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A B S T R A C T   

Cluster analyzes have been widely used in mental health research to decompose inter-individual heterogeneity 
by identifying more homogeneous subgroups of individuals. However, despite advances in new algorithms and 
increasing popularity, there is little guidance on model choice, analytical framework and reporting requirements. 
In this paper, we aimed to address this gap by introducing the philosophy, design, advantages/disadvantages and 
implementation of major algorithms that are particularly relevant in mental health research. Extensions of basic 
models, such as kernel methods, deep learning, semi-supervised clustering, and clustering ensembles are sub-
sequently introduced. How to choose algorithms to address common issues as well as methods for pre-clustering 
data processing, clustering evaluation and validation are then discussed. Importantly, we also provide general 
guidance on clustering workflow and reporting requirements. To facilitate the implementation of different al-
gorithms, we provide information on R functions and libraries.   

1. Introduction 

In the presence of the substantial variety of different ways humans 
can suffer with illnesses (Feczko et al., 2019; Nunes et al., 2020), there 
have been attempts to group individuals together who demonstrate 
similar aetiologies, presentations, prognoses, and responses to treat-
ments. As highlighted by Sokal (1974), written history of classification 
schemes that attempt to categorise the natural world date back to at least 
the ancient Greeks. Throughout this time, grouping was achieved sub-
jectively by determining similarities between organisms or objects using 
human sense perception; for example, birds that looked the same were 
grouped together. Such subjective methods of clustering continued with 
systematic biological taxonomies (e.g., Linnean typologies) and the 
emergence of nosologies in psychiatry (e.g., Kraepelinan dementia 
praecox). 

With increasing amounts of data, a step-change in biological 

taxonomy was in the advent of computers that allowed simultaneous 
consideration of more variables than a human could and objective 
techniques to assess similarity, e.g., hierarchical agglomerative tech-
niques and the numerical taxonomy approach of Sneath and Sokal 
(1973); Sokal and Sneath (1963). Computational classification also has a 
renewed interest in psychiatry due to the growing repositories of big 
data coupled with widespread recognition of multi-modal heterogeneity 
of individuals with the same diagnosis. For example, large variations in 
clinical presentations are well-recognized (Hyman, 2010), comorbidity 
occurs over the lifetime (Caspi et al., 2020), functional impairment 
widely varies (Dwyer et al., 2022), illness courses are unpredictable 
(Carpenter and Kirkpatrick, 1988), and there are multiple biological 
differences between individuals (Abi-Dargham and Horga, 2016; Insel 
and Cuthbert, 2015; Kapur et al., 2012) Simultaneously, there is 
recognition of the wide multi-modal similarity between individuals with 
different diagnoses in symptoms and biological measures, such as risk 
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genes (Lam et al., 2019; Schork et al., 2019; Zheutlin et al., 2019), blood 
proteins (Pinto et al., 2017), brain pathophysiology (Goodkind et al., 
2015; Romer et al., 2021; Sha et al., 2019), cognition (Abramovitch 
et al., 2021), and more recent digital biomarkers (Fraccaro et al., 2019; 
Low et al., 2020). 

Such a growing array of differences and similarities has ignited 
debate within psychiatry that mirrors longstanding questions regarding 
the degree to which we either ‘lump’ or ‘split’ individuals into groups 
(McKusick, 1969). On one hand, there are entirely dimensional ap-
proaches that seek to identify major axes of illness variance shared by all 
individuals (Caspi et al., 2014; Caspi and Moffitt, 2018; Insel et al., 
2010; Kotov et al., 2016, 2018, 2017, 2013) and on the other, there are 
approaches that attempt to discover subgroups of individuals who share 
distinctive attributes that separate them from others (Feczko et al., 
2019). In this paper, we focus on the latter ‘clustering’ approach, but 
also note that the two extremes are not mutually exclusive and can 
greatly overlap and inform each other (Marquand et al., 2016). 

Clustering, also referred to as cluster analysis (Feczko and Fair, 
2020), is an unsupervised machine (statistical) learning technique that 
involves grouping data points together based on their similarities (out-
comes or data labels are unknown, see Table S1 in Supplementary Ma-
terial). The term "cluster analysis" was first used by Tryon (1939), and 
started to be implemented into computer algorithms in the 1960s, e.g., 
k-means clustering and hierarchical clustering (Forgy, 1965; Ward, 
1963). Advances in machine learning in recent years have allowed 
clustering algorithms to be extended in functionality, scalability and 
complexity (Jain, 2010) to assist with understanding heterogeneity in 
mental health, see Fig. 1. A variety of clustering algorithms can now be 
found in most statistical packages such as R, Python, Matlab, Stata, SAS 
and IBM SPSS, and new algorithms continue to be developed and 
distributed rapidly, especially in R and Python. 

Despite the increasing popularity of using clustering to identify 

homogeneous subgroups, there is little guidance on model choice, 
analytical frameworks and reporting requirements that links pioneering 
work in psychology (e.g.,Clatworthy et al. 2005; Milligan and Cooper 
1987) with recent developments in machine learning (Jain, 2010; Rus-
sell and Norvig, 2021). Compared with commonly used statistical 
inference and prediction models, clustering tasks are often more chal-
lenging due to their explorative nature (Jain, 2010). Choices of algo-
rithms and input parameters, statistical procedures, as well as 
randomness in parameter estimations, can all substantially influence the 
resulting groupings. Consequently, studies using these methods in 
mental health research often fail to demonstrate consistency (e.g., 
validation process), robustness (e.g., results not impacted by random-
ness in estimation) and reproducibility (e.g., details in reporting, open 
access code and data) (Clatworthy et al., 2005; Green et al., 2020; 
Ulbricht et al., 2018; Zhou et al., 2018). Therefore, there is a need to 
provide a comprehensive understanding of common clustering models 
and to establish frameworks for conducting cluster analysis. 

There have been many reviews of existing clustering algorithms 
(Ezugwu et al., 2020; Feczko and Fair, 2020; Gan et al., 2020; Jain, 
2010; Jain et al., 1999b; Rui and Wunsch, 2005; Xu and Tian, 2015). 
However, these reviews generally target statistics, machine learning and 
computer science audiences. Most of these reviews only provide a gen-
eral summary of methods without detailed practical guidance for those 
less familiar with these approaches. Thus, the aim of this paper is to: (i) 
provide an overview (the philosophy, design and implementation) of 
major clustering methods that are particularly relevant in mental health 
research; (ii) introduce the extensions of basic models; (iii) discuss 
important issues commonly faced in clustering tasks; and (iv) provide 
general guidance on the clustering workflow. 

Given the increasing popularity of the statistical computing software 
R in mental health research, we also provide information on R functions 
and libraries for implementing different algorithms. The paper is 

Fig. 1. Heterogeneity in Mental Health.  
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targeted at readers in mental health research, but the analytical content 
is applicable to other research fields such as public health and social 
science. 

2. Clustering algorithms 

Thousands of clustering algorithms have been published with vari-
ations in their fundamental design, assumptions, target data structures, 
parameters of interest, and computational/optimisation processes. The 
taxonomy of clustering algorithms can be mapped out in different ways 
(Fig. S1 in Supplementary Material), for example, partitional vs hier-
archical, or soft vs hard (Giordani et al., 2020; Han et al., 2011; Reddy 
and Vinzamuri, 2018). Considering the common problems encountered 
in mental health research, we broadly summarize the common algo-
rithms into four groups, namely center-based partitioning clustering, 
hierarchical clustering, density-based clustering, and model-based 
clustering (Fig. 2). 

2.1. Similarity and dissimilarity (distance) measures 

Most clustering algorithms (except for model-based clustering) 
require measuring similarity or dissimilarity to group observations into 
alike subgroups. There are many types of similarity and dissimilarity 
measures. Distance, sometimes used interchangeably with dissimilarity, 
is a commonly used sub-type of dissimilarity measures. The most 
straightforward method for measuring distance for continuous variables 
is the Euclidean distance. It is simply the length of the path connecting 
two points in two-dimensional space. Although the Euclidean distance is 
easy to calculate and interpret, it may not be suitable or optimal for the 
data given. It cannot be used when the variable is not continuous or 
when variables have scale differences. It is also sensitive to outliers. A 
range of different types of measures have been developed to address 

different data types and issues (Alamuri et al., 2014; Cha, 2007). 
Detailed descriptions of common distance or dissimilarity measures are 
listed in Table 1 (continuous variables) and Table 2 (binary, nominal or 
mixed variables). 

The appropriate measure should be chosen according to the 
requirement of the clustering algorithm, the type of data (continuous, 
ordinal, nominal, binary, count or mixed), and whether the data have 
outliers (e.g., Manhattan distance is less sensitive to outliers compared 
with Euclidean distance). In some cases, the scale of the variable may 
not be associated with underlying differences (e.g., whether a word is 
presented in a document is more important than the frequency of the 
word). In these instances, measures such as Cosine distance should be 
used, which represents distance by the angle between vectors, therefore 
is scale-invariant (see Table 1). When data are sparse and have a high 
proportion of common zeros that do not represent similarity (for binary 
data), distance measures such as Hamming distance (Manhattan dis-
tance for binary data) can be problematic. This issue is also known as the 
“double-zero problem” (Legendre and Legendre, 2012). For example, 
when many clinical symptoms are measured, an individual presenting 
with only anxiety symptoms (anxiety=1, other symptoms=0,0,0,0…), 
should be considered very differently from another person presenting 
with only psychotic symptoms (psychotic=1, other symptoms=0,0,0, 
0…). In this case, normalised measures such as Jaccard distance should 
be used as common 0 s are not included in the calculation of distance 
(see Table 2 for details). 

2.2. Common clustering algorithms 

Although most algorithms use distance measures, they were 
commonly designed with different philosophical rationales. 

Center-based partitioning clustering (also known as center-based, 
distance-based or partitioning clustering), refers to a family of models 

Fig. 2. Simple Illustration of Main Types of Clustering Models. 
Note: (A) Center-based partitioning clustering aims at establishing the center of each cluster (with the number of clusters pre-specified) and determining group 
membership using the distance to the individual cluster center. (B) Hierarchical clustering groups data objects into a hierarchy or “tree” of clusters. (C) Density-based 
clustering groups data according to the density of data distribution, therefore, can identify clusters with arbitrary shapes and sizes. (D) Model-based clustering 
assumes the distribution of the data is underpinned by latent subgroups. 
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Table 1 
Common Distance or Dissimilarity Measures for Continuous Variables.  

