels in
the refined dark channel. Among these pixels, the pixels with the highest intensity in the
low illumination inverted image are selected as atmospheric light. Atmospheric light A is a
three-element vector, and each element corresponds to each color channel. Normalized the
atmospheric scattering model by A:

Ic(x)
Ac = t(x)

Jc(x)
Ac + 1− t(x) (10)

where normalization is performed individually for each color channel.
Assume that the transmission of each image block is constant. t̃(x) is used to rep-

resent the initial transmission and then calculate the dark channels on both sides of the
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normalization equation. The minimal operation is put on both sides of the equation, and
the following can be obtained:

min
yεΩ(x)

(
min
cε{r,g,b}

Ic(y)
Ac

)
= t̃(x)min

yεΩ(x)

(
min
cε{r,g,b}

Jc(y)
Ac

)
(11)

Because t̃(x) is a constant, it can be placed outside of the minimum operation.
The dark channel of the haze-free image is close to zero. Therefore, the dark channel

of scene radiation J is close to zero, and the following is true:

Jdark(x) = min
yεΩ(x)

(
min
cε{r,g,b} Jc(y)

)
= 0 (12)

Since the atmospheric light Ac is positive, the following formula holds true:

min
yεΩ(x)

(
min
cε{r,g,b}

Jc(y)
Ac

)
= 0 (13)

Substituting (13) into (10) eliminates the multiplication term and obtains the follow-
ing results:

t̃(x) = 1− min
yεΩ(x)

(
min
cε{r,g,b}

Ic(y)
Ac

)
(14)

where min
yεΩ(x)

(
min
c

Ic(y)
Ac

)
is a refined dark channel of the normalized low illumination

inverted image. It can be seen in (14) that the transmission is only related to the refined
dark channel.

A weighting factor ω is introduced to control the degree of enhancement, resulting in
the initial transmission as follows:

t̃(x) = 1−ωmin
yεΩ(x)

(
min
cε{r,g,b}

Ic(y)
Ac

)
(15)

The defaultω value for this paper is 0.95.

3.3.2. Proposed Refined Method for Transmission

Because the estimated t̃(x) is not continuous at the local block boundary, further
refinement of t̃(x) is required. In this paper, anisotropic guided filters are used to smooth
the transmission map while preserving its edges.

Aiming at the problems of detail halos in the results obtained by guide filters [40] and
poor performance in handling inconsistent structures between guided and input image
blocks, Carlo et al. proposed an anisotropic filter (AnisGF) [41], which integrates anisotropy
into the filter formula to better preserve the edge details of the image. A brief introduction
to anisotropic filters is given below with more information in the reference.

Unlike guided filters, anisotropic guided filters use weighted averaging to achieve
maximum diffusion. By introducing the weight factor ωi,j, the scaling factor aj, and the
deviation factor bj are weighted and the following results are obtained:

ãi = ∑
jεN (i)

ωi,jaj b̃i = ∑
jεN (i)

ωi,jbj (16)

where ωi,j is defined as the weight assigned to pixel j around center pixel i.
To achieve maximum diffusion while preserving strong edge boundaries in the guide

image, the weight is designed. Because the maximum diffusion is achieved when ai → 0 ,
the objective function can be obtained as follows:

argmin
wi ã2

i + µ ∑
jεN (i)

‖ ωi,j∇j ‖ 2
2 (17)
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where wi is a weight vector for all neighborhoods centered on pixel i, and∇j is the gradient
vector contained in the neighborhood of j in the guide image.

The above formula is simplified to obtain the following weight solution:

ωi,j = ωj =
ε

σ2α
gj + ε

(18)

The final weighted parameters and output are obtained by normalizing the weighted
solution:

ãi =
∑jεN (i) ωi,jaj

∑jεN (i) ωi,j
b̃i =

∑jεN (i) ωi,jbj

∑jεN (i) ωi,j
x̂i = ãigi + b̃i (19)

where gi is the guidance image and x̂i is the filtered output image. In this paper, the
input image is the transmission, the guide image is the gray image of the low illumination
inversion image, and the output is the refined transmission. Compared with the soft-
matting algorithm, the anisotropic guided filter has a better edge-preserving effect and
faster speed. Compared with the fast enhancement algorithm using a guided filter, it has a
better edge-preserving effect. The specific results are shown in the experimental section.

