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SUMMARY

The topological landscape of molecular or functional
interaction networks provides a rich source of infor-
mation for inferring functional patterns of genes or
proteins. However, a pressing yet-unsolved chal-
lenge is how to combine multiple heterogeneous
networks, each having different connectivity pat-
terns, to achieve more accurate inference. Here,
we describe the Mashup framework for scalable
and robust network integration. In Mashup, the
diffusion in each network is first analyzed to charac-
terize the topological context of each node. Next, the
high-dimensional topological patterns in individual
networks are canonically represented using low-
dimensional vectors, one per gene or protein. These
vectors can then be plugged into off-the-shelf ma-
chine learning methods to derive functional insights
about genes or proteins. We present tools based
on Mashup that achieve state-of-the-art perfor-
mance in three diverse functional inference tasks:
protein function prediction, gene ontology recon-
struction, and genetic interaction prediction.Mashup
enables deeper insights into the structure of rapidly
accumulating and diverse biological network data
and can be broadly applied to other network science
domains.

INTRODUCTION

Comprehensively understanding various functional aspects of

genes or proteins, such as their involvement in a particular bio-

logical process, physical or genetic interactions, or disease as-

sociation, is critical for both biological and translational medicine

research. Since exhaustively characterizing genes or proteins

through biological experiments is often intractable, systems-

level integration of knowledge and computational hypothesis

generation have garnered great interest in the field as effective

ways to guide experiments (Berger et al., 2013).

With the advent of high-throughput experimental techniques,

genome-scale interaction networks (also known as interac-

tomes) have been an integral way of encapsulating information
540 Cell Systems 3, 540–548, December 21, 2016 ª 2016 The Autho
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and have enabled approaches to extend and refine functional

knowledge of genes and proteins (Yu et al., 2013). A key insight

behind such approaches is that genes or proteins that are co-

localized or have similar topological roles in the interaction net-

works are more likely to be functionally correlated. This insight

allows us to infer properties of unknown proteins by transferring

knowledge from similar genes and proteins that are better under-

stood—a process known as ‘‘guilt by association.’’

An important challenge has been to develop principled ap-

proaches for integrating heterogeneous sources of information

(e.g., physical binding, genetic interaction, co-expression, or

co-evolution) from which different interaction networks can be

constructed. Most previous work has focused on summarizing

a collection of heterogeneous data into a single integrated

network, which is typically obtained by combining the edges

across different networks via Bayesian inference (Franceschini

et al., 2013; Lee et al., 2011; Wong et al., 2015) or adaptive

weighted averaging (Mostafavi et al., 2008). The resulting inte-

grated network is provided as input to existing network-based

inference methods, such as label propagation (Mostafavi et al.,

2008) or graph-based clustering (Dutkowski et al., 2013), to

derive functional insights from the data. However, a key limita-

tion of such approaches is the substantial information loss

incurred by projecting various datasets onto a single network

representation. For instance, context-specific interaction pat-

terns (e.g., tissue-specific gene modules) that are only present

in certain datasets are likely to be obscured by edges from other

data sources in the integrated network.

A naive approach for tackling this challenge would be to sepa-

rately analyze the structure of each network and to concatenate

the resulting network features (e.g., Cao et al., 2014; Milenkovi�c

and Pr�zulj, 2008; Mostafavi et al., 2012) for each gene. However,

this approach greatly increases the dimensionality of the feature

space and often dilutes the signal in the data as a result. Noise in

interaction networks based on high-throughput experiments

further compounds this issue. Thus, it is imperative to develop

integrative methods that can properly take advantage of the

fine-grained topology of multiple heterogeneous networks while

maintaining a low-dimensional feature space, thereby increasing

robustness to noise and enhancing accuracy.

Here, we address this challenge by introducing an integrative

framework, Mashup, for obtaining high-quality, compact topo-

logical feature representations of genes from one or more inter-

action networks constructed from heterogeneous data types.

We incorporate the following conceptual advances into our
rs. Published by Elsevier Inc.
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Figure 1. Overview of Mashup

Random walks with restart (RWR) are used to

compute the diffusion state for each node in each

individual network. Low-dimensional feature vec-

tors describing the topological properties of each

node are obtained by jointly minimizing the differ-

ence between the observed diffusion states and

the parameterized-multinomial logistic distribu-

tions across all networks. The low-dimensional

representation can be readily plugged into ma-

chine learning methods for functional inference.
framework: (1) Mashup takes full advantage of network-specific

topology by analyzing the structure of each network separately

before learning a canonical representation that best explains

the topological patterns across all networks, and (2) Mashup de-

couples the dimensionality of feature representations from the

data parameters (e.g., number of networks or genes), which

allows it to cope with inherent noise in high-throughput data by

obtaining compact representations that keep only the most

explanatory features. By showing substantial improvements

over the state-of-the-art methods in three distinct functional

inference tasks—automated gene function annotation, gene

ontology reconstruction, and genetic interaction prediction—

we demonstrate Mashup’s wide applicability and its potential

to effectively decipher functional properties of genes from inter-

actomes. Notably, Mashup easily scales to a large number of

networks—a critical requirement for network-based methods

to fully utilize the ever-growing repository of interactomes. We

provide software for Mashup along with ready-to-use compact

vector representations of genes learned from existing interac-

tome datasets for researchers to apply to their own application

domains (http://mashup.csail.mit.edu).

Mashup can in principle be used to simultaneously analyze

any large networks in which guilt-by-association properties

hold for more accurate knowledge discovery. Not only do the

substantial improvements in accuracy and scalability promise

to enable new workflows for biomedical practitioners (e.g., inte-

gration of single-cell data), but also the general framework for

network integration that we introduce can be straightforwardly

applied to network analysis problems outside of biology.