Distance or 
dissimilarity 

Equation (distance between a 
and b on n dimensions) 

Graphical representation Description R code 

Euclidean 
distance* 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ai − bi)
2

√ Distance between two points in n dimensional 
space. It is the most commonly used distance 
measure in clustering; however, it can be sensitive 
to outliers (Jain et al., 1999a). A few other distance 
measures were modified based on Euclidean such as 
weighted Euclidean distance, and average 
Euclidean distance. 

stats::dist(x, method =
"euclidean") 
philentropy::distance(x, method 
= "euclidean") 

Manhattan 
distance* 

∑n
i=1 |ai − bi| Calculated as the sum of the absolute differences in 

each dimension. It is faster to calculate and slightly 
more robust to outliers compared with Euclidean 
distance because there are no squared terms (Rui 
and Wunsch, 2005). 

stats::dist(x, method =
"manhattan") 
philentropy::distance(x, method 
= "manhattan") 

Chebyshev 
distance* 

max
i

|ai − bi| It measures the maximum distance on all given 
dimensions. It is very fast to calculate, however, 
might not be accurate because the information on 
other dimensions is suppressed. 

philentropy::distance(x, method 
= "chebyshev") 

Mahalanobis 
distance 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a⇀ − b
→
)S− 1(a⇀ − b

→
)
T

√

S is the covariance matrix of all 
the dimensions in the data 

Mahalanobis distance takes the data variation and 
correlation into account. Therefore, data points 
further away from their expected association were 
considered more dissimilar. Although this distance 
measure corrects for the data correlation structure, 
it is more computationally intensive and can have 
numerical issues when variables are highly 
correlated (De Maesschalck et al., 2000). 

stats::mahalanobis(x, center =
FALSE, cov = cov(x)) 

Cosine 
distance^ cos(θ) =

∑n
i=1aibi

||a||2 ||b||2 

||a||2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1a2

i

√

Instead of geometrical distance, cosine measures the 
angle between vectors. It is useful when the actual 
value of data (such as frequency of words in 
documents) can be a biased representation of the 
underlying feature, which is common in text mining 
(Huang, 2008). 

lsa::cosine(x) 
philentropy::distance(x, method 
= "cosine") 

Dot product^ 
∑n

i=1aibi 

= ||a||2||b||2cos(θ)
The dot product is similar to cosine similarity except 
that it considers the magnitude of vectors. The dot 
product can be very helpful when both the angle and 
the magnitude are important. For example, if we are 
interested in clustering frequencies developing 
clinical symptoms, both the frequency and symptom 
overlaps became important in defining how similar 
two patients are. 

corrr::colpair_map(as.data.frame(t 
(x)), function(x, y) x%*% y,. 
diagonal=apply(x,1,function(x) x 
%*% x)) 

(continued on next page) 
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including K-means and related algorithms. The core concept of these 
models is to find mutually exclusive clusters with spherical shapes based 
on data points’ distance to cluster centers. K-means, discovered inde-
pendently by different authors in the 1950s and 1960s (Ball and Hall, 
1965; MacQueen, 1967), is perhaps the most popular clustering algo-
rithm. As shown in Fig. 3, the algorithm iteratively estimates the cen-
troids of clusters (based on Euclidean distances) until convergence. 
Although the algorithm has high computational speed and easy inter-
pretation, K-means suffers from a few major limitations, including being 
sensitive to outliers, unable to identify non-spherical shapes, and only 
obtaining the local optimum solution (sensitive to the random starting 
point)(Jain, 2010). A range of algorithms was subsequently developed 
to address issues of K-means, for example, K-medoids clustering which 
uses medoids (the data point with the lowest average distance to all 
other points in the cluster) to reduce the model’s sensitivity to outliers; 
K-means++ to initialize centroids (Arthur and Vassilvitskii, 2006); 
fuzzy C-means, which assign probabilistic membership to account for 
overlapping clusters (Bezdek, 1981); K-modes for categorical input data 
(Huang, 1997b) and; K-prototypes for mixed numeric and categorical 
data (Huang, 1997a). 

Hierarchical clustering takes a different approach to segmenting the 
data compared with center-based methods. The motivation for hierar-
chical clustering originated from the need for classification in biological 
taxonomy in the 1950s and 1960s (Johnson, 1967). It applies a hierar-
chical approach to establish a tree of clusters (as a dendrogram) either 
using a bottom-up (agglomerative) or a top-down (divisive, less popular 
due to high computational cost) based on distances between sub-clusters 
(Fig. 4). After completion of the algorithm, group membership of any 
given number of clusters can be determined by slicing the dendrogram. 
Hierarchical clustering can work with any similarity/dissimilarity ma-
trix and has direct hierarchical interoperation of clusters using a 
dendrogram. As hierarchical clustering can be used to understand 
groupings and hierarchical structures of variables (using correlation 
coefficients as similarity measures), the model can fit well with the 
framework of accessing the hierarchical taxonomy of disorders and 
symptoms, for example, the Hierarchical Taxonomy of Psychopathology 
(HiTOP) (Kotov et al., 2017). However, it has a few drawbacks including 

being computationally expensive with large datasets, lacking the ability 
to predict cluster membership with new data, and lower level of stability 
(sensitive to minor data perturbation) (Milligan, 1980). 

Density-based clustering is designed from a different school of 
thought, which aims at finding high-density areas in the feature space 
(vector space of all variables). The general process is to link (or grow) 
neighboring dense points to form clusters and leave points that are far 
away from dense regions as un-clustered. The most well know density- 
based model is DBSCAN proposed by Easter et al. (1996a), see illustra-
tion in Fig. 5. The benefits of DBSCAN include its robustness to outliers 
and noise in the data, and the ability to detect clusters with arbitrary 
shapes and sizes. However, it has two main limitations: it cannot work 
with clusters that have different densities and it is time-consuming to 
execute on large and high-dimensional data. These limitations moti-
vated the development of extended models such as HDBSCAN (Cam-
pello et al., 2013). Another novel idea is Density Peak Clustering 
proposed by Rodriguez and Laio (2014), in which a user can decide the 
number of clusters by exploring locally densest data points as possible 
cluster centers. A comprehensive survey of density-based clustering al-
gorithms is provided by Bhattacharjee and Mitra (2020). Density-based 
clustering can have significant benefits when researchers aimed at 
establishing clear boundaries between subclusters. For example, when 
aiming to identify subgroups of depression with distinct causal mecha-
nisms, the researchers should avoid separating subgroups representing a 
continuum (e.g., low, medium, and high severity). In a re-evaluation of 
clustering for major depressive disorder by Drysdale et al. (2017), Dinga 
et al. (2019) found that the four cluster solution can also be replicated 
from data sampled from a single Gaussian distribution suggesting no 
clear boundaries between sub-biotypes. 

Another major approach in clustering analysis is model-based clus-
tering, based on probability models. The most popular method in model- 
based algorithms is the finite mixture model. The finite mixture model 
was first applied in parameter estimation by Pearson (1894) and has 
been widely used in the scientific literature. In the 1960s and 1970s, 
finite mixture models began to be used for clustering problems (Day, 
1969; Edwards and Cavalli-Sforza, 1965). The method has gained 
increasing popularity following the development of the 

Table 1 (continued ) 

Distance or 
dissimilarity 

Equation (distance between a 
and b on n dimensions) 

Graphical representation Description R code 

Chord distance^ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

( ai

||a||2
−

bi

||b||2

)2
√ Chord distance is the Euclidean distance with raw 

data normalised between 0 and 1 (relative to all 
variables collected for the data point, also known as 
chord transformation). The normalisation removes 
the impact of the data scale differences, and deal 
with a numerical problem known as “Double-zero 
problem” in ecology: when a value of 0 does not 
represent similarity (e.g., absence of a species), 
Euclidean distance cannot properly represent 
similarity (Legendre and Legendre, 2012). 

stats::dist(vegan::decostand(x, 
method = "normalize"), method =
"euclidean") 

Canberra 
distance 

∑n
i=1

|ai − bi |

|ai| + |bi|

Manhattan distance is weighted by the inverse of the 
sum of absolute value, so the data is more sensitive 
to differences that are closer to 0. 

philentropy::distance(x, method 
= "canberra")  

* Euclidean, Manhattan and Chebyshev distance are special types of Minkowski distance, which has a general expression: [
∑n

i=1|ai − bi|
p
]
1/p 

^
||a||2, also known as l2-norm, is calculated as the square root of the sum of the squared, which represents the vector length. When using it as a normalising constant, 

it removes the impact of the vector length, e.g., two 2-dimensional vectors [0,1] and [10,10] became identical after dividing by their l2-norm: ||[0, 1]||2 

= [0, 1 /
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
02 + 12

√
] = [0, 1] and ||[0, 10]||2 = [0,10 /

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
02 + 102

√
] = [0,1]
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Table 2 
Common Distance or Dissimilarity Measures for Binary, Nominal or Mixed Variables.  

Distance or 
dissimilarity 

Equation (distance 
between a and b on n 
dimensions) 

Graphical representation Description R code 

Jaccard 
distance 

1 −
a ∩ b
a ∪ b 

For binary data: 

1 −
n11

n11 + n01 + n10 

Calculated as the proportion of mismatches between 
two data points (range from 0 to 1), which indicate 
how diverse the two data points are. It is mostly used 
for binary data or unstructured normal data (text 
data). It gives more weight to common ones than 
common zeroes (Leisch, 2006), e.g., the distance 
between [1,0] and [1,1] are the same as between [1,0, 
0,0,0] and [1,1,0,0,0] as the three common 
0 dimensions are not included in the calculation. 

stats::dist(x, method =
"binary")  
prabclus::jaccard(t(x)) 
philentropy::distance(x, 
method = "jaccard") 
proxy::dist(x, by_rows =
TRUE, method = "Jaccard") 

Dice distance 1 −
2*a ∩ b
a + b 

For binary data: 

1 −
2n11

2n11 + n01 + n10 

Modified version of Jaccard with more weights given 
to cases with agreements (common ones). 

philentropy::distance(x, 
method = "dice") 

Russell/Rao 
distance 

1 −
a ∩ b

n 
For binary data: 

1 −
n11

n 
total dimensions n = n11 +

n01 + n10 + n00 

The proportion of disagreement between data points. 
Different from Jaccard and Dice distance, the 
common zeros are included in the calculation (n00 is 
included in the denominator). The inclusion of 
common zeros can be problematic when the matrix is 
sparse, the distance will become too large to identify 
differences with rare cases. 