The atmospheric light value and the refined transmission are substituted into the
atmospheric scattering model to obtain a clear image after dehazing. However, when
the refined transmission t(x) tends to zero, J(x)t(x)→ 0 , and the directly recovered J(x)
easily produces noise. Therefore, set the lower bound of the transmission t(x) to t0, and
the expression of the dehazing image is as follows:

J(x) =
I(x)− A

max(t(x), t0)
+ A (20)

In this paper, the value of t0 is 0.1. The initial enhanced image N(x) is the inversion of
clear image J(x):

N(x) = 1− J(x) (21)

3.4. Proposed Alternative Scheme for Video Detail Enhancement

After a large number of experiments, it is found that the details of the enhanced image
obtained by the improved algorithm based on dark channel dehazing are insufficient, so
the detail enhancement module is introduced to improve the details of the enhanced image.

According to the characteristics of low illumination images, the darker areas in the
image contain less detailed information, and the detail is generally reflected in the high-
frequency part of the image. Therefore, in the case of insufficient detail information, the
high-frequency part of the image can be extracted and added to the image. Considering the
rich detail and high visibility of bright areas in images, direct addition of high frequency
may result in too many details, so an S-type function is defined as the coefficient of
addition of high frequencies using the visibility function. The coefficient function is defined
as follows:

A(x, y) =
1

1 + e−(vis(x,y)−vism)/k
(22)

where k is used to control the slope of the function; in this paper, the value is 0.01. vis is a
visibility function, and vism is mean value. It can be defined as follows:

vis(x, y) =
∆L(x, y)
LB(x, y)

=
L(x, y)− LB(x, y)

LB(x, y)
(23)

In the above formula, L(x, y) is the value component in HSV space, and LB(x, y)
is the result of a Gaussian filter [42] on the value component, called the background
brightness component.
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The final enhanced image can be expressed as

R(x, y) = N(x, y) + A(x, y)Hig(x, y) (24)

where Hig(x, y) is the high-frequency of the initial enhanced image.

4. Experimental Results and Analysis

In this section, the multi-exposure image pairs and video datasets [43], and low-
illumination video images were taken in the field are used to test. The size of the multi-
exposure image is 1200 × 800, the size of the video frame is 720 × 480 and 1280 × 720, and
the time lengths are different. The size of the test image we took was 576 × 432, and the
length of the test video was different, the size of each frame was 1920 × 1080. Through the
qualitative and quantitative analysis of the test results, the proposed method is compared
with other methods comprehensively. Other methods include the LIME algorithm, the
ALSM algorithm, Li et al. [26] based on the wavelet fusion algorithm, and the LR3M
algorithm. The comparative experiment in this paper consists of two parts. The first part
compares the result of the dark channel prior dehazing algorithm with that of the proposed
algorithm. The second part compares the algorithm proposed in this paper with other
algorithms through qualitative and quantitative analysis. To demonstrate the effectiveness
of the proposed methods, all compared methods are implemented in MATLAB 2019a on an
Intel Core i5 3.20-GHz processor with 4 GB RAM, running a Windows 10 operating system.

4.1. Parameter Setting

In this paper, the parameters ω and t0 influence the enhancement effect. The parameter
ω controls the degree of enhancement of the image, ωε[0, 1]. With the increase of ω, the
brightness of the image can be improved better. However, when ω = 1, there will be severe
overexposure in some areas of the image. Therefore, make ω = 0.95 obtain appropriate
enhancement results. The specific assignment process is shown in Figure 3.
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Figure 3. Influence of different values of the parameter ω on the enhancement results.

In this paper, a small parameter t0 is introduced to reduce the noise of the enhanced
image. Compared the enhancement results without introducing t0 and taking different
values of t0, and find that the ground noise amplification is obvious without introducing t0,
and the brightness of the enhanced image is insufficient when t0 = 0.2, so take the classical
value of 0.1 to get the result of moderate brightness and noise. The specific results are
shown in Figure 4.
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4.2. Ablation Experiment

The proposed algorithm is continuously improved based on the dark channel prior
dehazing algorithm, so several aspects of improvement are experimented and analyzed.

4.2.1. Comparative Analysis of Transmission Refined Method

The results obtained by our refined method (AnisGF) are compared with those ob-
tained by the original soft-matting refined algorithm and the guided filter refined algorithm.
The results are shown in Figure 5.
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Figure 5. (a) Test image and its detail map; (b) soft-matting refined algorithm result and its detail
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From the results in the figure, it can be seen that compared with the soft-matting
algorithm, the enhanced results obtained by the guided filter and the AnisGF are brighter,
and the key information such as the license plate is clearer. This may be because the guided
filter used the grayscale image of the low illumination inverted image as the guided image,
which makes the output brighter. The edge details of the enhanced image obtained by the
AnisGF used in this paper are better preserved than those obtained by the guided filter,
which can be seen from the detailed map of the enhanced image. This is because AnisGF
introduced anisotropic diffusion into the filter. Anisotropic diffusion determines whether
to diffuse the surrounding pixels based on the relationship between the current pixel and
the surrounding pixels. When a neighborhood pixel differs greatly from the current pixel,
the neighborhood is probably the boundary, and the current pixel does not diffuse in that
direction, thus preserving the boundary.