RESULTS

Overview of Mashup
The basic Mashup framework for heterogeneous network inte-

gration involves three steps (Figure 1). (1) Run a localized

network diffusion process (e.g., random walks with restart
Cell Sys
[RWR; Tong et al., 2006]) on each network

to obtain a distribution for each node,

which captures its relevance to all other

nodes in the network. Similar to thewidely

used PageRank algorithm (Page et al.,

1999) in web and social network analysis,

this step characterizes the topological

context of each gene in a network, taking

the global connectivity patterns into

account. (2) Approximate each of these
distributions by constructing a model, parameterized by low-

dimensional feature vectors for each node; these feature vectors

are obtained by minimizing the difference between the model

distribution and diffusion distributions for all networks simulta-

neously. Akin to Principal Component Analysis (PCA), which re-

veals the internal low-dimensional linear structure of the data

that best explains the variance, Mashup computes a low-dimen-

sional vector-space representation for all nodes such that the

diffusion or the connectivity patterns in the networks can be

best explained. (3) Use the learned representations as input fea-

tures for a wide range of network-based functional inference

tasks. A more detailed description of Mashup is provided in

Method Details.

Improved Gene Function Prediction
Automated annotation of gene function, the goal of which is to

assign a poorly understood gene to the correct functional cate-

gories in an annotation database, is considered one of the

most important and challenging problems of the post-genomic

era (Radivojac et al., 2013). Many solutions based on high-

throughput experimental data have been proposed in the past

decade, each exploiting different types of information, including

amino acid sequence (Clark and Radivojac, 2011), genomic

context (Enault et al., 2005), evolutionary relationships (Gaudet

et al., 2011), protein structure (Pal and Eisenberg, 2005), and

gene expression (Huttenhower et al., 2006). Here, we focus on

the use of protein-protein interaction (PPI) networks, where we

pursue the intuition that the topological role of a gene in interac-

tion networks is correlated with its biological function.

Existing approaches for integrating multiple networks for func-

tion prediction have largely focused on combining the networks

into a single representative network to be used for prediction.

GeneMANIA (Mostafavi and Morris, 2010; Mostafavi et al.,

2008) is a state-of-the-art function prediction server that uses

a label propagation algorithm on an averaged network, whose

mixing weights are optimized for each functional category.
tems 3, 540–548, December 21, 2016 541
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Figure 2. Mashup Improves Gene Function Prediction Performance in Human and Yeast

We performed 5-fold cross-validation to compare the function prediction performance of Mashup to other state-of-the-art network integration methods,

GeneMANIA and STRING’s Bayesian integration followed by a diffusion-based function prediction method DSD (STRING-DSD) in (A) human and (B) yeast.

A precision-recall curve for eachmethod is shown (C). Additional figures, including the results on molecular function (MF) and cellular component (CC) ontologies

in human and further comparisons to other integration approaches, are provided in Figures S1, S2, and S3. Performance is measured by the fraction of top

predictions correctly labeled (Acc), harmonic mean of precision and recall when the top three predictions are assigned to each gene (F1), and the area under the

precision recall curve summarized over all labels, both under the micro-averaging (m-PR) and macro-averaging (M-PR) schemes. Results are summarized over

ten trials (SD shown as error bars), and asterisks represent where Mashup’s improvement over GeneMANIA is significant (one-sided rank-sum p value <0.01).

Overall, Mashup achieves substantially greater predictive performance over previous methods.
Another standard approach for network integration, adopted by

the large public PPI network database STRING (Franceschini

et al., 2013), is to use Bayesian inference to combine edges

across multiple networks. STRING’s resulting integrated net-

work can be used with single-network function prediction

methods, such as diffusion state distance (DSD; Cao et al.,

2014), a state-of-the-art diffusion-based method that uses

RWR to characterize the local topology of each gene and assigns

functions by majority vote based on a set of genes with most

similar diffusion patterns.

We found that Mashup-based function prediction substan-

tially outperforms these state-of-the-art integrative methods in

assigning a previously unseen gene to its known functional cat-

egories in a cross-validation experiment on real datasets from

yeast and human (Figure 2). We observed clear improvements

for both the yeast and human datasets at different annotation

levels of the Munich Information Center for Protein Sequences

(MIPS) (Ruepp et al., 2004) and the Gene Ontology database

(GO; Ashburner et al., 2000) hierarchies, respectively. For

example, top predictions based on Mashup correctly assigned

38.4% of genes (on average) to their functional categories, in

contrast to 28.7% for GeneMANIA and 25.9% for DSD with

STRING integration (referred to as STRING-DSD), with respect

to human Biological Process (BP) GO terms with highest speci-

ficity (11–30 genes). An exception to the general improvement

was the top layer (level 1) of the yeast dataset, for which Mashup

performed comparably to GeneMANIA. This finding is likely due

to the relative completeness of yeast interactomes and the fact

that the top layer contains the largest functional terms that are

easiest to predict, leaving little room for improvement. Moreover,

Mashup’s improvement is consistent over a wide range of pa-

rameters in our framework, which includes the dimensionality
542 Cell Systems 3, 540–548, December 21, 2016
of our learned representation and the restart probability of

RWR (Figure S4). To enable function prediction with Mashup,

we used a support vector machine (SVM) classifier for each func-

tional category with Mashup’s compact topological representa-

tions as input features (Method Details).

Mashup’s accuracy improvement can be partially attributed to

the fact that separately analyzing the structure of each individual

network uncovers fine-grained topological patterns that are diffi-

cult to identify in the combined network where different edge

types are not distinguished. For instance, we noted that many

genes’ most topologically similar gene, based onMashup’s inte-

grated features, is not a direct neighbor in any of the networks,

but rather a gene indirectly connected by numerous paths that

go through different intermediary nodes in different networks.

Such indirect, but consistent associations are often outweighed

by direct neighbors if analyzed based on a single combined

network, even if the direct connection exists only in a narrow

context (few networks). Further inspection revealed that many

of these top, indirect associations newly identified by Mashup

in fact correspond to paralogous genes, suggesting that such

patterns reflect coherent biological functions (Table S1).

