1,026 research outputs found

    Enabling Auditing and Intrusion Detection of Proprietary Controller Area Networks

    Get PDF
    The goal of this dissertation is to provide automated methods for security researchers to overcome ‘security through obscurity’ used by manufacturers of proprietary Industrial Control Systems (ICS). `White hat\u27 security analysts waste significant time reverse engineering these systems\u27 opaque network configurations instead of performing meaningful security auditing tasks. Automating the process of documenting proprietary protocol configurations is intended to improve independent security auditing of ICS networks. The major contributions of this dissertation are a novel approach for unsupervised lexical analysis of binary network data flows and analysis of the time series data extracted as a result. We demonstrate the utility of these methods using Controller Area Network (CAN) data sampled from passenger vehicles

    Clustering simultaneous occurrences of extreme floods in the Neckar catchment

    Get PDF

    An overview of clustering methods with guidelines for application in mental health research

    Get PDF
    Cluster analyzes have been widely used in mental health research to decompose inter-individual heterogeneity by identifying more homogeneous subgroups of individuals. However, despite advances in new algorithms and increasing popularity, there is little guidance on model choice, analytical framework and reporting requirements. In this paper, we aimed to address this gap by introducing the philosophy, design, advantages/disadvantages and implementation of major algorithms that are particularly relevant in mental health research. Extensions of basic models, such as kernel methods, deep learning, semi-supervised clustering, and clustering ensembles are subsequently introduced. How to choose algorithms to address common issues as well as methods for pre-clustering data processing, clustering evaluation and validation are then discussed. Importantly, we also provide general guidance on clustering workflow and reporting requirements. To facilitate the implementation of different algorithms, we provide information on R functions and librarie

    Compact Integration of Multi-Network Topology for Functional Analysis of Genes

    Get PDF
    The topological landscape of molecular or functional interaction networks provides a rich source of information for inferring functional patterns of genes or proteins. However, a pressing yet-unsolved challenge is how to combine multiple heterogeneous networks, each having different connectivity patterns, to achieve more accurate inference. Here, we describe the Mashup framework for scalable and robust network integration. In Mashup, the diffusion in each network is first analyzed to characterize the topological context of each node. Next, the high-dimensional topological patterns in individual networks are canonically represented using low-dimensional vectors, one per gene or protein. These vectors can then be plugged into off-the-shelf machine learning methods to derive functional insights about genes or proteins. We present tools based on Mashup that achieve state-of-the-art performance in three diverse functional inference tasks: protein function prediction, gene ontology reconstruction, and genetic interaction prediction. Mashup enables deeper insights into the struct ure of rapidly accumulating and diverse biological network data and can be broadly applied to other network science domains. Keywords: interactome analysis; network integration; heterogeneous networks; dimensionality reduction; network diffusion; gene function prediction; genetic interaction prediction; gene ontology reconstruction; drug response predictionNational Institutes of Health (U.S.) (Grant R01GM081871

    Recovering complete and draft population genomes from metagenome datasets.

    Get PDF
    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem of chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution
    • …
    corecore