4.2.2. Comparative Analysis before and after Dark Channel Refinement

Since the above proves that the enhancement results obtained by the guided filter
and AnisGF are good for transmission refinement, this section only applied dark channel
refinement to the comparison of the two algorithms to illustrate the necessity of this step,
and the result is shown in Figure 6.
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As seen in the results in the diagram, the enhanced result with dark channel refinement
is brighter and clearer. Specifically, for the results of AniGF refining transmission, dark
channel refining makes the enhanced image more natural. It can be known from the above
that AnisGF preserves edges well, but for some images (such as the test image in this
section), it causes black shadows around the light spots on the car. However, when dark
channel refining is added, the shadows disappear, making the image more in line with the
visual characteristics of the human. For this reason, dark channel refinement may improve
the structure of the obtained dark channel, and the initial transmission is obtained from
the dark channel, so the final transmission obtained by the dark channel refinement step is
more accurate; thus, a better enhancement effect is obtained.

4.2.3. Comparative Analysis before and after Detail Enhancement

For some images, the result enhanced by the improved dehazing method has insuffi-
cient detail and low clarity, so the detail enhancement was added. To prove the necessity of
this step, the following experiments and analyses are performed, and the results are shown
in Figure 7.
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Figure 7. (a) Test image and its detail map, (b) guided filter refining transmission + dark channel
refining result and its detail map, (c) AnisGF refining transmission + dark channel refining result and
its detail map, (d) guided filter refining transmission + dark channel refining + detail enhancement
result and its detail map, and (e) AnisGF refining transmission + dark channel refining + detail
enhancement result and its detail map.

As seen in the results, the details of the image obtained by using detail enhancement
are more prominent, and the car logo and the numbers in the license plate are more
prominent in the image, which is more in line with the license plate seen by the human eye.
It can also be seen that the overexposure of the algorithm at the light source is less, and
the difference between the size of the light source in the enhanced image and that in the
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original image is smaller. From this, it can be concluded that the detail enhancement part
can effectively enhance the details in the dark of the image, and this step is also necessary.

After the above three groups of experiments, the effectiveness of the proposed detail
preserving low illumination video image enhancement algorithm based on dark channel
prior can be seen. The proposed algorithm performs well in darker images as a whole,
in images with bright areas, and images with light sources. It effectively enhanced the
brightness of low illumination images while maintaining the details and suppressing
overexposure. Next, the superiority of the proposed algorithm is illustrated by comparing
it with other algorithms.

4.3. Comparative Experiments and Analysis
4.3.1. Quantitative Analysis

Figures 8 and 9 show the experimental results in multi-exposure data. It can be seen
from the results that all enhancement algorithms are effective for low illumination images,
but there are some problems with the enhancement results obtained by the comparison
algorithms. Li et al. algorithm has severe overexposure, which overwhelms many details
in the enhanced image. The ALSM algorithm does not preserve edge details well in bright
background areas, as shown in Figure 8. The LR3M algorithm has an insufficient effect on
brightness enhancement in dark areas and blurs key information such as text. The LIME
algorithm and the proposed algorithm show better performance, but the enhanced image
by the proposed has clearer detail information.
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The collected low illumination images from real scenes for experiments, as shown in
Figures 10–13, both the algorithm and the contrast algorithm can effectively improve the
brightness and contrast of the test images. However, the ALSM algorithm, Li et al. [26], and
the LIME algorithm are overexposed in the light source when enhancing Figure 10, making
the edge of the door under the light source unclear. In images with partially illuminated
areas, see Figures 11 and 12. The ALSM algorithm, Li et al. [26] and the LIME algorithm
do not preserve the edge details of the test images well in the lighted window area. The
brightness of the enhanced images obtained by the first two algorithms in the license plate
part is not as high as that obtained by the proposed algorithm. Figure 13 shows the case of
bright surroundings. Li et al. [26] and the LIME algorithm can display the hidden license
plate and the logo, but the background is over-enhanced. In particular, the background of
the enhanced image obtained by Li et al. [26] is almost completely white. The dark area of
the enhanced image obtained by the ALSM algorithm is not bright enough, and the highway
edges are not clear enough due to the overexposure of the bright area. Although the LR3M
algorithm does not produce the above problems in Figures 10–13, the brightness of the
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enhanced image obtained by the LR3M algorithm is not bright enough, and the license
plate is too blurred to see the critical information in the image. The proposed algorithm
can overcome the shortcomings of the contrast algorithm and suppress overexposure to
a certain extent, and the license plate is visible. The enhanced image can not only retain
details and edges but also highlight the key information in the image.
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Figure 13. (a) Test image and its detail maps. The remaining images are the enhancement results
and their detail maps, generated by the following methods: (b) ALSM, (c) Li et al. [26], (d) LR3M,
(e) LIME, and (f) the proposed method.