Mercator::binaryDistance(t 
(x), metric="russellRao") 

Simple 
matching 
distance 

1 −
a ∩ b + ā ∩ b̄

n 
For binary data: 

1 −
n00 + n11

n 

Simply calculated as the proportion of mismatched 
records (both common ones and common zeros) 
among all records. Similar to the Russell/Rao distance 
that cannot detect differences in sparse data. 

nomclust::sm(x) 

Hamming 
distance 

∑n
i=1ai ∕= bi Also known as the Manhattan distance for binary data. 

It is calculated as the number of values that are 
different between two data points. It is easy to 
compute, but it does not consider whether the data 
consistency is related to common zeros or common 
ones. Therefore, it has similar issues as the Russell/ 
Rao distance when dealing with a high dimensional 
sparse matrix (Norouzi et al., 2012). Hamming 
distance can also be used for nominal data, which 
counts for total mismatches regardless of the meaning 
or prevalence of each choice. 

Mercator::binaryDistance(t 
(x), metric="hamming") 

Gower distance 1 −
1

∑n
i=1w(ai, bi)

×

∑n
i=1

1
w(ai, bi)

s(ai,bi)

s(ai,bi) is the similarity 
function and w(ai, bi) is a 
weight * 

Measures how different two data points are when 
mixed data (binary, categorical or continuous data) 
are presented. It is one of the most widely applied 
distance measures with mixed types of data. Weight 
can be applied (e.g., the weight of 0 for double zeros 
in binary data) to minimize the impact of the high 
dimensional sparse matrix (Gower, 1971). It can be 
sensitive to outliers. 

cluster::daisy(x, 
metric="gower") 
StatMath::gower.dist(x, 
metric="gower")  

* When i dimension is binary or categorical data when ai = bi s(ai, bi) = 1, otherwise s(ai, bi) = 0. When i dimension is continuous, range normalised range- 

normalized Manhattan distance is used, (ai,bi) = 1 −
|ai − bi|

Ri
, where Ri is the range of the i dimension.  
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Expectation-Maximization (EM) algorithm, an efficient algorithm used 
to find maximum likelihood parameters, first proposed by Dempster 
et al. (1977). The idea behind the finite mixture model for clustering is 
that the data originated from a mixture of subpopulations with each 
having different distributions. The process for finite mixture clustering 

involves randomly initialising parameters of different subgroups, eval-
uating how the observed data support the current distributions specified 
by the given parameter, and updating the parameter iteratively until the 
model converges (Fig. 6). When the observed variables follow normal 
distributions, the finite mixture model becomes a Gaussian mixture 

Fig. 3. Illustration of K-means Clustering. 
Note: The estimation routine of K-means involves: (i) randomly initialise centroids of a pre-specified number of clusters and partition data points into groups ac-
cording to their distance to the centroids; (ii) re-estimate the centroids (calculated as the mean of all the data points of the cluster) using points for each cluster; (iii) 
re-partition data into clusters; and (iv) iteratively repeat (ii) and (iii) until no more changes were observed in the location of centroids (convergence). 

Fig. 4. Hierarchical Clustering. 
Note: (A) The agglomerative method is a bottom-up approach, which starts with treating individual data points as separate clusters and then iteratively merges 
“similar” clusters into larger clusters until all the data are in one cluster. The divisive hierarchical clustering, on the contrary, is a top-down approach, which starts 
with one cluster and sub-divides the cluster into smaller clusters. (B) Distance between subclusters can be measured using centroid linkage, single linkage, complete 
linkage, average linkage and Ward’s method (C) Dendrogram generated after clustering allows users to slice the hierarchical structure into any number of clusters. 
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model, and this type of clustering method is known as the latent profile 
analysis (LPA). When observed variables are discrete, the finite mixture 
model clustering is also known as the latent class analysis (LCA, Oberski 
2016). In practice, the finite mixture model can also work with variables 
with mixed distributions (Wallace and Dowe, 2000). Model-based 
clustering algorithms are popular in mental health research due to 
their similarity in concept as well as model fitting routine with other 
latent variable modelling methods (e.g., structure equation modelling 
and factor analysis). Model-based algorithms can also directly estimate 
parameters (e.g., item response probabilities for LCA) that can facilitate 
interoperating models (e.g., how individual variables are associated 
with latent subgroups). 

The R implementation methods, advantages and disadvantages for 
most of these common clustering algorithms are provided in Table 3. 

2.3. Extensions of common clustering algorithms 

Developing new clustering methods has been one of the key machine 
learning areas with extensive research work in the past decades. A range 
of advanced models have been developed to address different types of 
issues, for example, non-linear cluster boundaries, high dimension and 
sparse data, complex data structure, improvement of stability, special 
data types, and scalability for big data. Here we briefly introduce some 
of the state-of-art applications to facilitate better applications of these 
models. 

2.3.1. Kernel method 
One major limitation of many clustering methods is their difficulty in 

dealing with non-linear boundaries between clusters. An efficient 
method to deal with this issue is to use the kernel method first intro-
duced by Aizerman (1964). The fundamental idea of the kernel method 

Fig. 5. Illustration of DBSCAN 
Input: dissimilarity matrix D; search radius eps and minimal number of data points to form a cluster minPoints 
Note: The concept of DBSCAN clustering is similar to disease transmission models, which involves the following steps: (i) randomly identify an initial point; (ii) use a 
radius (eps, user-defined) to find its neighbours; (iii) if there are enough neighbours (over minPoints, user-defined), the point will be considered as a core point, and 
its neighbours will be included in the current cluster, if not this point will stop “infecting” other points; (iv) iteratively repeat (ii) and (iii) for the newly classified 
points to establish the “infection” chain of the current cluster; (v) then select a different point that hasn’t been “infected” as the initial point for a new cluster. The 
algorithm finishes when all the points have been evaluated. The points that are located in the lower density areas (without enough neighbours to establish a separate 
cluster) will be left un-clustered. The minPoints is normally selected based on domain knowledge or twice the dimensions of the data (number of variables), and eps 
can be specified by evaluating distance to the (2 × data dimensions +1) nearest neighbor (Sander et al., 1998; Schubert et al., 2017). 

Fig. 6. Illustration of Finite Mixture Model. 
Note: Finite mixture models require specifications of the type of distribution for each variable and the number of clusters. The programme will: (i) first randomly 
assign parameters defining each cluster, and (ii) update modelling parameters using the EM algorithm until convergence. In the E-step each observation is assigned a 
weight for each cluster, and in the M-step the modelling parameters will be updated according to the weights estimated in the E-step. 
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Table 3 
Types of Clustering Algorithms and Implementations in R.  

Algorithms Notes R functions References 

Center-based clustering 

K-means K-means requires an input of the Euclidean distance matrix. However, some studies suggest that other 
distance measures, such as Manhattan distance works better in a high dimensional space (Aggarwal et al., 
2001). 
Advantages: fast to estimate and easy to interpret 
Disadvantages: assumes clusters have spherical shapes; sensitive to noise and outliers; global optimum is not 
ensured therefore sensitive to starting values 

stats::kmeans Hartigan and 
Wong (1979),  
MacQueen (1967), 
Forgy (1965),  
Lloyd (1982) 

cclust::cclust  

K-means++ An algorithm that optimises the initialisation of k-means 
Advantages: not sensitive to starting values 
Disadvantages: same as k-means; requires slightly longer estimation time compared with K-means 

pracma::kmeanspp Arthur and 
Vassilvitskii 
(2006)  

PAM (Partitioning 
Around Medoids) 

A k-medoids algorithm uses a greedy search method, which, although it may not find the optimal solution, is 
faster compared with using an exhaustive search. 
Advantages: allows any distance matrix; more robust to outliers compared with K-means 
Disadvantages: slower to estimate with large dataset; does not work well with non-spherical clusters 

cluster::pam Kaufman and 
Rousseeuw (1990) 

fastkmedoids::fastpam 
A faster implementation 
of PAM using C++. 

Schubert and 
Rousseeuw (2019)  

CLARA (Clustering 
Large 
Applications) 

Extension of PAM for larger datasets using a randomly sampled smaller dataset. 
Advantages: faster than PAM 
Disadvantages: same as PAM; if the sample is biased, the best medoids cannot be guaranteed 

cluster::clara Kaufman and 
Rousseeuw (1990) 

fastkmedoids::fastclara Schubert and 
Rousseeuw (2019)  

CLARANS 
(Clustering Large 
Applications 
based on 
Randomized 
Search) 

Extension for CLARA. CLARANS does not draw a fixed sample of the data set at the beginning of the search, 
instead, it draws a new sample of neighbours in each step of a search. 
Advantages: faster than PAM; full data better represented compared with CLARA 
Disadvantages: same as PAM; sensitive to sequence of input data 

fastkmedoids:: 
fastclarans 
A faster implementation 
of CLARANS using 
C++. 

Ng and Han 
(2002)  

K-medians Use Manhattan distance matrix. 
Advantages: more robust to outliers compared with k-means 
Disadvantages: can only identify multidimensional spherical clusters; global optimum is not ensured 
therefore sensitive to starting values 

Gmedian::KGmedian Cardot et al. 
(2012) 

cclust::cclust MacQueen (1967)  

K-modes K-means style method for categorical variable. The model uses simple matching distance. 
Advantages: efficient for categorical variable; fast to estimate 
Disadvantages: cannot work with input data with a mixture of categorical and continuous variables; as the 
simple matching distance is used, the method does not take into account the “double-zero problem”; global 
optimum is not ensured therefore sensitive to starting values 

klaR::kmodes Huang (1997b) .  

K-prototypes K-prototypes is an integration of K-means and K-modes clustering. It employs different weights for 
continuous and categorical variables to avoid favouring any. 
Advantages: similar to K-means and K-modes 
Disadvantages: similar to K-means and K-modes; results can be sensitive to the weighting parameter 

clustMixType::kproto Huang (1997a)  

Fuzzy C-means Soft (fuzzy) extension of k-means clustering. 
Advantages: can identify overlapping clusters; robust to outliers 
Disadvantages: assumes clusters have spherical shapes; requires longer estimation time compared with K- 
means 

e1071::cmeans Bezdek (1981)  

Kernel K-means Kernel extension of K-means clustering. 
Advantages: can identify non-spherical cluster. 
Disadvantages: need specification of kernel function; slower compared with k-means, particularly with 
increasing observations and dimensionality; standard kernel K-means has a bias towards small high-density 
clusters (Marin et al., 2019) 

klic::kkmeans Gönen and 
Margolin (2014) 

kernlab: kkmeans 
weighted kernel K- 
means 

Inderjit S Dhillon 
et al. (2004)  

Hierarchical clustering  

Agglomerative 
Hierarchical 
Clustering 

Agglomerative Hierarchical Clustering is a Bottom-up clustering method, which is good at identifying small 
clusters.Hierarchical clustering using single linkage and complete linkage can cluster nonelliptical clusters, 
but are very sensitive to outliers and variation in density. Other methods are more robust to outliers, 
particularly the Ward’s methods (Murtagh & Contreras, 2012), however do not work well with 
non-spherical clusters. 
Advantages: can work with any distance matrix cluster; all number of clusters estimated at the same time; 
dendrogram provides direct interpretation 
Disadvantages: mistakes made early in tree building stages cannot be fixed further down; slow to estimate 
with large dataset. 

stats::hclust Kaufman and 
Rousseeuw (1990) cluster::agnes 

Fastcluster:: hclust 
Note: C++ library for 
fast implementation of 
hierarchical 
agglomerative 
clustering. 