Another important factor in Mashup’s enhanced accuracy is

the compactness of its feature representations, which helps

tease functionally relevant topological patterns apart from noise

in the data. To assess this aspect in isolation, we applied

Mashup to individual networks without integration. We still

observed significantly better (rank-sum p value <0.01) prediction

performance as compared to the single-network method DSD

on all but one network (Figure 3). As additional evidence,

we observed that even a favorably modified DSD, which uses

log-transformed diffusion states as features to train SVM classi-

fiers to closely approximate Mashup without dimensionality
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works in Gene Function Prediction

We compared Mashup’s 5-fold cross-validation performance, measured by

micro-averaged area under the precision-recall curve (AUPR); performance on

each individual network in STRING (gray shaded) is compared to using all

networks simultaneously (Integrated, red shaded). The results of applying a

diffusion-based, single network method, DSD, to each network type is also

shown (white shaded). Asterisks represent individual networks where Mashup

outperformed DSD (one-sided rank-sum p value <0.01). Results are summa-

rized over ten trials (SD shown as error bars).
reduction, still achieved significantly lower accuracy than

Mashup, which further corroborates the importance of the

compactness of Mashup representations (Figure S6). Further-

more, randomly perturbing the network structure led to smaller

changes in pairwise topological similarities between genes for

Mashup features, compared to high-dimensional diffusion states

used by DSD (Figure S7). This result demonstrates Mashup’s

greater robustness to noise. We would like to emphasize that

integrating all networks from STRING results in higher function

prediction performance than any single network alone (Figure 3),

which underscores the significance of integrating various types

of data sources for understanding the functional roles of genes

or proteins.

Taken together, these results suggest that the key advances of

Mashup—simultaneously capturing the patterns of multiple

interaction networks by learning compact, canonical representa-

tions of topology—lead to substantially more accurate prediction

of gene function than previous approaches.

Further comparisons to other data integration methods that

previously have not been systematically evaluated for the task

of function prediction are provided in Figure S1. In particular,

we compared Mashup to a recently proposed matrix factoriza-

tion-based approach, Collective-Matrix Factorization (CMF;
�Zitnik et al., 2015; �Zitnik and Zupan, 2015), which views hetero-

geneous data matrices as relations between different object

types that can be approximated via a low-lank factorization.

While straightforward CMF has limited use of network data as

additional constraints on the parameters to be learned, we

considered a favorably modified CMF that directly factorizes

the network data (i.e., more similar to Mashup) and found

that Mashup significantly outperforms this approach as well

(Figure S1).
More Precise Reconstruction of Gene Ontology
In addition to refining our functional knowledge of proteins via

automatic function annotation, which assumes a predetermined

set of functional categories, molecular networks can be used to

guide the identification of functional categories and their hierar-

chical organization—widely known as ‘‘gene ontology.’’ Building

an entire ontology based on only high-throughput interactome

data—an approach recently pioneered by Dutkowski et al.

(2013)—circumvents the inconsistencies and biases that are

typically introduced by the manual curation process underlying

existing ontology databases (e.g., Gene Ontology [GO] database

[Ashburner et al., 2000]). Therefore, such unbiased approaches

can produce valuable hypotheses for enhancing and expanding

existing ontologies.

Dutkowski et al. (2013) used a graph-based agglomerative

clustering algorithm (Park andBader, 2011) to extract a hierarchy

of gene clusters from an interaction network, where each cluster

is viewed as a putative functional category. The resulting data-

driven ontology, called NeXO, was then provided as input to an

ontology alignment algorithm developed by the same re-

searchers to show substantial overlap with the GO database.

More recently, a new algorithm based on maximal clique detec-

tion, named CliXO (Kramer et al., 2014), was proposed as an

alternative approach that can better handle weighted interaction

networks. Motivated by the observation that Mashup’s inte-

grated topological features are highly predictive of gene func-

tion, we set out to test whether clustering Mashup features in

lieu of the original input networks would result in more accurate

gene ontology than NeXO and CliXO. Both methods, unlike

Mashup, take a single combined network as input, which ob-

scures the fine-grained topological patterns that are specific to

individual networks.

We first extracted compact topological representations with

Mashup from the same set of four binary yeast PPI networks

used by Dutkowski et al. (2013), which consists of a physical

interaction network, a genetic interaction network, a co-expres-

sion network, and a functional association network from

YeastNet (Kim et al., 2013). While Dutkowski et al. (2013) simply

took the union of all edges to construct a combined network for

clustering, we used topological features from Mashup’s integra-

tion to construct a gene ontology via a standard hierarchical

agglomerative clustering algorithm. The clustering was followed

by a post-processing step analogous to NeXO’s in order to intro-

duce multi-way joins and multiple parents, which are common

in real ontologies (Method Details). With our Mashup-based

ontology, we achieved substantially better agreement with GO

than NeXO (in F1 score, which measures harmonic mean of

precision and recall) for molecular function (MF) and cellular

component (CC) ontologies, and comparable performance for

biological process (BP) (Figure 4A). Overall, Mashup achieved

a combined alignment score of 0.33 (geometric mean of F1

scores in three ontology categories), which was significantly

higher than NeXO’s (0.24). To compare with CliXO (for weighted

interaction networks), we applied Mashup to six weighted PPI

networks, excluding text mining, from STRING (Franceschini

et al., 2013) and similarly constructed an ontology via hierarchi-

cal clustering. For CliXO, we uniformly combined the networks

by Bayesian integration (following STRING’s approach) to

construct a single integrated network as input. Even with an
Cell Systems 3, 540–548, December 21, 2016 543
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(A and B) Mashup features extracted from (A) the

network data used to generate NeXO or (B)

STRING networks were hierarchically clustered to

generate an ontology, which is aligned using the

same algorithm as NeXO/CliXO to biological pro-

cess (BP), molecular function (MF), and cellular

component (CC) ontologies in the GO database.

We compared the alignment quality of Mashup-

based ontologies to NeXO and CliXO on the

respective datasets. Following previous work

(Dutkowski et al., 2013), we measured the align-

ment quality as the harmonic mean of the fraction

of terms in the reconstructed ontology and the fraction of terms in GO that are aligned. The overall score was calculated as the geometric mean of the three scores

for different GO types.

(C) Breakdown of the number of terms in Mashup-based ontology using STRING networks aligned to GO (at FDR = 10%).
optimized parameter setting for CliXO (Method Details),

Mashup-based ontology achieved substantially higher align-

ment scores than CliXO in all three ontology categories: Mashup

had a combined score of 0.35, whereas CliXO, 0.18 (Figure 4B).