4.3.2. Qualitative Analysis

The different image quality evaluation indices were calculated, including average
gradient (AG) [43], information entropy (IE), edge intensity (e), contrast (C), full refer-
ence image index peak signal-to-noise ratio (PSNR), patch-based contrast quality index
(PCQI) [44], structural similarity (SSIM) [45]. For multi-exposure datasets, calculated the
full reference and no reference image index. For images taken in the real environment, only
calculated the no-reference image index. The larger the value of all the indexes, the better
the enhancement effect. The time complexity of each algorithm was also recorded to better
analyze the effectiveness of the algorithm. The objective evaluation of the above images is
shown in Tables 1–5.

Table 1. Comparison of various indexes of multi-exposure data 1 enhanced by different methods.

Method AG IE e C PSNR SSIM PCQI Times

ALSM 2.97 7.43 197.33 49.00 19.76 0.77 0.74 148.26

Li et al. [26] 2.81 5.56 245.69 46.14 12.32 0.52 0.53 1.63

LR3M 1.98 7.43 196.04 35.46 23.04 0.84 0.65 6171.03

LIME 3.15 7.58 201.14 51.09 19.96 0.78 0.73 2.37

The proposed method 4.49 7.54 386.20 69.63 20.15 0.70 0.75 6.38

Table 2. Comparison of various indexes of multi-exposure data 1 enhanced by different methods.

Method AG IE e C PSNR SSIM PCQI Times

ALSM 2.07 7.00 134.13 37.23 27.12 0.81 0.87 66.04

Li et al. [26] 0.91 4.65 56.64 18.13 16.85 0.50 0.59 1.60

LR3M 2.38 7.35 266.64 42.17 24.74 0.82 0.82 5017.18

LIME 2.33 7.52 148.46 41.01 21.36 0.72 0.85 2.54

The proposed method 2.94 7.39 229.70 49.21 25.61 0.77 0.95 6.55
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Table 3. Average values of each index of 46 images in multi-exposure dataset enhanced by differ-
ent methods.

Method AG IE e C PSNR SSIM PCQI Times

ALSM 2.12 7.07 118.06 36.50 22.90 0.77 0.89 121.40
Li et al. [26] 1.79 4.69 136.97 30.89 15.64 0.56 0.67 1.61

LR3M 1.54 7.27 120.64 27.58 25.53 0.81 0.81 5797.49
LIME 2.43 7.44 147.31 41.57 22.46 0.72 0.92 2.51

The proposed method 3.13 7.21 228.92 50.43 22.06 0.72 0.96 6.17

Table 4. Comparison of various indexes of captured data enhanced by different methods.

Data Method AG IE e C Times

1

ALSM 6.92 7.75 626.01 98.34 14.21

Li et al. [26] 5.32 5.97 554.12 75.51 0.50

LR3M 4.13 7.31 435.71 61.44 155.69

LIME 7.80 7.73 747.25 110.03 1.04

The proposed method 10.50 7.79 1266.27 139.26 1.77

2

ALSM 4.32 6.40 369.98 62.76 14.73

Li et al. [26] 5.04 6.50 504.19 73.13 0.59

LR3M 1.37 6.08 132.69 21.78 183.53

LIME 5.78 6.98 594.95 83.49 1.05

The proposed method 6.15 6.31 675.40 83.50 1.66

3

ALSM 5.33 7.56 500.67 81.37 15.99

Li et al. [26] 5.57 7.40 513.40 84.73 0.62

LR3M 3.11 6.79 544.24 50.35 171.63

LIME 6.13 7.61 631.89 92.30 1.02

The proposed method 7.88 7.58 930.76 114.40 1.70

4

ALSM 12.41 7.80 1635.13 158.94 15.45

Li et al. [26] 7.51 5.01 1243.82 95.85 0.49

LR3M 11.01 7.64 1698.36 145.12 183.92

LIME 13.54 7.80 1791.22 171.36 1.22

The proposed method 19.01 7.81 3101.19 226.43 1.84

Table 5. Comparison of objective index mean values for 100 video image enhancements by differ-
ent methods.