Müllner (2013)  

Divisive 
hierarchical 
clustering 
(DIANA) 

Top-down clustering, good at identifying large clusters. 
Advantages: same as agglomerative hierarchical clustering 
Disadvantages: same as agglomerative hierarchical clustering with only one criterion for dividing clusters 
(maximum average dissimilarity that is similar to average linkage in agglomerative hierarchical clustering); 
slower to estimate compared with agglomerative hierarchical clustering 

cluster::diana Kaufman and 
Rousseeuw (1990) 

(continued on next page) 

C.X. Gao et al.                                                                                                                                                                                                                                  



Psychiatry Research 327 (2023) 115265

10

Table 3 (continued ) 

Algorithms Notes R functions References  

Hierarchical k- 
means clustering 

Hybrid approach using hierarchical clustering results as the starting point for k-means clustering. 
Advantages: not sensitive to random seed 
Disadvantages: slower to run and lack of scalability compared with k-means 

factoextra:: hkmeans Milligan (1980)  

CURE (Clustering 
Using 
REpresentatives) 

A hierarchical agglomerative clustering operates on the representative points instead of individual data 
points. 
Advantages: more robust to outliers; can identify non-spherical clusters. 
Disadvantages: more time consuming to estimate on large datasets; sampling can be used to improve speed; 
comparable with single linkage method, therefore does not consider aggregated interconnectivity between 
clusters (Karypis et al., 1999) 

Implementation only 
available in Python 

Guha et al. (1998)  

BIRCH (Balanced 
Iterative 
Reducing and 
clustering Using 
Hierarchies) 

Multi-level clustering approach, which involves first building a clustering feature tree to obtain micro-level 
subclusters and then applying hierarchical clustering on established subclusters to obtain macro-level 
clustering results. 
Advantages: fast to implement; robust to outliers; can be used with other clustering methods 
Disadvantages: does not work well with non-spherical clusters; cannot work with non-numerical variables; 
sensitive to the order of the data record 

Implementation only 
available in Python 

Zhang et al. 
(1996),  

Chameleon Hierarchical clustering using dynamic modelling, which first establishes subclusters using k-nearest- 
neighbour graph, and then applies hierarchical agglomerative clustering to merge subclusters. 
Advantages: good at identifying arbitrarily shaped clusters; more robust to outliers and density variations. 
Disadvantages: more time consuming to estimate on large dataset; does not work well for high dimensional 
data 

Implementation only 
available in Python 

Karypis et al. 
(1999)  

ROCK (Robust 
Clustering Using 
Links) 

Hierarchical clustering designed for clustering categorical data (using Jaccard distance). It implements 
sampling and clustering using similarity graph (Linkage of points with common neighbours exceeding 
chosen distance threshold). 
Advantages: theoretically more appropriate for categorical data 
Disadvantages: random sample can be a biased presentation of the full dataset; more time consuming; 
threshold parameter is difficult to define 

cba::rockCluster Guha et al. (2000)  

Density-based clustering 
DBSCAN (Density- 

Based Spatial 
Clustering of 
Applications with 
Noise) 

Clustering based on density distribution. 
Advantages: robust to outliers; can cluster arbitrarily shaped clusters; best number of clusters automatically 
estimated 
Disadvantages: sensitive to density variations; does not work well in high dimensional space; performance 
and quality of clusters highly dependant on parameter settings (e.g., running time increases with increasing 
neighbour radius, eps) 

fpc::dbscan Ester et al. 
(1996b). 

dbscan::dbscan 
Note: This 
implementation is 
faster and can work 
with larger data sets 
than dbscan in fpc.   

OPTICS (Ordering 
Points To Identify 
the Clustering 
Structure) 

The algorithm orders data points so that points with closer distance become neighbours. It also measures 
reachability distance between points which has a density interpretation: if a point is located in a low density 
area the reachability distance will be the distance to its nearest neighbours; if a point is located in a high 
density area the reachability distance will be the distance between two points. The order and reachability 
distances will allow the algorithm separate clusters with different levels of density in a hierarchical 
structure. 
Advantages: robust to outliers; can cluster arbitrarily shaped clusters; not sensitive to density variations; less 
sensitive to parameter settings; can extract clusters hierarchically 
Disadvantages: cannot select the best number of clusters automatically; does not work well in high 
dimensional space 

dbscan::optics Ankerst et al. 
(1999)  

CLIQUE (Clustering 
in QUEst) 

CLIQUE combines the design of density-based, grid-based and subspace clustering. It tries to: discretise data 
in individual dimensions so that high density regions can be identified; identify subspaces that may contain 
information on how clusters can be separated; and cluster using information on whether the dense units 
were connected in identified subspaces. 
Advantages: works well with high dimensional data; can identify arbitrarily shaped clusters; not sensitive to 
sequence of input data 
Disadvantages: quality of cluster highly depend on input parameters 

Subspace::CLIQUE. Agrawal et al. 
(1998),  

HDBSCAN 
(Hierarchical 
DBSCAN) 

Designed with a concept similar to OPTICS, quantifies distance between points with respect to their local 
density (using mutual reachability distance, which is similar to reachability distance in CLIQUE). Based on 
the distance matrix, the algorithm then estimates the minimum spanning tree (a hierarchal tree which 
connects all points in the minimal way), which could be simplified into a cluster dendrogram. The ingenious 
design of the algorithm makes it equivalent to running many DBSCANs with different radius parameter 
settings. 
Advantages: robust to outliers and density variations; can identify arbitrarily shaped clusters; only one 
parameter is needed in the model 
Disadvantages: may classify points as outliers unnecessarily 

dbscan::hdbscan Campello et al. 
(2013)  

DPC (Density Peak 
Clustering) 

DPC assumes that cluster centers should have higher densities and be relatively far apart. The algorithm 
estimates two properties: (1) local density of points (number of points within dc distance) (2) minimal 
distance from the point to any other points with a higher density. Therefore, the cluster centers can be 
identified as those with higher local density but larger distance to other points with higher density 
(potential cluster centers). The remaining points are then assigned to the same cluster as its nearest 

densityClust:: 
findClusters Rodriguez and 

Laio (2014) 

(continued on next page) 
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is rather simple (Fig. 7). As non-linear data is difficult to be linearly 
separated in the original feature space, it aims to project the data into a 
higher dimensional feature space via a nonlinear mapping (e.g., from x 
to x, x2). The ingenious design of the kernel method is that rather than 
explicitly working with the mapping functions (substantially increasing 
modelling parameters), it works with the dot product of the mapping 
function to save computational cost. The kernel method has been widely 
used in supervised learning methods such as support vector machines 
(SVM), and it can also be used in clustering algorithms to deal with 

nonlinear boundaries (Filippone et al., 2008). The most well-known 
kernel clustering method is the kernel K-means (Dhillon et al., 2004). 
Isolation kernel can also be used to define similarity (follows the same 
principles in human-judged similarity: e.g., Caucasians are less similar 
when compared in Europe than in Asia), which can improve DBSCAN’s 
sensitivity to density variation issue (Qin et al., 2019). 

2.3.2. Neural network and deep-clustering 
Over the past few years, neural network and deep-learning 

Table 3 (continued ) 

Algorithms Notes R functions References 

neighbour of higher density. 
Advantages: cluster is assigned in a single step without iterative optimization, so very fast to converge; can 
identify arbitrarily shaped clusters; robust to noise 
Disadvantages: the cut-off parameter dc can be difficult to set; cluster centers need to be selected manually; 
sensitive to density variations; can have errors when data are evenly distributed within clusters (Li & 
Zhang, 2020)  

Model-based clustering 
Finite mixture 

model 
Can be used to fit a range of models and involves latent structures with a mixture of distributions, such as 
latent class analysis, latent profile analysis. 
Advantages: relatively robust to outliers and density variations; can identify elliptical and overlapping 
clusters; can cluster data with a mixture of distributions 
Disadvantages: cannot identify arbitrarily shaped clusters; assumption of local dependence can be easily 
violated; model may converge to a local maximum solution instead of a global maximum solution 

depmixS4::mix 
Note: depmixS4 can 
also fit hidden Markov 
models. 

McCutcheon 
(1987), Visser and 
Speekenbrink 
(2010) 

Mixtools::regmixEM Benaglia et al. 
(2009) 

flexmix::stepFlexmix 
Note: flexmix is highly 
flexible with self- 
defined M-step. 
Stochastic EM can be 
used to improve 
convergence to local 
optimum issue (Grün 
and Leisch, 2008). 

Friedrich (2004)  

Latent profile 
analysis (LPA)/ 
Gaussian mixture 
model clustering 

Gaussian mixture model is a special form of finite mixture model, when it is used for clustering it is also 
known as the latent profile analysis. 
Advantages: similar with finite mixture model; prior assumptions can be made about the shape (spherical or 
ellipsoidal), volume, and orientation of clusters (Scrucca et al., 2016) 
Disadvantages: similar to finite mixture model; can only cluster continuous variable 

mclust::Mclust 
mclust::MclustBIC 

Scrucca et al., 
(2016)  

Latent class 
analysis (LCA) 

LCA is a special type of finite mixture model for clustering with discrete variables. 
Advantages: similar to finite mixture model 
Disadvantages: similar to finite mixture model; may require a large number of parameters to be estimated 
(many variables with multiple categories); cannot model the ordinal data structure directly except when 
restricted LCA is used (Croon, 1990), which, however, can impose unrealistic constraints and can be 
difficult to fit; regularized models were suggested to provide promising results (Robitzsch, 2020). 

poLCA::poLCA Bandeen-roche 
et al. (1997)  

Fig. 7. Illustration of Concept of Kernel Method. 
Note: The kernel method transforms the data into higher-dimensional data via a nonlinear mapping function. The algorithm directly works with a kernel function 
k(x, x′

) = Φ(x)TΦ(x′

) (dot product of the mapping function) without having to work with the mapping function Φ(x). Popular kernel functions include linear kernels, 
polynomial kernels, and gaussian kernels. 
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algorithms have been making major advances in solving prediction and 
other machine learning problems in many applied areas such as image 
recognition, natural language processing, genomics, neural science and 
medicine (LeCun et al., 2015). An important application of deep 
learning is to learn and extract compressed and rich data features (also 
referred to as deep representations) from high dimensional data 
(Goodfellow et al., 2016). Deep representations can capture non-linear, 
additive and multiplicative effects in the data in lower dimensions. This 
makes deep learning methods a natural extension to be used in clus-
tering algorithms. 