Furthermore, we observed similar improvement for Mashup on

the YeastNet networks (Kim et al., 2013), the original dataset

used by Kramer et al. (2014) to evaluate CliXO (Figure S8).

These results demonstrate that Mashup’s integration of topo-

logical features enable more precise identification of functionally

coherent gene sets than the state-of-the-art approaches, which

rely on a single combined network where network-specific topo-

logical information is obscured. Note also that Mashup allows

the use of a simple off-the-shelf clustering algorithm through

its convenient vector representation of topology.

Improved Prediction of Genetic Interaction and Drug
Efficacy
A critical step toward attaining a thorough understanding of how

genes carry out their biological function in a cell is to tease apart

their sophisticated interplay with other genes or proteins. Syn-

thetic lethality (SL) and synthetic dosage lethality (SDL) describe

a particular type of interaction between genes where an other-

wise non-essential gene becomes essential (i.e., its deletion re-

duces cell viability) given the deletion (SL) or overexpression

(SDL) of another gene. SL interactions can reveal inherent redun-

dancy in the genetic program, and SDL interactions, dosage

dependence of gene products. There has been great interest in

identifying SL or SDL interactions due to their clinical signifi-

cance; these interactions can lead to the discovery of novel

drugs for targeted therapies, where SL or SDL interaction part-

ners of genes selectively deleted or overexpressed in disease

cells are targeted (Chan and Giaccia, 2011). However, experi-

mentally interrogating the presence of an interaction between

every pair of genes is infeasible, and thus it is essential to

develop computational approaches for predicting candidate in-

teractions with high accuracy.

Several prediction methods have focused on the use of PPI

networks either exclusively (Paladugu et al., 2008) or in conjunc-

tion with other types of information, such as gene expression or

functional annotation (Pandey et al., 2010; Wong et al., 2004).

The key insight behind these approaches is that observing a ge-

netic interaction between genes A and B increases the likelihood

of an interaction between A and other genes that are functionally
544 Cell Systems 3, 540–548, December 21, 2016
similar to B. This kind of information transfer can be effectively

derived from the topology of interactomes, as we demonstrated

in the above applications of Mashup. Notably, Paladugu et al.

(2008) used a manually curated list of conventional graph theo-

retic measures (e.g., degree, closeness, betweenness central-

ities) to train support vector machine (SVM) classifiers and

demonstrated that analyzing the topology of a PPI network alone

can be effective for predicting genetic interactions.

Here, we asked whether the compact topological representa-

tion learned by Mashup can be used to further improve predic-

tion of genetic interactions. To this end, we adopted the same

prediction framework used by Paladugu et al. (2008) and

measured, via cross-validation, the impact of substituting

Mashup’s topological representations for their curated topolog-

ical features (Method Details). We observed that Mashup’s

compact representation consistently outperforms manually

curated topological features (referred to as graph-theoretic mea-

sures [GTM]) for predicting both SL and SDL interactions in a real

human dataset (Figure 5A). Mashup achieved an average area

under the precision recall curve (AUPR) of 0.59 for SL and 0.51

for SDL, whereas GTM achieved 0.44 and 0.39, respectively.

Mashup’s performance was highly consistent across a wide

range of choices for the dimensionality of our learned represen-

tation (Figure S5). Furthermore, Mashup achieved substantially

better accuracy than a recent approach that uses known GO an-

notations of each gene pair as input features for random forest

classifiers (Yu et al., 2016; referred to as Ontotype), which was

shown to achieve state-of-the-art performance in yeast. We

attribute Ontotype’s relatively poor performance on our human

data to the sparsity and incompleteness of functional annota-

tions in human; this finding further highlights the strength of

our approach where functional relationships are directly inferred

from interactomes as opposed to relying on curated annotations.

Additionally, we observed that Mashup achieves better overall

performance, albeit by a small margin (AUPR of 0.13 compared

to 0.1), than Ontotype on the original yeast dataset (Costanzo

et al., 2010) used by Yu et al. (2016) (Figure S9).

Notably, our cross-validationwasbasedon thegenetic interac-

tions reported by Jerby-Arnon et al. (2014) as ground truth; these

were computationally identified based on a diverse set of high-

throughput experimental data, including somatic mutations,

copy number alterations, gene expression, and short hairpin

RNA (shRNA)-based functional screening data. Therefore, most
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diction

(A) Cross-validation performance of using Mashup

representations from STRING networks in SVM

classifiers to predict human SL/SDL interactions

reported by Jerby-Arnon et al. (2014) as compared

to a previous approach that uses various graph-

theoretic measures (GTMs) as input features

instead (Paladugu et al., 2008) and a more recent

approach, Ontotype, that uses the combined,

known GO annotations of each gene pair as fea-

tures in an ensemble of decision trees (Yu et al.,

2016). Area under theprecision-recall curve (AUPR)

is used as the performance metric. Results are

summarizedover ten trials (SDshownaserror bars).

(B) Number of single-target drugs in the Cancer Genome Project data (Garnett et al., 2012) whose efficacy is predicted with statistical significance at varying FDR

levels based on SDL interactions originally identified by DAISY (Jerby-Arnon et al., 2014) or top 5, 10, and 20 candidate interactions for each drug target

predicted by Mashup-based classifers using DAISY interactions as training data.

(C) An illustration of a putative SDL interaction between TOP1 and TXNL1 predicted by Mashup and its associated literature evidence.
of the ‘‘known’’ interactions in our data were not individually vali-

dated in greater depth, which raised a potential concern that

Mashup’s improvement could be due to statistical artifacts in

the high-throughput data. To address this concern, we tested

whether Mashup’s predicted interactions produce meaningful

predictions on an independent biological dataset. In particular,

we considered the task of efficacy prediction of cancer drugs;

if a drug targets a gene with an SDL interaction, the expression

level of the interaction partner is expected to correlate with the

efficacy of the drug, which allows us to indirectly validate our pre-

dicted SDL interactions by analyzing their ability to predict drug

efficacy.