Method AG IE e C Times

ALSM 6.80 7.06 661.16 95.43 13.43

Li et al. [26] 7.40 6.79 921.97 104.22 0.59

LR3M 2.56 6.61 239.43 39.56 210.63

LIME 7.99 7.36 878.64 110.67 1.09

The proposed method 9.90 7.09 1268.28 130.07 1.68

It can be seen from Tables 1–3 that the algorithm proposed in this paper has superior
performance in 4 criteria: AG, e, C, and PCQI, and competitive performance on the other
3 criteria, i.e., for IE and SSIM it ranked third, and for PSNR it ranked fourth. Combined
with subjective visual effects, it is found that the reference image is overexposed and the key
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information such as text is not prominent, so the PSNR and SSIM values of the proposed
algorithm are slightly lower.

From Tables 4 and 5, it can be seen that our algorithm has the highest sharpness, edge
intensity, and contrast in the real image enhancement evaluation, which is higher than
the second-ranked algorithm of 19.26%, 27.31%, and 14.92%, respectively. The average
information entropy of this algorithm ranks second, only lower than LIME. This is because
the LIME algorithm enhances the overall brightness of the image, resulting in severe
over-enhancement in some areas of the image. In terms of time complexity, the proposed
algorithm takes 1.68 s on average to process an image, which is relatively fast.

In summary, combining quantitative and qualitative analysis, the following conclusion
can be drawn. The algorithm presented in this paper can effectively enhance the brightness
and contrast of low illumination images, preserve details and edge areas, and suppress
overexposure to a certain extent. Additionally, the objective indexes are better than the
comparison algorithm.

5. Discussion

The proposed algorithm can be applied to low illumination video enhancement. For a
captured video, the video is first decomposed into a single frame image sequence. Secondly,
each frame image from this sequence is sequentially read to enhance this single-frame
image. Considering that flickering occurs due to different average brightness of each frame
image when synthesizing video, adjust the brightness of subsequent video frames based on
the average brightness of the first enhanced video frame to obtain a video frame sequence
with the same average brightness. Finally, the enhanced video frames are synthesized
sequentially at a rate of 30 frames per second to get the final enhanced video. Through
experiments on a video with a size of 1920 × 1080 and some low-illumination videos on
the Internet, it is found that the proposed algorithm can be effectively used to enhance the
low-illumination video.

From all experiments above, the ALSM algorithm, Li et al. [26], and LIME algorithm
all overexpose an image in the bright area, resulting in loss of edge details. The LR3M
algorithm produces an enhanced image with insufficient brightness and blurs key infor-
mation (such as license plates, car logos, etc.) due to the addition of noise removal items.
The proposed algorithm in this paper can effectively overcome the shortcomings of the
above algorithms, enhancing the brightness of the image while maintaining the edges and
details of the image, and suppressing overexposure to a certain extent. The reasons for the
proposed algorithm being superior to the compared algorithms are as follows:

(1) A dark channel refined method is proposed to obtain a more accurate dark channel
map, which can effectively enhance the brightness of the image.

(2) An anisotropic guide filter is used to refine the transmission, smooth the transmis-
sion map while preserving edges, and obtain a more detailed transmission map, which
enables the enhanced image to retain the edges well.

(3) Based on the characteristics of low illumination images, an S-type function factor is
defined by which the high-frequency part of the initial enhanced image is added to itself to
obtain an enhanced image with more prominent details.

(4) The proposed algorithm can be effectively applied to low illumination video
enhancement, controlling the average brightness of each enhanced image to reduce video
flickering.

6. Conclusions

In this paper, detail preserving low illumination video image enhancement algorithm
based on a dark channel was proposed, which uses the similarity between the inverted
low illumination image and the hazy image to dehaze the inverted low illumination image.
To solve the problem of insufficient brightness in the enhanced image, the initial dark
channel is refined to obtain a brighter image. For missing edges and details of the image,
the anisotropic guide filter is used to refine the transmission, resulting in finer transmission
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and less time complexity. To solve the problem of insufficient detail, the details of the initial
enhanced image are optimized. Using the S-type function as the coefficient of the high
frequency, the high frequency is added to the initial enhanced image to obtain the enhanced
image with more details.

We described the performance of the proposed algorithm in images and videos cap-
tured in a real low illumination environment. In both quantitative and qualitative com-
parative analyses, the proposed algorithm is superior to state-of-the-art algorithms, which
proves its effectiveness and robustness. It can be applied to different low illumination
scenarios in wider computer vision applications. The limitation of the proposed algorithm
is that it may amplify the noise of the image. In further, a suitable denoising algorithm can
be introduced to maintain the balance between details and noise.

For video enhancement, not only can the change of pixel intensity in time be consid-
ered, but also the change of pixel intensity in space and direction can be considered to
further develop low-light video enhancement, and it can be used as a preprocessing for
detection and recognition to form a complete the detection and recognition system [46].