The simplest method to apply a deep clustering algorithm is to 
extract deep representations of the data using deep learning methods 
first (which can be thought of as a dimensionality reduction technique) 
and then apply the common clustering algorithm based on the extracted 
features instead of the raw data. The simplest and most widely used 
approach is the autoencoder (Vincent et al., 2008), a type of neural 
network that compresses high dimensional data with complex structure 
(e.g., with non-linearity and interactions between variables) into low 
dimensional space via data reconstruction (Fig. 8). A range of other 
neural network or deep learning methods, such as Restricted Boltzmann 
Machines, variational autoencoder, convolutional neural network and 
recurrent neural network, can all be used in a similar encoder and 
decoder process to learn deep representations, see details discussed by 
Dara and Tumma (2018) and Min et al. (2018). Another alternative 
method to extract data representation for clustering is using 
Self-Organizing Map (SOM), a neural network that extracts data features 
on a two-dimensional space using hidden neurons (Lampinen and Oja, 
1992). More recent developments in this area allow joint processes of 
deep learning and clustering, via optimizing a combined/joint loss 
function from both of them in an iterative process between them to 
improve model performance or a self-supervised learning framework 
(Zhang et al., 2019). A detailed introduction to these methods can be 
found elsewhere (Karim et al., 2020; Nutakki et al., 2019). 

2.3.3. Semi-supervised clustering method 
Semi-supervised clustering is a term that broadly refers to clustering 

based on partially available labelling information. It is widely used when 
clustering results are known for only a fraction of the data or when there 
is underlying known constraints in the data structure, see a summary of 
the recent development in these methods by Qin et al. (2019). Another 
type of semi-supervised clustering method, with a great level of rele-
vancy in mental health, is a group of clustering algorithms that deal with 
a known feature being a “noisy surrogate” or closely related to clusters 
(Bair, 2013; Chand et al., 2020). The benefits of these models are their 
ability to include additional data (e.g., healthy controls), and clustering 
based on associations between risk factors and the outcome in clinical 
research. 

There are three types of conceptual models developed to take special 
consideration of the outcome variable (Fig. 9). The first type is to apply 
additional control of the algorithm using the known outcome. For 
example, applying a pre-screening procedure to select variables (e.g., a 
simple statistical test to select variables that showed association with 
clinical outcomes) (Bair and Tibshirani, 2004; Koestler et al., 2010). 
Instead of variable selection, weights for variables according to their 
association with the outcome can also be used, e.g., Supervised Sparse 
Clustering (SSC) (Gaynor and Bair, 2017). 

Another type of these clustering algorithms relies on the by-product 
of prediction models of the outcome variable as a measure of similarity 
between data points, e.g., Functional Random Forest (FRF) (Feczko 
et al., 2018) and deep learning methods (Eberle et al., 2022; Girish et al., 
2019; Mathisen et al., 2020). The third type involves directly separating 
subgroups when establishing the prediction model, e.g., Heterogeneity 
Through Discriminative Analysis (HYDRA) (Varol et al., 2017). These 
models can have great potential in understanding heterogeneity that 
explains different causal mechanisms of mental health disorders and 
identify associated risk factors. 

2.3.4. Time-series clustering algorithms 
Time-series clustering is a special type of clustering algorithm that 

deals with data with a temporal structure such as aggregated health 
service use counts, neuroimaging data (e.g., fMRI, magnetoencepha-
lography and electroencephalography), and longitudinal follow-up data. 
Although it can be treated the same as cross-sectional data, ignoring the 
temporal pattern can introduce substantial issues in clustering. One 
common method to address this issue is to apply similarity measure-
ments to capture the time dimension. The similarity measures can be 
based on measuring the shapes of time series (Fig. 10). For example, 
Dynamic Time Warping (DTW) (Berndt and Clifford, 1994) and Longest 
Common SubSequence (LCSS) (Vlachos et al., 2002) were designed to 
find optimal alignment between series that do not sync up perfectly in 
the time domain. The similarity measures can also be compression based 
or model-based, as summarized by Aghabozorgi et al. (2015). 

Many of these methods work well with shorter series, however, when 
the time series is long (high-dimensional), they can become intractable 
and less efficient (Wang et al., 2006). In this case, extracting important 
features (e.g., trends, cycles, and levels of noise) of the time series is 
needed before clustering. Popular methods include the Discrete Wavelet 
Transform (DWT), the Discrete Fourier Transform (DFT), and Piecewise 
Linear Approximation (PLA) (Aghabozorgi et al., 2015). Common time 
series models such as Hidden Markov Model (HMM), Auto-Regressive 
Moving Average (ARMA) and time series decomposition can all be 
used for feature extraction for clustering (Aghabozorgi et al., 2015; 
Wang et al., 2006). 

An alternative method to cluster time series is to directly model the 
data generation process (model-based). Many of these models (Fig. 11), 
such as Growth Mixture Modelling (GMM) and Latent Class Growth 
Analysis (LCGA), have been widely used in mental health research 
(Jung and Wickrama, 2008). However, these models do not work with 
trajectories with arbitrary shapes, as they all assume linear or quadratic 
trends in the time domain. These models can be extended via the 
broader HMM framework that models the latent groups that change with 
time, for example, Latent Transition Analysis (LTA) (Collins and Lanza, 
2009) and Random Intercept Latent Transition Analysis (RI-LTA) 
(Muthén and Asparouhov, 2020). In these models, multivariate time 
series (multiple variables changing with time) can also be evaluated. 
Traditionally, these models, particularly GMM and LCGA, were 
commonly used to understand non-linear trajectories in the mental 
disorder progression (Cole et al., 2012; Reef et al., 2011). However, 
more complex data collected from ecological momentary assessment 
brought new challenges (e.g., high dimensionality, sparsity, periodicity 
and noise) for these traditional methods and promoted the increasing 
use of more flexible models (Booij et al., 2021). 

2.3.5. Graph and network-based algorithms 
Graphs (also known as networks) are powerful mathematical ab-

stractions that can describe complex systems of relations and in-
teractions in fields ranging from biology and high-energy physics to 
social science and economics. Although real-world network data such as 
social networks (Fiori et al., 2006) and brain networks (Sporns, 2018) 
are obvious modalities for modelling using graphs, similarity measures 
can also be constructed as graphs, for example, association networks 
(van Borkulo et al., 2015) and Nearest neighbor Graph (Eppstein et al., 
1997). On the graphs, each node represents a data entity (e.g., an in-
dividual or a variable), and an edge represents a connection, which 
could be directional, un-directional, weighted or unweighted. Like the 
other clustering methods, the key of graph clustering is to define the 
similarity among the nodes, which can be based on the density or 
pattern of the graph (Fig. 12). Having defined the similarity measure, 
similar clustering algorithms described above can be applied. Spectral 
Clustering (von Luxburg, 2007) and SCAN (Xu et al., 2007) are common 
methods used for clustering graph data. In mental health research, graph 
theory and related clustering models are widely used in neuroscience 
(Farahani et al., 2019), however, graph-based clustering models can also 
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be used in evaluating symptom networks (Brusco et al., 2022) or 
modelling other complex data such as text (Preoţiuc-Pietro et al., 2015). 

2.3.6. Bayesian clustering models 
Unlike non-Bayesian models, Bayesian models apply Bayes’ theorem, 

which uses observed data to update available knowledge (prior distri-
bution, e.g., prior belief of treatment response) to obtain a more accurate 
understanding of the parameter (posterior distribution) (van de Schoot 
et al., 2021). In clustering algorithms, Bayesian methods provide the 
natural extension from hard clustering to soft clustering, see the soft 
K-means model in Stan (Stan Development Team, 2019). Another 
important application of the Bayesian method in clustering is in Finite 
Mixture Models, such as Dirichlet multinomial mixture model (Yin and 

Wang, 2014) and Gaussian mixture model (He et al., 2011; Manduchi 
et al., 2021), which provide more flexibility in model design and 
robustness in inference. Bayesian mixture models can also be infinite. 
Non-parametric Bayesian infinite mixture models, such as Dirichlet 
process mixture model (Li et al., 2019) and Indian Buffet Process 
mixture for overlapping clusters (Griffiths and Ghahramani, 2011), 
allow the data to decide the number of latent clusters (without the 
assumption of the number of clusters). 

2.3.7. Clustering ensembles 
Clustering ensembles is a method that compares and aggregates re-

sults from different models. As most of the existing models have different 
shortcomings and many are sensitive to the choice of parameters, 

Fig. 8. Illustration of an Autoencoder. 
Note: The autoencoder is a type of 
neural network that is used to learn a 
representation of the complex input 
data with an encoding process followed 
by a decoding process to reconstruct the 
data as close to the original input as 
possible. The encoder is a neural 
network that reduces input dimensions, 
whereas the decoder attempts to 
reconstruct the input data from the 
compressed dimensions. The autoen-
coder is trained (optimised) by mini-
mizing the reconstruction error from the 
output back to the input. When there 
are multiple hidden layers in the 
encoding and decoding process, the 
autoencoder is known as the deep 
autoencoder.   

Fig. 9. Semi-supervised Clustering Methods with Known Outcome. 
Note: (A) Variables can initially be selected according to their association with the outcome variable and then be used in clustering algorithms. As this model can 
become problematic when variables are only weakly associated with the outcome, SCC was developed to give different weights to variables according to their 
associations with the outcome. (B) Prediction models of the outcome can produce by-products that can be interpreted as similarity measures between data points, e. 
g., proximity matrix (frequency of data points being classified into the same terminal node) estimated from random forest or similarity measures estimated from deep 
learning. (C) Specific models can directly identify subgroups within the same outcome group. HYDRA applied a Convex Polytope Classification, which can be thought 
of as combining multiple prediction models, with each trying to separate (linearly) between those with and without the outcome. 
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random seeds and minor data changes, pooling or aggregating multiple 
models can provide more robust and generalizable results. Clustering 
ensembles involves first running separate models, e.g., models using 
different methods (Chiu and Talhouk, 2018) or subsets of observations 
and/or variables (Dwyer et al., 2020; John et al., 2020), and then 
pooling the results using a consensus function, which can be defined in 
many ways (Vega-Pons and Ruiz-Shulcloper, 2011). Clustering 
ensemble methods were found able to improve the stability and 
robustness of results (Fred and Jain, 2002, 2005; Monti et al., 2003; 
Strehl and Ghosh, 2002; Topchy et al., 2004). 