We obtained the efficacy profiles of 50 drugs with single pro-

tein targets from the Cancer Genome Project (CGP) (Garnett

et al., 2012) over 639 human cancer cell lines. Using an unsuper-

vised prediction framework similar to the one employed by

Jerby-Arnon et al. (2014), we calculated how many drug

response profiles could be predicted, with statistical signifi-

cance, using the top SDL interactions predicted by Mashup for

each drug (Method Details). We were able to predict many

more drugs as compared to using only the interactions identified

byDAISY (Jerby-Arnon et al., 2014) (Figure 5B). For instance, at a

false discovery rate of 10% and based on the top five candidate

interactions, Mashup significantly predicted the efficacy of

seven drugs, while DAISY interactions could only predict one.

A potential reason for the response of the majority of drugs not

being explained in our analysis, as previously noted by Jerby-

Arnon et al. (2014), is that many factors other than the essentiality

of the drug target, including cell membrane permeability, influ-

ence drug efficacy. Note that only 11 out of the 50 single-target

drugs had at least one reported SDL interaction. Furthermore,

four out of seven drugs whose efficacy we significantly predicted

did not have any known SDL interaction partners, which sug-

gests that our classifier was able to produce meaningful predic-

tions even for genes that were not included in the training data.

The list of drugs whose response profiles were significantly pre-

dicted by Mashup, and their top candidate interactions used for

efficacy prediction are provided in Table S2.

TOP1-TXNL1 is one particularly convincing candidate interac-

tion we identified using Mashup that was not significantly identi-
fied by other computational methods (Figure 5C). TXNL1, one

of the top five candidate interactors for TOP1 (DNA topoisomer-

ase I), has strong evidence in the literature that supports the

interaction between the two genes with respect to a drug camp-

tothecin, which targets TOP1. Topoisomerase I normally binds to

DNA during transcription to control the topological states of DNA

strands. However, in the presence of camptothecin, a normally

transient topoisomerase I-DNA complex becomes persistent,

resulting in a toxic lesion commonly known as a ‘‘suicide com-

plex.’’ It has been noted in the literature that a gene named

XRCC1 is involved in the repair of TOP1 suicide complexes

(Plo et al., 2003). Furthermore, TXNL1 has recently been

observed to downregulate XRCC1 in a gastric cancer cell line

(Xu et al., 2014). This finding implies that the higher expression

of TXNL1 likely indicates lower levels of XRCC1, which increases

the vulnerability of cells to camptothecin-induced DNA damage.

Consistent with the literature, the efficacy of camptothecin was

significantly predicted in our experiments with TXNL1 as one of

the predictors in two independent samples (Table S2). In one

of the replicates, the expression level of TXNL1 had strong mar-

ginal correlation with the efficacy of camptothecin (Spearman

correlation p value = 5.16 3 10–4). This example illustrates the

unique potential of Mashup-based functional inference to pro-

duce new biological insights by effectively integrating various

types of network data.

DISCUSSION

We have presented Mashup, an integrative framework for

analyzing the topology of multiple interaction networks from het-

erogeneous data sources, which can be used to infer various

functional properties of genes or proteins. Mashup characterizes

the topology of individual networks by diffusion and then com-

putes compact but highly informative vector representations

for nodes in the networks to approximate the diffusion patterns

jointly for all networks. We have demonstrated the wide applica-

bility of Mashup in exploiting functional topology in interaction

networks by accurately predicting gene function, reconstructing

the gene ontology hierarchy, and predicting genetic interactions

from heterogeneous network data. We have also demonstrated
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substantial improvements over previous approaches for each

application.

While we have showcased the effectiveness of Mashup as a

plug-in architecture for standard tools, such as SVM classifiers

and hierarchical clustering, we note that our framework readily

allows the use of more sophisticated methods and that such a

direction is likely important for further improving performance

in many applications. For instance, we recently developed an

improved protein function prediction algorithm based on

Mashup that exploits the semantic similarity between different

functional categories from the ontology hierarchy, which led to

significantly better predictions in sparsely annotated GO cate-

gories (Wang et al., 2015).

This work was initially inspired by a related line of research in

natural language processing. In their seminal paper, Mikolov

et al. (2013) introduced a framework that takes a corpus of text

documents and gives each word a vector representation based

on pairwise co-occurrence patterns and showed that the learned

vectors capture semantics of words. In our work, we view genes

as words and network diffusion as a way to characterize ‘‘co-

occurrence’’ of genes in interaction networks to adapt Mikolov

et al.’s idea to real biological networks and demonstrate that

the learned features similarly represent functional properties of

genes with high accuracy. Mashup generalizes Mikolov et al.’s

approach to heterogeneous datasets where the co-occurrence

patterns are subdivided into different contexts (different net-

works). An exciting future direction would be to apply our insights

to improve text analysis where different ‘‘types’’ of documents

are used to construct more fine-grained co-occurrence data,

based on which semantic relationships among words can be

more accurately inferred.

For applications in biology, another important direction to

explore is incorporating into Mashup other types of information

that are not commonly represented as networks, such as

sequence, evolutionary, or biochemical properties of individual

genes or proteins. Conveniently, this non-network information

can be incorporated into our framework in a straightforward

manner as additional entries in the feature representation. We

also want to emphasize that there is ample opportunity to apply

Mashup to other network-based applications, including but not

limited to: inter-species network alignment (Liao et al., 2009;

Milenkovi�c et al., 2010; Singh et al., 2008), protein complex

detection (Nepusz et al., 2012), and drug-target interaction

prediction (Cheng et al., 2012). Mashup is a versatile tool that

provides an effective, unified, and scalable framework for data

integration in diverse applications.
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METHOD DETAILS

The Mashup Framework
Random Walk with Restart Review

The random walk with restart (RWR) method has been well established for analyzing network structures. By allowing the restart of a

random walk from the initial node in each step with a probability, RWR can take into consideration both local and global topology

within the network to identify the relevant or important nodes in the network. Let A denote the adjacency matrix of a (weighted) mo-

lecular interaction networkG= ðV ;EÞwith n nodes, each denoting a gene or a protein. Each entryBij in the transition probability matrix

B, which stores the probability of a transition from node j to node i, is computed as

Bij =
AijP
i0Ai0 j

:

Formally, the RWR from a node i is defined as

st + 1
i = ð1� prÞBsti +prei

where pr is the probability of restart, controlling the relative influence of local and global topological information in the diffusion, with

higher chances of restart placing greater emphasis on the local structure; ei is a n-dimensional distribution vector with eiðiÞ= 1 and

eiðjÞ= 0,cjsi; sti is a n-dimensional distribution (column) vector in which each entry holds the probability of a node being visited after t

steps in the randomwalk, starting from node i. The first term in the above update corresponds to following a random edge connected

to the current node, while the second term corresponds to restarting from the initial node i. At the fixed point of this iteration we obtain

the stationary distribution sNi . Consistent with a previous work (Cao et al., 2014), we define the diffusion state si = sNi ˛Dn of each

node i to be the stationary distribution of RWR starting at each node, where Dn denotes the n-dimensional probability simplex. Intu-

itively, the j th element, sij, represents the probability of RWR starting at node i ending up at node j in equilibrium. When the diffusion

states of two nodes are close to one another, it implies that they are in similar positions within the graph with respect to other nodes,

which might suggest functional similarity. This insight provided the basis for several diffusion-based methods (Cao et al., 2014;

Macropol et al., 2009; Wang et al., 2012) that aim to predict characteristics of genes or proteins by using the diffusion states to better
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capture topological associations. Instead of simply using the probability in the diffusion state, the diffusion state distance (DSD)

approach, using L1 distances between diffusion states, achieved the state-of-the-art performance on predicting protein functions

on yeast interactomes (Cao et al., 2014).

Novel Dimensionality Reduction

A key observation behind our approach is that the diffusion states obtained in this manner are still noisy, in part due to their high

dimensionality and the incompleteness of the original network data. With the goal of noise and dimensionality reduction, we approx-

imate each diffusion state si with a multinomial logistic model based on a latent vector representation of nodes that uses far fewer

dimensions than the original, n-dimensional state. Specifically, we compute the probability assigned to node j in the diffusion state of

node i as

bsij : =
exp

�
xTi wj

�P
j0exp

�
xTi wj0

�;
whereci;wi; xi ˛ Rd for d � n. Each node is given two vector representations,wi and xi. We refer towi as the context feature and xi
as the node feature of node i, both capturing the intrinsic topological properties in the network. If xi and wj are close in direction and

with large inner product, node j should be frequently visited in the random walk starting from node i. Ideally, if the vector represen-

tation w and x is able to capture fine-grain topological properties, we can use it to retrieve genes with similar functions or use it as

features for other network-based machine learning applications. While it is possible to enforce equality between these two vectors,

decoupling them leads to a more manageable optimization problem and also allows our framework to be readily extended to the

multiple network case, which is further described in the next section.

Given this model, we formulate the following optimization problem that takes a set of observed diffusion states s= fs1;.; sng as

input and finds the low-dimensional vector representation of nodes w and x that best approximates s according to the multinomial

logistic model. To obtainw and x for all nodes, we use KL-divergence (relative entropy) as the objective function tominimize, which is

a natural choice for comparing probability distributions, to guide the optimization:

minimize
w; x

Cðs; bsÞ= 1

n

Xn

i = 1
DKLðsi k bsiÞ:

By writing out the definition of relative entropy and bs, we can express the objective as

Cðs; bsÞ= 1

n

Xn
i =1

"
� HðsiÞ �

Xn
j = 1

sij

 
xTi wj � log

 Xn
j0 = 1

exp
�
xTi wj0

�!!#
;

where Hð,Þ denotes the entropy.

Novel Integration of Heterogeneous Networks

We can naturally extend our dimensionality reduction framework to integrate network data from diverse sources. We first perform

random walks on each individual network k separately and obtain network-specific diffusion states ski for each node i. We also

construct the multinomial distribution bskij from the following logistic model

bskij : =
exp

n
xTi w

k
j

o
P

j0exp
n
xTi w

k
j0

o;
where for each node i in network k, we assign it a network-specific context vector representation wk

i , which encodes the intrinsic

topological properties of network dataset k; for node features x, we allow them to be shared across all K networks. Finally, we jointly

optimize the objective function,

minimize
w; x

Cðs; bsÞ= 1

n

XK

k = 1

Xn

i =1
DKL

�
ski k bski �;

and use the optimized node features x for various functional inference tasks. Note that it is possible to weight the divergence term for

each network differently, but we give equal importance to each network in this work for simplicity. In addition, while here we assume

that all networks are defined over the same set of nodes, given overlapping but different node sets one can take the union of distinct

nodes and augment each network with missing nodes to unify the node sets. We believe this approach is preferable to taking the

intersection of node sets, as paths over the nodes that are missing in another network could still contain useful topological informa-

tion to be captured by our diffusion process.

Implementation Details
To optimize the objective function of Mashup, we computed the gradients with respect to the parameters w and x:

Vwk
i
Cðs; bsÞ= 1

n

Xn
j = 1

�bskji � skji

�
xj;
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1 XK

VxiCðs; bsÞ= n

k = 1

Xn
j = 1

�bskij � skij

�
wk

j :

Both the objective function and the gradients can be computed in Oðn2dKÞ time. We used a standard quasi-Newton method

L-BFGS (Zhu et al., 1997) with these gradients to find the low-dimensional vector representations corresponding to a local optimum

of our optimization problem. We used uniform random numbers from ½�0:05; 0:05� to initialize the vectors and observed that this

consistently leads to good solutions.

For the human dataset, we used an alternative objective that allows for more efficient optimization based on singular value

decomposition (SVD), in order to cope with large number of genes. We first concatenated the diffusion states for each network

k to form a n3n diffusion state matrix Sk where ski is the i th column. Then, we concatenated the resulting matrices to obtain

a nK3n matrix S. We took the logarithm of each element to obtain ~S and performed truncated SVD on ~S (with a user-specified

number of components) to get a low-rank factorization USV. We assigned the columns of S1=2UT to fwk
i g and the columns of

S1=2V to fxig. Intuitively, this corresponds to a solution that minimizes the difference between the observed and model distribu-

tions as measured by the L2 norm in log space. A small smoothing constant (e.g., reciprocal of the number of genes) was added to

each entry in S to avoid taking the log of zero. Further performance optimization can be achieved by calculating the top eigen-

vectors of R=
PK

k = 1ð ~S
kÞT ~Sk

, whose eigenvectors correspond to the right singular vectors of ~S (i.e., fxig). Note ~S
k
denotes the

log-transformed matrix of Sk . In order to calculate R, one needs to keep only a single network in memory at a time, which reduces

the memory footprint of this approach from Oðn2KÞ to Oðn2Þ, thereby allowing Mashup to easily scale to a large number of net-

works. Thus, besides the time it takes to run RWR on each network, which scales linearly with the number of networks and is

typically very fast, the running time of calculating Mashup representations via SVD from the diffusion states is constant with

respect to the number of networks.