Author Contributions: Conceptualization, L.G.; methodology, L.G.; software, L.G.; validation, L.G.
and Z.J.; formal analysis, Z.J.; writing—original draft preparation, L.G.; writing—review and editing,
L.G. and Z.J.; supervision, Z.J., J.Y. and N.K.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.
U1803261) and the International Science and Technology Cooperation Project of the Ministry of
Education of the People’s Republic of China (No. 2016–2196).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The algorithm performance is tested on the public data set, including
https://pan.baidu.com/s/1x1Dq9xef1dBTXXHcMjPAyA (accessed on 28 July 2021). and https:
//ieeexplore.ieee.org/document/8237767 (accessed on 25 June 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Park, S.; Kim, K.; Yu, S.; Paik, J. Contrast Enhancement for Low-light Image Enhancement: A Survey. IEIE Trans. Smart Process.

Comput. 2018, 7, 36–48. [CrossRef]
2. Wang, W.; Wu, X.; Yuan, X.; Gao, Z. An experiment-based review of low-light image enhancement methods. IEEE Access 2020, 8,

87884–87917. [CrossRef]
3. Huang, S.-C.; Cheng, F.-C.; Chiu, Y.-S. Efficient contrast enhancement using adaptive gamma correction with weighting distribu-

tion. IEEE Trans. Image Process. 2012, 22, 1032–1041. [CrossRef] [PubMed]
4. Panetta, K.; Agaian, S.; Zhou, Y.; Wharton, E.J. Parameterized logarithmic framework for image enhancement. IEEE Trans. Syst.

Man Cybern. Part B Cybern. 2010, 41, 460–473. [CrossRef]
5. Abdullah-Al-Wadud, M.; Kabir, M.H.; Dewan, M.A.A.; Chae, O. A dynamic histogram equalization for image contrast enhance-

ment. IEEE Trans. Consum. Electron. 2007, 53, 593–600. [CrossRef]
6. Land, E.H. The retinex theory of color vision. Sci. Am. 1977, 237, 108–129. [CrossRef]
7. Jobson, D.J.; Rahman, Z.-u.; Woodell, G.A. A multiscale retinex for bridging the gap between color images and the human

observation of scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [CrossRef] [PubMed]
8. Jiang, X.; Yao, H.; Zhang, S.; Lu, X.; Zeng, W. Night video enhancement using improved dark channel prior. In Proceedings of the

2013 IEEE International Conference on Image Processing (ICIP), Melbourne, VIC, Australia, 15–18 September 2013; pp. 553–557.
9. Liu, S.; Long, W.; He, L.; Li, Y.; Ding, W. Retinex-Based Fast Algorithm for Low-Light Image Enhancement. Entropy 2021, 23, 746.

[CrossRef] [PubMed]
10. Zeng, B.W.; Kin, T.U. Low-Light Image Enhancement Algorithm Based on Lime with Pre-Processing and Post-Processing. In

Proceedings of the 2020 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), Adelaide, Australia,
2 December 2020.

11. Ma, S.; Ma, H.; Xu, Y.; Li, S.; Lv, C.; Zhu, M. A Low-Light Sensor Image Enhancement Algorithm Based on HSI Color Model.
Sensors 2018, 18, 3583. [CrossRef] [PubMed]

12. Zhang, M.; Zhang, Y.; Jiang, Z.; Lv, X.; Guo, C. Low-Illumination Image Enhancement in the Space Environment Based on the
DC-WGAN Algorithm. Sensors 2021, 21, 286. [CrossRef] [PubMed]

https://pan.baidu.com/s/1x1Dq9xef1dBTXXHcMjPAyA
https://ieeexplore.ieee.org/document/8237767
https://ieeexplore.ieee.org/document/8237767
http://doi.org/10.5573/IEIESPC.2018.7.1.036
http://doi.org/10.1109/ACCESS.2020.2992749
http://doi.org/10.1109/TIP.2012.2226047
http://www.ncbi.nlm.nih.gov/pubmed/23144035
http://doi.org/10.1109/TSMCB.2010.2058847
http://doi.org/10.1109/TCE.2007.381734
http://doi.org/10.1038/scientificamerican1277-108
http://doi.org/10.1109/83.597272
http://www.ncbi.nlm.nih.gov/pubmed/18282987
http://doi.org/10.3390/e23060746
http://www.ncbi.nlm.nih.gov/pubmed/34199282
http://doi.org/10.3390/s18103583
http://www.ncbi.nlm.nih.gov/pubmed/30360433
http://doi.org/10.3390/s21010286
http://www.ncbi.nlm.nih.gov/pubmed/33406689