A commonly used consensus function in health science, particularly 
in genomic studies, is the co-association matrix (proportion of a pair of 
observations being clustered into the same cluster) (Monti et al., 2003). 
The pooled results can then be treated as similarity measures and be 
decomposed using other clustering methods such as hierarchical clus-
tering or spectral clustering to obtain the final cluster membership. This 
method is commonly known as consensus clustering (although 
consensus clustering is sometimes used interchangeably with clustering 
ensembles). Comprehensive reviews on clustering ensembles can be 
found elsewhere (Boongoen and Iam-On, 2018; Vega-Pons and Ruiz--
Shulcloper, 2011). 

Clustering ensembles is one of the most promising methods towards 

high robustness， which offers flexible ways to explore the impact of 
randomness, clustering methods, parameters, and variables as well as 
aggregate results to reduce uncertainty. Ensemble methods had signifi-
cant theoretical development over the past decade, however, these 
methods haven’t been applied and evaluated extensively in practice. 
One notable suggestion by (Șenbabaoğlu et al., 2014) recommended 
that consensus clustering needs to be implemented with care in selecting 
the best number of clusters as partitioning may appear to be stable when 
subclusters do not exist (Șenbabaoğlu et al., 2014). 

2.3.8. Multiview clustering 
Another related extension, perhaps less familiar to mental health 

researchers, is clustering multi-view or multimodal data (data collected 
from multiple sources such as images, videos, audios, and biomarkers). 
Traditional clustering methods require complex data structures to be 
aggregated with single distance measures or modelled with single latent 
factors. Although advanced dimension reduction technics can be used, 
they can often miss important information related to different types of 
data sources and are biased towards data sources with more features (or 
higher variation in features). Multi-view clustering algorithms have, 
therefore, been developed to address these issues. This method takes 
advantage of naturally formed views of data representations (e.g., data 

Fig. 10. Time Series Clustering. 
Note: (A) Time series clustering based on similarity measures. As there are often lags present in the data, popular time series similarity measures try to first identify 
the best matching pairs of data points that may not sync up in the time domain. (B) Time series clustering based on features. When there are multiple series or long 
series, it is difficult to compare similar shapes. Therefore, features associated with individual series can be extracted to compute similarities. 

Fig. 11. Examples of Application of Mixed Model for Time-series Data. 
Note: (A) Consider longitudinal observations of a1, a2, a3, a4, a5, and a6, GMM models latent subgroups c presenting with different intercepts and linear/nonlinear 
slopes. (B) LTA models the latent Markov process where observations at time points 1 (a1, b1), 2 (a2, b2), and 3 (a3, b3), are determined by their specific latent group 
and the latent group can transit between time points 
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from different sources), and the complementary and consensus clus-
tering information from individual views can then be summarized to 
create a final cluster solution (Chao et al., 2021; Fu et al., 2020; Yang 
and Wang, 2018) or multi-level solution (Dwyer et al., 2020). 

2.3.9. Other extensions 
Hundreds of new clustering algorithms are published yearly, and 

many of them are aimed at solving complex and real-world problems. 
One area of particular interest to mental health researchers is big data 
application. Traditionally, clustering models were applied to hundreds 
to thousands of records - in modern times, researchers may require 
clustering of thousands to millions of records (e.g., medical treatment 
data at the population level). In this case, some traditional models are 
not scalable to such large datasets. A range of algorithms have been 
developed to deal with this challenge, see methods summarized by 
Fahad et al. (2014). 

3. Choosing algorithms and processes for different challenges 

Most clustering algorithms work well when clusters are sphere- 
shaped and highly separable in low dimensions without outliers. How-
ever, in practice, the data collected is often high dimensional (e.g., 
neuroimaging data), noisy (e.g., administrative healthcare records), and 
complex (e.g., longitudinal studies). In this section, we summarize major 
challenges and how different models may be suitable for addressing 
these issues (Table 4). 

3.1. High dimensional, noisy and sparse data 

The majority of clustering algorithms have difficulties working with 
high dimensional data (e.g., over 100 variables) due to difficulties in 
defining efficient distance measures in high dimensional space 

(Steinbach et al., 2004). Model-based clustering algorithms do not 
require distance measures; however, they face issues such as difficulties 
in convergence and high computational costs. In some cases, there are 
more variables than the number of observations. Therefore, these 
models require variable selection, data aggregation, or dimensionality 
reduction when facing increasing data dimensions. Importantly, this 
process should be conducted robustly (e.g., using cross-validation [CV]) 
and meaningfully (taking clinical insights into account) to avoid 
overfitting. 

There are also new methods available for working directly with high 
dimensional data (Steinbach et al., 2004). Subspace clustering, for 
example, searches and select variables best at separating potential 
clusters (Sim et al., 2013). It is useful when there are many irrele-
vant/noise features and a global dimensionality reduction becomes 
inefficient to identify the subset of features related to underlying 
clusters. 

3.2. Skewed distribution 

As center-based, model-based, and most hierarchical clustering al-
gorithms require multivariate spherical clusters, substantially skewed 
distributions will cause issues. However, many clinical measures follow 
skewed distributions as distance measures also give higher weights to 
the tail of the distribution, causing bias in measurement. Data skewness 
also introduces density variations, which is problematic for density- 
based methods such as DBSCAN. Some kernel methods estimating 
local distributions/structures (Marin et al., 2017) and model-based 
clustering for skewed distributions can be used to reduce the impact 
of data skewness. However, these advanced methods can be difficult to 
implement, therefore, it is recommended to normalize skewed distri-
butions before clustering. Data transformation was found particularly 
effective in reducing bias in the density estimators (Qin et al., 2019; Zhu 

Fig. 12. Examples of Pattern-based Graph Clusters. 
Note: (A) Examples of three density-based clusters. Graph clustering based on density-based similarity assumes that the nodes of the same cluster have dense 
connections while nodes across clusters have sparser connections. In this case, the input feature to the clustering algorithms is based on the graphs’ edges where the 
number of edges between a set of nodes can be considered as a similarity node indicator in the graph. (B) depicts a graph with four pattern-based (flow) clusters. 
Pattern-based similarity measures include similar nodes that go beyond edge density patterns. 
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et al., 2021). 

3.3. Outliers 

Outliers are extreme data values that differ significantly from other 
observations. Outliers are commonly depicted in univariate distribu-
tions; however, in clustering algorithms, outliers have to be evaluated 
on multivariate associations (points in the center of a univariate distri-
bution can still be an outlier). Many commonly used algorithms such as 
K-means and hierarchical clustering are known to be sensitive to outliers 
(Zouridakis et al., 1997). Density-based, model-based and fuzzy clus-
tering are more robust to outliers (Zouridakis et al., 1997). Out-
lier/anomaly detection models, such as LOF (Breunig et al., 2000) and 
iForest (Bandaragoda et al., 2018; Liu et al., 2008, Liu, 2010), can be 
used to identify outliers before clustering (Chandola et al., 2009). 

3.4. Overlapping boundaries 

In some cases, there may be overlap or ambiguity in underlying 
clusters (Chen et al., 2020). In this case, hard clustering methods can be 
problematic, and soft-clustering models, such as fuzzy clustering and 
model-based clustering should be used. Joint group membership can 
also be an independent research interest (Pantelis et al., 2003; Rovetta 
and Masulli, 2019). However, evaluating model performance and 
identifying appropriate group membership based on probabilities of 
group membership can sometimes be difficult for fuzzy clustering 
(Sato-Ilic and Jain, 2006). 

3.5. Arbitrary cluster shapes 

Most of the traditional partitioning-based and model-based clus-
tering methods assume spherical, elliptical or convex shapes of clusters. 
Although single linkage hierarchical clustering can identify arbitrarily 
shaped clusters (Ros and Guillaume, 2019), it often fails to identify 
clusters in practice due to data noise and overlaps between clusters. 
More recent models, such as density-based, kernel-based and deep 
clustering, can work well with arbitrary cluster shapes and should be the 
models of choice if the boundaries between clusters are hypothesised to 
be non-convex. 

3.6. Rare event 

Imbalanced data can be challenging to work with for many machine 
learning algorithms, as they tend to be biased towards majority groups 

(Krawczyk, 2016). Small clusters can sometimes be very difficult to 
detect, but can often be important in clinical settings. The power of 
detecting small clusters mainly depends on how separable they are from 
main clusters, and the size of the cluster relative to the total sample size. 
Highly separable smaller clusters (e.g., two clusters with 9:1 ratio) are 
easy to identify using almost any method, but many existing methods 
cannot identify less-separable smaller clusters even with a large sample 
size (Dalmaijer et al., 2022). More advanced methods such as HDBSCAN 
and density peak clustering may provide better results. In some cases, 
finding smaller and less-separable clusters may, perhaps, be better 
considered as an anomaly detection task. 

3.7. Mixed and multimodal data 

In practice, researchers often need to deal with clustering tasks 
where input data is a mixture of different data types (e.g., continuous, 
nominal, binary, and ordinal) or from different data sources (e.g., sur-
vey, biomarker, and image). There are a few methods available to work 
with mixed data types. The easiest approach is to use distance measures 
for mixed data (e.g., Gower distance). However, this method can be 
sensitive to outliers and ignores important multivariate data features. An 
alternative approach is to apply a dimensionality reduction technique on 
mixed data, such as unimodal Variational Autoencoder (Simidjievski 
et al., 2019), Factor Analysis of Mixed Data (FAMD) (Pagès, 2014), or 
PCA for mixed data (PCAmix) (Chavent et al., 2014). An alternative 
regime is to operate in segmented datasets using methods such as sub-
space clustering and multi-view clustering. When data were obtained 
from combinations of psychological measures that can be summarized 
by underlying latent dimensions (e.g., from a combination of symptom 
severity measures, self-reported conditions), methods such as FAMD and 
PCAmix may be more attractive. However, when data were obtained 
from different sources with high dimensionality, deep learning, sub-
space clustering and multi-view clustering can be more useful to address 
the difficulties of linearly summarizing data. 