All of our experiments used restart probability of 0.5 for RWR, and unless otherwise noted, we used 500-dimensional vectors for

yeast networks and 800-dimensional vectors for human networks, roughly corresponding to 5%–10% of the original number of di-

mensions. However, we observed that our results are robust to the choice of these parameters (Figures S4 and S5).

Networks and Functional Annotations
We obtained a collection of protein-protein interaction (PPI) networks of yeast and human from the STRING database v9.1 (France-

schini et al., 2013), which is based on a variety of data sources, including high-throughput interaction assays, curated PPI databases,

and conserved co-expression. We excluded the network constructed from text mining of academic literature to prevent confounding

caused by links based on functional similarity. The resulting collection consisted of six heterogeneous networks over 6,400 genes

with the number of edges varying from 1,361 to 314,013 for yeast, and 18,362 genes with the number of edges varying from

3,717 to 1,544,348 for human. Every edge in these networks is associated with a weight between 0 and 1 representing the probability

of edge presence, which we factor into the calculation of transition probabilities in the random walk process.

Wedownloaded functional annotations fromMunich Information Center for Protein Sequences (MIPS) (Ruepp et al., 2004) for yeast

and the Gene Ontology database (GO; Ashburner et al., 2000) for human. The functional categories in MIPS are organized in a three-

layered hierarchy, where the top level (Level 1) consists of the 17 most general functional categories, the second level (Level 2) con-

sists of 74, and the third (Level 3) consists of the 154 most specific categories. We grouped the GO terms for human in a similar

fashion to obtain three distinct levels of functional categories of varying specificity, each containing GO terms with 11-30, 31-100,

and 101-300 genes, respectively. Within each level, we iteratively removed categories that had Jaccard similarity greater than 0.1

with another category in the same level in order to avoid statistical artifacts arising from overlapping functional categories. Note

we propagated annotations over ‘‘is a’’ and ‘‘part of’’ relations in the GO hierarchy for consistency; if a gene is annotated with a

GO term, we additionally annotated it with all ancestor terms.

Gene Function Prediction
To predict gene function using the topological feature representations obtained by Mashup, we formulated the task as a multi-label

classification problem and applied an off-the-shelf support vectormachine (SVM) toolbox, LIBSVM (Chang and Lin, 2011).We trained

a binary classifier for each function and obtained per-class probability scores for each gene in the validation set. We used the stan-

dard radial basis function (RBF) kernel for the SVMs and performed a nested five-fold cross-validation within the training data to

select the optimal parameters via grid search.

The performances of baseline methods—DSD (Cao et al., 2014) and GeneMANIA (Mostafavi and Morris, 2010)—are obtained as

follows. For DSD, following the suggestions of the original paper, we obtained the diffusion states using RWR with restart probability

of 0.5 and used a L1 distance-based weighted majority voting scheme where the labels assigned to the k most similar genes are

combined using the reciprocal of distance between diffusion states as weights to produce per-label confidence scores ðk = 10Þ.
Since DSD takes a single network as input, we used STRING’s approach to integrate the networks as a preprocessing step for

DSD: we assign pij = 1�Qkð1� p
ðkÞ
ij Þ as the probability of each edge in the combined network, where p

ðkÞ
ij is the probability associ-

ated with the edge ði; jÞ in network k. For GeneMANIA, we downloaded the MATLAB implementation online (http://morrislab.med.

utoronto.ca/�sara/SW) and applied it to our dataset. Since GeneMANIA generates predicted scores for genes that are not directly

comparable across different functional labels, we applied the standard Platt calibration (Lin et al., 2007; Platt, 1999), based on the
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same implementation as the one provided in LIBSVM, to transform the GeneMANIA scores into probability scores before evaluating

them in the same manner as other methods.

For each method, we repeatedly held out 20% of the annotated genes as the validation set and used the remaining 80% to predict

their functions. We used four different metrics to evaluate the prediction performance: (i) Accuracy is measured by assigning top pre-

dicted function to each gene in the validation set and measuring how often our prediction is one of the known functions of the gene.

(ii) Micro-averaged F1 score is calculated by assigning top a predictions to each gene, constructing a 2-by-2 contingency table for

each function (treating it as a binary classification task), and computing the F1 score—harmonicmean of precision and recall— on the

combined table where each cell is summed across all functions. We used a= 3 for the results presented in this paper, following pre-

vious work (Cao et al., 2014; Schwikowski et al., 2000). (iii)Micro-averaged area under the precision-recall curve (m-PR) is calculated

by vectorizing the matrix of predicted confidence scores for each gene-functional category pair and measuring the area under the

precision-recall curve constructed based on the resulting vector, which combines the results from all functional categories.

(iv)Macro-averaged area under the precision-recall curve (M-PR) is calculated by computing the area under the PR curve separately

for each function and taking the average across all labels. Since M-PR gives equal weight to all labels, it is less prone (compared to

m-PR) to potential biases caused by some functional labels being easier to predict. We chose not to consider the receiver operating

characteristic (ROC) curve, because its behavior is closely related to the PR curve and the latter is more appropriate for a classifica-

tion task with a large skew in the class distribution (Davis and Goadrich, 2006), which is the case for gene function prediction.