Sensors 2022, 22, 85 19 of 20

13. Sun, Y.; Chang, Z.; Zhao, Y.; Hua, Z.; Li, S. Progressive Two-Stage Network for Low-Light Image Enhancement. Micromachines
2021, 12, 1458. [CrossRef]

14. Zhang, X.; Wang, X. MARN: Multi-Scale Attention Retinex Network for Low-Light Image Enhancement. IEEE Access 2021, 9,
50939–50948. [CrossRef]

15. Wang, J.; Yang, Y.; Chen, Y.; Han, Y. LighterGAN: An Illumination Enhancement Method for Urban UAV Imagery. Remote Sens.
2021, 13, 1371. [CrossRef]

16. Ren, W.; Liu, S.; Ma, L.; Xu, Q.; Xu, X.; Cao, X.; Du, J.; Yang, M.-H. Low-light image enhancement via a deep hybrid network.
IEEE Trans. Image Process. 2019, 28, 4364–4375. [CrossRef] [PubMed]

17. Zhao, B.; Gong, X.; Wang, J.; Zhao, L. Low-Light Image Enhancement Based on Multi-Path Interaction. Sensors 2021, 21, 4986.
[CrossRef] [PubMed]

18. Kim, G.; Kwon, D.; Kwon, J. Low-lightgan: Low-light enhancement via advanced generative adversarial network with task-driven
training. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September
2019; pp. 2811–2815.

19. Zhang, Z.; Wen, J.; Xu, Y.; Fe, L. Review of Video and Image Defogging Algorithms and Related Studies on Image Restoration
and Enhancement. IEEE Access 2016, 4, 165–188.

20. Jobson, D.J.; Rahman, Z.-U.; Woodell, G.A. Properties and performance of a center/surround retinex. IEEE Trans. Image Process.
1997, 6, 451–462. [CrossRef]

21. Rahman, Z.-U.; Jobson, D.J.; Woodell, G.A. Multi-scale retinex for color image enhancement. In Proceedings of the 3rd IEEE
International Conference on Image Processing (ICIP), Lausanne, Switzerland, 19 September 1996; pp. 1003–1006.

22. Guo, X.; Li, Y.; Ling, H. LIME: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 2016, 26,
982–993. [CrossRef] [PubMed]

23. Rahman, Z.-U.; Jobson, D.J.; Woodell, G.A. Retinex processing for automatic image enhancement. J. Electron. Imaging 2004, 13,
100–110.

24. Guo, Y.; Lu, Y.; Liu, R.W.; Yang, M.; Chui, K.T. Low-light image enhancement with regularized illumination optimization and
deep noise suppression. IEEE Access 2020, 8, 145297–145315. [CrossRef]

25. Ren, Y.; Ying, Z.; Li, T.H.; Li, G. LECARM: Low-Light Image Enhancement Using the Camera Response Model. IEEE Trans.
Circuits Syst. Video Technol. 2018, 29, 968–981. [CrossRef]

26. Zhi, L.; Jia, Z.; Yang, J.; Kasabov, N. Low illumination video image enhancement. IEEE Photonics J. 2020, 12, 1–13.
27. He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33,

2341–2353. [PubMed]
28. Pang, J.; Zhang, S.; Bai, W. A novel framework for enhancement of the low lighting video. In Proceedings of the 2017 IEEE

Symposium on Computers and Communications (ISCC), Heraklion, Greece, 3–6 July 2017; pp. 1366–1371.
29. Wang, Y.-F.; Liu, H.-M.; Fu, Z.-W. Low-light image enhancement via the absorption light scattering model. IEEE Trans. Image

Process. 2019, 28, 5679–5690. [CrossRef] [PubMed]
30. Rao, Y.; Zhang, Y.; Gou, J. Gradient fusion method for night video enhancement. ETRI J. 2013, 35, 923–926. [CrossRef]
31. Soumya, T.; Thampi, S.M. Recolorizing dark regions to enhance night surveillance video. Multimed. Tools Appl. 2017, 76,

24477–24493. [CrossRef]
32. Lee, S.; Kim, N.; Paik, J. Adaptively partitioned block-based contrast enhancement and its application to low light-level video

surveillance. SpringerPlus 2015, 4, 431. [CrossRef] [PubMed]
33. Dong, X.; Wang, G.; Pang, Y.; Li, W.; Wen, J.; Meng, W.; Lu, Y. Fast efficient algorithm for enhancement of low lighting video.

In Proceedings of the 2011 IEEE International Conference on Multimedia and Expo (ICME), Barcelona, Spain, 11–15 July 2011;
pp. 1–6.