3.8. Missing data 

When data is Missing Completely at Random (MCAR), all the clus-
tering models will be unbiased. However, MCAR is rarely the case in 
practice. The most common type of missing data is Missing at Random 
(MAR: missingness is related to observed data) or Missing Not at 
Random (MNAR: missingness is related to unobserved data). As most 
clustering methods cannot directly deal with missing data, multiple 
imputation (using methods such as multiple imputation using chained 

Table 4 
Challenges in Clustering Tasks and Robustness for Different Models.   

Center-based 
clustering 

Hierarchical 
clustering 

Density-based 
clustering 

Model-based clustering Extensions 

High dimensional, 
noise, and sparse 
data 

Problematic Problematic Problematic Problematic Requires variable selection and dimensionality reduction or 
subspace clustering methods 

Skewed distribution Problematic Problematic Robust for models 
allowing density 
variation 

Robust when 
distributions are 
correctly estimated 

Data normalization is generally needed. 

Outliers Problematic Problematic Robust Can be problematic Fuzzy clustering is more robust to outliers. Outlier/anomaly 
detection models can be used prior to clustering. 

Overlapping 
boundaries 

Problematic Problematic Problematic Robust Fuzzy clustering can be used when there are overlapping 
cluster boundaries. 

Arbitrary cluster 
shapes 

Problematic Likely to be 
problematic 

Robust Problematic There are many extension models available such as kernel- 
based clustering and non-linear feature extraction models. 

Rare events Likely to be 
problematic 

Likely to be 
problematic 

Likely to be 
problematic 

Likely to be 
problematic 

Consider anomaly detection algorithms when aiming to 
identify very small clusters. 

Mixed data Potentially 
problematic 

Potentially 
problematic 

Potentially 
problematic 

Potentially problematic Distance measures for mixed data can be used, however can be 
sensitive to outliers and not capturing important features. 
Dimensionality reduction is needed prior to clustering. 

Missing data Problematic Problematic Problematic Likely to be 
problematic 

Multiple imputation models or clustering algorithms that 
specifically model data missingness are needed for data MAR.  
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equations [MICE]) is commonly needed (Basagaña et al., 2013). A full 
information maximum likelihood model can be used for model-based 
clustering (Enders and Bandalos, 2001); however this model cannot 
take auxiliary variables (variables related to the missing data but not 
underlying cluster) into account. Although a few combined imputation 
and clustering models, such as k-POD (Chi et al., 2016) have been 
developed, the impact of missing data and imputation methods hasn’t 
been evaluated extensively compared with inference and prediction 
models. A sensible and promising domain is to combine multiple 
imputation with ensemble clustering, i.e., ensemble results from multi-
ple imputed datasets within the cross-validation framework (Chao et al., 
2022; Pattanodom et al., 2016; Wan et al., 2020). Future studies are 
needed to establish the optimal pipelines for addressing missing data 
under different conditions. 

3.9. Statistical power 

Power estimation cannot be conducted for clustering analysis due to 
its exploratory nature. Whether clusters can be detected correctly de-
pends on the sample size, number of parameters, how separatable 
clusters are, level of noise, relative size of clusters, and the method used 
(Dalmaijer et al., 2022; Dolnicar et al., 2013; Tueller and Lubke, 2010), 
all of which are largely unknown. Therefore, it is not feasible, or perhaps 
not appropriate, to determine the statistical power for clustering. Highly 
separable clusters without noise, though uncommon in practice, can be 
correctly detected with a small number of observations (Dalmaijer et al., 
2022). However, researchers need to ensure that the modelling 
approach is feasible (e.g., not over parameterized, particularly for LCA), 
robust (e.g., sampling and CV provide consistent results), and general-
izable (unbiased representation of the population of interest). A large 
number of clusters estimated from a small sample or clusters with very 
small sizes can be indicators of a lack of robustness and generalizability. 

3.10. Multilevel data 

Data can have a multilevel nature (e.g., students nested in schools, 
randomized cluster trial). Higher correlations may be observed in 
naturally formed clusters. In some cases, this multi-level feature is not 
problematic (e.g., participants recruited in one site may show more se-
vere symptoms but do not differ in the latent heterogeneity of interest 
such as causal mechanisms of the disorder). However, sometimes it may 
bias clustering results (e.g., different neuroimaging machines used), or 
be a separate research interest. In these cases, multilevel mixture models 
can be used (Asparouhov and Muthén, 2008). Alternatively, data fusion 
models can be applied to obtain reliable and consistent information from 
raw data and remove the systematic noise (Meng et al., 2020). 

3.11. Poor stability 

All clustering algorithms can be impacted by the random starting 
point and minor data changes. The most widely known one is the local 
optima problem for K-means (Steinley, 2003). Essentially, the algorithm 
tends to obtain a suboptimal result (getting stuck in a local optimal 
solution, not a global optimal solution) when optimizing the loss crite-
rion. Therefore, the exact shape of the input data, a change of random 
seeds, and any minor data perturbation, tend to generate different 
cluster memberships. Other methods largely suffer from the same issue 
(Goodman, 1974; Monti et al., 2003; van der Kloot et al., 2005). The lack 
of stability also impacts the choice of optimal modelling parameters 
such as the number of clusters. Although a few methods were developed 
to address this issue such as hybrid hierarchical k-means clustering 
(Milligan, 1980) and K-means++ (Arthur and Vassilvitskii, 2006), 
recently developed clustering ensemble methods offer a greater level of 
robustness when combined with resampling and CV. 

3.12. Clinically meaningful clusters 

Although there are many aspects to consider when applying a clus-
tering algorithm in practice, one of the most important issues is to ensure 
whether the model can detect clinically meaningful clusters. In some 
cases (e.g., establishing distinct illness subtypes), it is meaningless to 
dichotomize a continuum (Dinga et al., 2019). In clinical practice, 
however, it is commonplace to have varying degrees of intervention 
along such a continuum (e.g., normal variant requiring no further 
follow-up, watchful waiting, brief treatment, invasive therapy) and 
separating groups with different severity may become useful (Cotton 
et al., 2022). What is critical is to have engaged meaningfully with both 
clinical teams and consumers in question to ensure that the outcome 
represents a target relevant to both parties. 

4. Data pre-processing and testing 

4.1. Data pre-processing and dimensionality reduction 

In practice, data obtained for clustering are often high-dimensional, 
which introduces difficulties for most of the clustering algorithms. 
Therefore, an important stage in clustering tasks is data pre-processing, 
which often involves data normalization, variable selection and 
dimensionality reduction. 

To facilitate the estimation of similarity measures or probability 
distributions, the input data need to be transformed to adjust in range, 
dispersion and skewness. The commonly used methods include z-score 
normalization, min-max normalization, quotient normalization and 
Box-Cox power transformation, see the detailed summary of proposed 
methods elsewhere (Jajuga and Walesiak, 2000; Milligan and Cooper, 
1988). Double standardization (z-score normalization by columns and 
rows) can be used when only the relative differences between variables 
are associated with underlying clusters (similar scenarios to when a 
scale-invariant distance measure is preferred). 

It is important to note that the type of normalization and trans-
formation needed should be based on the clinical understanding of the 
data and how the variability, scale and shape of distribution may impact 
the difference between data points. For example, if the relative differ-
ences between individuals across variables are more important, z-score 
normalization is more suitable. However, when the raw score differ-
ences are more important, min-max normalization can be a better 
method as it preserves variability differences between variables. 

As the data collected may not necessarily be related to underlying 
heterogeneity, including a high proportion of “useless” or “low quality” 
variables can often introduce additional difficulties for clustering algo-
rithms. Therefore, it is important to identify and pre-select variables that 
have good data quality and are potentially related to heterogeneity or 
use advanced computational methods to deal with data noise and 
quality problems (Shen et al., 2014). Another issue, a substantial 
concern in mental health research rarely mentioned in clustering liter-
ature, is the need to avoid over-represented variables measuring the 
same construct. For example, if the researcher included nine individual 
items of PHQ-9 and the mean scores of GAD-7 in a K-means clustering, 
the distance measured between two participants would be highly 
reflective of their differences in depression but not in anxiety. 

In practice, researchers are often required to further reduce data 
dimensions or suppress data non-linearity to ensure the efficiency of 
clustering algorithms. This process is known as dimensionality reduction 
which involves projecting the high dimensional space into a low 
dimensional space via a series of numerical operations based on the 
input data. The most commonly used dimensionality reduction tech-
niques in psychology are principal component analysis (PCA) and factor 
analysis, which are both linear dimension reduction methods (Fodor, 
2002; Jolliffe, 2022). In modern machine learning, a range of non-linear 
models such as kernel PCA, Non-negative matrix factorization (NMF), 
Graph Embedding, and autoencoder (discussed above) are widely used. 
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These methods can be applied more regularly in mental health research 
to ensure that nonlinearity and interactions amongst variables are not 
ignored. Comprehensive reviews of these methods are available (Cun-
ningham and Ghahramani, 2015; Van Der Maaten et al., 2009) to guide 
applications of these methods. 

4.2. Pre-clustering testing 

A range of methods were proposed to test for the presence of multiple 
clusters in the data, see details summarized by Adolfsson et al. (2019). 
The basic design concept of the proposed clustering tests was to evaluate 
data multimodality (more than one mode indicates heterogeneity) or 
randomness (similarity with randomly generated data indicates lack of 
heterogeneity). 

The most widely used and robust method is the Dip test on pairwise 
distances (Dip-dist), which calculates and sorts all pairwise distances 
between any two data points, and evaluates whether there is any “dip” in 
the continuous distribution of the pairwise distances (Hartigan and 
Hartigan, 1985). The Silverman test can also be used to test multi-
modality, which tries to find out how much smoothing (larger band-
width for the kernel density estimate) is needed for the data distribution 
to approximate a normal distribution (Silverman, 1981). Both Silverman 
test and Dip test can be used to test multimodality on the Principal 
Component and Principal Curve (Adolfsson et al., 2019). To evaluate 
data randomness, the Hopkins test compares the observed data with 
randomly generated data under a uniform distribution. If the observed 
data do not have any clusters, the distances between a sample of data 
points with their nearest neighbors will be the same as the distances 
between a sample of simulated data points with their nearest neighbors 
(Lawson and Jurs, 1990). 

It should be noted that different tests provide slightly different re-
sults depending on factors such as outliers, overlapping clusters, and 
non-linear boundaries (Adolfsson et al., 2019). Therefore, pre-clustering 
testing should be used as a guide rather than a hypothesis testing tool. 
Alternatively, clustering results and evaluation criteria from the data 

can be compared with synthetic data without subgroups, e.g., permu-
tated or generated from a uniform or unimodal distribution (Gordon, 
1996). 