Gene Ontology Reconstruction
We reconstructed the gene ontology based on Mashup’s feature representations using a standard agglomerative hierarchical

clustering algorithm (UPGMA; Sneath and Sokal, 1973), using a cosine distance function which is most appropriate given the use

of pairwise inner products in the multinomial logistic model used by Mashup to learn the feature representations. The resulting

tree of clusters was pruned (cluster sizeR3) and aligned to each type of GO ontology (biological process, molecular function, cellular

component) using the ontology alignment algorithm proposed and implemented by Dutkowski et al. (2013). Following their work, only

the statistically significant (FDR = 10%) alignments based on a permutation test were used to assess the level of agreement between

GO and the reconstructed ontology, which is measured by the harmonic mean of precision (the fraction of reconstructed ontology

terms that are aligned) and recall (the fraction of GO terms that are aligned). Overall alignment score was summarized by taking the

geometric mean of the alignment scores of the three types of GO ontology.

For fair comparison with NeXO (Dutkowski et al., 2013), we also implemented heuristics to allow multi-way joins and multiple par-

ents in the reconstructed ontology. Given a cluster, we tested whether pairwise distances within a cluster are significantly smaller

than those between the cluster and its sibling, using a one-sided rank-sum test. Intermediary nodes in the tree with insignificant

p-values (> 0.05) were removed, which induces multi-way joins in the ontology. To allow terms to have more than one parent, we

adopted a procedure identical to that of Dutkowski et al. (2013), where an additional link is iteratively added between two terms

with significant connectivity that are not already on the same path to root.

To obtain the alignment results for NeXO, we downloaded the reconstructed ontology provided on its website (http://www.

nexontology.org) and aligned it to GO ontologies using the original authors’ alignment algorithm (https://mhk7.github.io/

alignOntology). For CliXO, we downloaded the implementation provided by the authors (https://mhk7.github.io/clixo_0.3).

Following the recommendations in the original paper (Kramer et al., 2014), we set b= 0:5 and selected the value of

a ˛ f0:001; 0:005; 0:01; 0:015; 0:02; 0:03; 0:05g that resulted in the highest alignment score.

Genetic Interaction Prediction
Following a previous work (Paladugu et al., 2008), we implemented a support vector machine (SVM) classification framework for ge-

netic interaction prediction. Given the Mashup’s topological feature representation of each gene, the feature vector for each pair of

genes is constructed by taking the mean and the absolute difference of the gene features. We trained SVM classifiers with standard

radial basis function (RBF) kernel using an off-the-shelf package LIBSVM (Chang and Lin, 2011) with such features as input to distin-

guish interacting gene pairs from non-interacting ones. For cross-validation, half of the known interactions and amatching number of

sampled non-interactions were used to train the classifiers, and their performance was tested on a dataset consisting of the remain-

ing known interactions and a much larger set of non-interactions such that known interactions compose only 5% of the test data.

Non-interactions were sampled uniformly at random from the set of gene pairs without known interactions, which relies on the

assumption that the number of unobserved interactions is expected to be only a small fraction. We used the area under ROC curve

(AUROC) and the area under precision-recall curve (AUPR) on the test set as performancemetrics. The variance and cost parameters

of SVM were optimized via grid search in a nested cross-validation framework.

As a baseline, we considered using as input topological features a manually curated set of graph-theoretic measures used by Pal-

adugu et al. (2008), which includes: degree (number of direct interactions), clustering coefficient (Watts and Strogatz, 1998), close-

ness centrality (Beauchamp, 1965), normalized betweenness centrality (Freeman, 1977), eigenvector centrality (Bonacich, 1972),

stress centrality (Brandes, 2001), bridging centrality (Zhang et al., 2010), information centrality (Stephenson and Zelen, 1989), and

current-flow betweenness centrality (Brandes and Fleischer, 2005). We calculated each measure for each gene based on an inte-

grated PPI network using STRING’s Bayesian integration, as previously described. For the baseline model, we also included a

few additional features based on shortest distance between genes and the presence of connecting paths of length two (see original

paper for more details; Paladugu et al., 2008).
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To evaluate the performance of Ontotype (Yu et al., 2016), we first built a hierarchy of GO terms across all three ontologies (bio-

logical process, molecular function, and cellular component) using only ‘‘is a’’ and ‘‘part of’’ relationships. Then, we assigned each

gene in STRING to its known GO terms and all of their ancestors in the hierarchy. Given a pair of genes, we constructed a feature

vector (termed Ontotype) that has 0, 1, or 2 for each GO term representing the number of genes in the pair that are assigned to

the term. Following Yu et al. (2016), we used the implementation of random forest classifiers provided by the Python scikit-learn pack-

age (Pedregosa et al., 2011) to classify genetic interactions based on the Ontotype features. We explored a wide range of model pa-

rameters: {100, 300, 500, 1000} for number of trees, {10, 30, 50, Full} for maximumdepth of the trees, and {0.1, 0.3, 0.5} for the fraction

of features to consider at each split. To compare with Mashup, we selected the best parameters for SL and SDL interactions,

respectively.

Drug Efficacy Prediction
For each drug, we took the target gene’s top 5, 10, 20 SDL interactors predicted by our Mashup-based classifier trained on all SDL

interactions identified by Jerby-Arnon et al. (2014) and amatching number of sampled non-interactions. Then, following a similar pro-

cedure as Jerby-Arnon et al. (2014), we counted the number of (predicted) interactors that are overexpressed in each cell line. The

one-sided Spearman correlation p-value between the number of overexpressed interactors and the IC50 value of the drug, which re-

flects drug efficacy, was used as a measure of prediction accuracy. We tried using each of the top five deciles of the expression level

observed across all tissues as the threshold for determining overexpression for each gene and selected the most significant

among the resulting correlation p values as the final performance score. To assess the statistical significance of our prediction,

we sampled the score 105 times from a null distribution by using the same number of randomly selected genes as SDL interactors

instead. Given the empirical p-values for each of the drugs tested, we used the Benjamini-Hochberg false discovery rate (FDR) con-

trolling procedure (Benjamini and Hochberg, 1995) with varying FDR thresholds to see the number of drugs whose efficacy we could

significantly predict given only each tissue’s expression profiles.

DATA AND SOFTWARE AVAILABILITY

A MATLAB implementation of Mashup, pre-trained vectors for various organisms, and a benchmark dataset for function prediction

are available for download at: http://mashup.csail.mit.edu and in Data S1.
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