34. Underexposed Video Enhancement via Perception-Driven Progressive Fusion. IEEE Trans. Vis. Comput. Graph. 2016, 22, 1773–1785.
[CrossRef]

35. Ko, S.; Yu, S.; Kang, W.; Park, C.; Lee, S.; Paik, J. Artifact-free low-light video enhancement using temporal similarity and guide
map. IEEE Trans. Ind. Electron. 2017, 64, 6392–6401. [CrossRef]

36. Zhang, Y.; Liu, S. Non-uniform Illumination Video Enhancement Based on Zone System and Fusion. In Proceedings of the 2018
24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018.

37. Buades, A.; Lisani, J.L. Enhancement of noisy and compressed videos by optical flow and non-local denoising. IEEE Trans.
Circuits Syst. Video Technol. 2020, 30, 1960–1974. [CrossRef]

38. Ren, X.; Yang, W.; Cheng, W.-H.; Liu, J. LR3M: Robust low-light enhancement via low-rank regularized retinex model. IEEE Trans.
Image Process. 2020, 29, 5862–5876. [CrossRef]

39. McCartney, E.J. Optics of the Atmosphere: Scattering by Molecules and Particles; Phys Today: New York, NY, USA, 1976.
40. He, K.; Sun, J.; Tang, X. Guided image filtering. In Proceedings of the European conference on computer vision; 2010; pp. 1–14.
41. Ochotorena, C.N.; Yamashita, Y. Anisotropic guided filtering. IEEE Trans. Image Process. 2019, 29, 1397–1412. [CrossRef] [PubMed]
42. Kotecha, J.H.; Djuric, P.M. Gaussian sum particle filtering. IEEE Trans. Signal Process. 2003, 51, 2602–2612. [CrossRef]
43. Prabhakar, K.R.; Srikar, V.S.; Babu, R.V. DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure

Image Pairs. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October
2017; pp. 4724–4732.

http://doi.org/10.3390/mi12121458
http://doi.org/10.1109/ACCESS.2021.3068534
http://doi.org/10.3390/rs13071371
http://doi.org/10.1109/TIP.2019.2910412
http://www.ncbi.nlm.nih.gov/pubmed/30998467
http://doi.org/10.3390/s21154986
http://www.ncbi.nlm.nih.gov/pubmed/34372222
http://doi.org/10.1109/83.557356
http://doi.org/10.1109/TIP.2016.2639450
http://www.ncbi.nlm.nih.gov/pubmed/28113318
http://doi.org/10.1109/ACCESS.2020.3015217
http://doi.org/10.1109/TCSVT.2018.2828141
http://www.ncbi.nlm.nih.gov/pubmed/20820075
http://doi.org/10.1109/TIP.2019.2922106
http://www.ncbi.nlm.nih.gov/pubmed/31217118
http://doi.org/10.4218/etrij.13.0212.0550
http://doi.org/10.1007/s11042-016-4141-4
http://doi.org/10.1186/s40064-015-1226-x
http://www.ncbi.nlm.nih.gov/pubmed/26306293
http://doi.org/10.1109/TVCG.2015.2461157
http://doi.org/10.1109/TIE.2017.2682034
http://doi.org/10.1109/TCSVT.2019.2911877
http://doi.org/10.1109/TIP.2020.2984098
http://doi.org/10.1109/TIP.2019.2941326
http://www.ncbi.nlm.nih.gov/pubmed/31545726
http://doi.org/10.1109/TSP.2003.816754


Sensors 2022, 22, 85 20 of 20

44. Wang, S.; Ma, K.; Yeganeh, H.; Wang, Z.; Lin, W. A patch-structure representation method for quality assessment of contrast
changed images. IEEE Signal Process. Lett. 2015, 22, 2387–2390. [CrossRef]

45. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

46. Kasabov, N.K. Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence; Springer: Berlin, Germany, 2019;
Volume 7, pp. 169–199.

http://doi.org/10.1109/LSP.2015.2487369
http://doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593

	Introduction 
	Related Work 
	Proposed Method 
	Atmospheric Scattering Model 
	Dark Channel and Its Prosed Modification 
	Basic Concept of Dark Channel 
	Proposed Refined Method for Dark Channel 

	Transmission and Its Refined Method 
	Transmission Estimation 
	Proposed Refined Method for Transmission 

	Proposed Alternative Scheme for Video Detail Enhancement 

	Experimental Results and Analysis 
	Parameter Setting 
	Ablation Experiment 
	Comparative Analysis of Transmission Refined Method 
	Comparative Analysis before and after Dark Channel Refinement 
	Comparative Analysis before and after Detail Enhancement 

	Comparative Experiments and Analysis 
	Quantitative Analysis 
	Qualitative Analysis 


	Discussion 
	Conclusions 
	References