5. Cluster evaluation and cross-validation 

5.1. Cluster evaluation 

Due to the unsupervised nature of clustering algorithms, there is no 
consensus on many modelling choices such as the optimal distance 
measures, number of clusters, parameters and/or modelling technique. 
The appropriateness of modelling choices depends on the nature of the 
data and the underlying heterogeneity. As a result, it is common practice 
to employ a range of different methods and parameter choices to analyze 
a dataset and then conduct evaluation and validation. 

To date, many methods have been developed to validate clustering 
results (Fig. 13), which can be broadly classified into external criteria 
(evaluate how well the model describes the truth, i.e., known sub-
groups), internal criteria (evaluate how well the model describes the 
data) or relative criteria (evaluate which model or modelling parameter 
produces best quality clusters) (Gan et al., 2020). A detailed summary of 
these criteria as well as R implementations are provided in Tables 5 and 
6. 

5.1.1. External criteria 
The external criteria compare clustering results with the known 

underlying cluster structure. They are generally used with a theoretical 
framework to validate and compare different methods. They can also be 
used to estimate the stability of cluster assignments over resampled data. 
When real and predicted clusters are assumed to have a one-to-one 
mapping, methods such as F-measure can be applied (Amigó et al., 
2009). Alternatively, the agreement can be measured by counting all 
pairs of data points and evaluating whether they were grouped into the 
same or different groups in real and predicted clusters (e.g., Rand sta-
tistic, Jaccard coefficient and Fowlkes and Mallows index [FM]). The 

Fig. 13. Clusters Evaluation Criteria. 
Notes: (A) External criteria commonly compare clustering results with an external reference (normally the ‘ground truth’ or ‘gold standard’ clustering results). These 
criteria are commonly used to theoretically compare models using benchmark datasets. (B) Internal criteria utilize information estimated as a part of the clustering 
process to determine the fit of the model to the data. (C) Relative criteria focus on evaluating how well different models represent the underlying data structure. 
Sometimes relative criteria are also classified as internal criteria as it does not involve external known information about group membership. 
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adjusted Rand statistic (also known as the normalised Rand statistic), 
proposed by Hubert and Arabie (1985), was perhaps one of the most 
popular indexes used in practice (Rodriguez et al., 2019; Yeung and 
Ruzzo, 2001). Similar normalization can also be obtained for other 
measures with counting pairs data points such as FM and Jaccard co-
efficient, which were found to have very similar validation perfor-
mances as the adjusted Rand statistic (Aggarwal and Reddy, 2013). 
Detailed comparisons of different external criteria can be found else-
where (Amigó et al., 2009). 

5.1.2. Internal criteria 
Internal criteria evaluate specifically whether the clustering model 

describes the underlying data accurately (goodness-of-fit indicators). A 
commonly used method is the Cophenetic Correlation Coefficient 
(CPCC) for hierarchical clustering, which measures the correlation be-
tween the input distance (dissimilarity measures between points) and 
output distance on the dendrogram (Sokal and Rohlf, 1962). Although 

widely used, the CPCC should be interpreted with care as it is not a direct 
measure of goodness-of-fit and is sensitive to outliers, nonlinear asso-
ciations and lower levels of separations in clusters (Farris, 1969; Hol-
gersson, 1978; Mérigot et al., 2010). 

5.1.3. Relative criteria 
Relative criteria have received considerable attention in the litera-

ture as key elements in choosing the best number of clusters and vali-
dating clustering results. A variety of measures being developed are 
based on measurements of clustering compactness (homogeneity within 
the cluster), separation (between cluster distance), representativeness 
(representative of the underlying data structure), connectedness (clus-
tered similarity with nearest neighbors), stability (consistency in results 
with subgroups of data) and various combination of these features. The 
commonly adopted methods were listed in Table 6. 

Criteria based on compactness, such as root-mean-square standard 
deviation (RMSSD), works well for spherical and well-separated clusters 

Table 5 
External Validation Indexes and Implementation in R.  

Indexes Equation 
k :number of clusters 
n: number of data points 
L: real clusters 
C: predicted clusters 

Note R-packages Refs. 

F-measure * 1
k
∑k

i=1
2 Pi × Ri

Pi + Ri 

Pi =
TPi

TPi + FPi 

Ri =
TPi

TPi + FNi 

Evaluate average combination of precision (Pi) and 
recall (Ri) for each identified predicted cluster relative 
to the matching real cluster. 

FlowSOM:: 
FMeasure Zaki et al. (2014) 

BCubed F-score 2 P × R
P + R 

P =
1
n
∑n

j=1
No. in same C

No. in L 

R =
1
n
∑n

j=1
No. in same L

No. in C 

Similar with the F-measures except for using the 
BCubed precision and recall for individual 
observations. 

DPBBM:: 
BCubed_metric Bagga and 

Baldwin (1998) 

Rand index ^ TP + TN
TP + TN + FP + FN 

Measuring similarity between clustering results and 
known clusters via counting pairs of data points. 

aricode::RI 
clusteval:: 
rand_indep 

Rand (1971) 

Adjusted Rand 
index 

index − E( index)
max(index) − E( index)

index =
∑

i,j

(
nij
2

)

E( index) =

[
∑

i

(
Ci
2

)
∑

j

(
Lj
2

) ]/(
nij
2

)

max(index) =

[
∑

i

(
Ci
2

)

+
∑

j

(
Lj
2

) ]/

2 

The corrected-for-chance version of the Rand index. It 
establishes the lower bound of 0 when the index is the 
same as the expected index, E( index), which is the 
index from two completely random partitions. 

aricode::ARI 
Hubert and Arabie 
(1985) 

Jaccard coefficient 
^ 

TP
TP + FP + FN 

Measuring similarly by excluding pairs of data points 
belonging to different groups in both real and 
predicted clusters (TN). 

clusteval:: 
jaccard_indep Halkidi et al. 

(2001) 

Fowlkes and 
Mallows index 
(FM) ^ 

̅̅̅̅̅̅̅̅̅̅̅̅
P × R

√

P =
TP

TP + FP 

R =
TP

TP + FN 

Measuring similarly of pairs of data points using the 
product of precision (P) and recall (R). 

dendextend:: 
FM_index Fowlkes and 

Mallows (1983),  
Halkidi et al. 
(2001) 

Normalized 
mutual 
information 
(NMI) §

I(L,C)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H(L)H(C)

√

H(.): entropy 
I(L,C) : mutual information 
I(L,C) = H(L) − H(YL|C)

Indicate the reduction in the entropy of real clusters if 
the predicted clusters are known. Higher NMI 
indicates better clustering results. 

aricode::NMI 
Vinh et al. (2009) 

Adjusted mutual 
information 
(AMI) §

I(L,C) − E(I(L,C))
max(H(L),H(C)) − E(I(L,C))
E(I(L,C)): expected mutual information between two 
random clusters 

Similar to NMI and corrects the effect of agreement 
solely due to chance between clusters. 

aricode::AMI 
Vinh et al. (2009, 

2010)  

* TPi (true positive), FPi (false positive), TNi (true negative) and FNi (false negative) are diagnoses of how well the data points in the ith predicted cluster compared 
with the best matching real cluster. 

^ TP (true positive), FP (false positive), TN (true negative) and FN (false negative) refers to diagnoses of pairs of data points that were clustered into the same or 
different clusters when comparing the real and predicted clusters. 

§ Entropy is calculated as 
∑k

i=1Pilog2(Pi), Pi is the ratio of points falling in cluster i to points not in cluster i.
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Table 6 
Relative Validation Indexes and Implementation in R.  

Indexes Equation 
k :number of clusters 
j: a data point 
n: number of data points 
Ci cluster i 

Note R-packages References 

Root-mean-square standard 
deviation (RMSSTD) RMSSTD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑k
i=1SSi

∑k
i=1dfi

√

SSi =
∑n

j=1(xj − x̄i)
2 

dfi = No. in cluster i − 1 

Square root of the pooled individual clusters variance (SSi). It measures the 
within cluster homogeneity. 

Can be directly 
calculated 

(Halkidi et al., 
2002) 

R-squared R2 =
SSt − SSw

SSt 

SSt =
∑n

j=1(xj − x̄)2 

SSw =
∑k

i=1
∑

∈i
(xj − x̄i)

2 

x̄ is the mean of all data 
x̄i is the mean of cluster i 

Measures the ratio of sum of squares between clusters (SSt − SSw) to the 
total sum of squares (SSt). It measures the degrees of separation between 
clusters. 

Can be directly 
calculated 

(Halkidi et al., 
2002) 

Normalized Hubert Γ statistic 
Γ =

∑n− 1
i
∑n

j=i+1(Pij − μP)(Qij − μQ)

MσP σQ 

M =
n(n − 1)

2 
P is the distance matrix of data point, Q is the matrix of cluster distances which 
individual points belong to. μP,μQ,σP and σQare the respective means and variances of 
the P and Q matrices. 

Measures the correlation between data points and their representing 
clusters. The higher Normalized Hubert Γ indicate the existence of compact 
clusters. 

NbClust:: 
NbClust 

(Halkidi et al., 
2002) 

Calinski–Harabasz (CH) Index 
CH =

(n − k)B
(k − 1)W 

B =
∑k

i=1nid(Ci,C)2 

W =
∑k

i=1
∑

j∈Ci

d(j,Ci)
2 

d(Ci,C) is the distance between cluster Ci to the center of all data, d(j,Ci) is the 
distance between data point j and its cluster center Ci. 

Based on the average 
between- (B) and within-cluster (W) sum of squares. Normally give 
preferences to convex shape clusters and do not work well with arbitrary 
shapes. 

fcp::cluster. 
stats 

(Caliński and 
Harabasz, 1974) 

Dunn index 
Dunn =

min
1≤i<j≤k

d(Ci, Cj)

max
1≤g≤k

diam(Cg)

d(Ci, Cj) is the dissimilarity function between two clusters Ci and Cj; diam(Cg) is the 
diameter of the cluster Cg. Both d(Ci, Cj) and diam(Cg) can be measured in a variety of 
ways. 

Ratio between the minimal between-cluster distance, d(Ci, Cj), to maximal 
within-cluster distance diam(Cg). It can be time-consuming to estimate and 
can be sensitive to noise. 

fcp::cluster. 
stats 

(Dunn, 1974) 

clValid::dunn 

Davies–Bouldin (DB) index 
BD =

1
k
∑k

i=1
max

i∕=j

(
σi + σj

d(Ci,Cj)

)

d(Ci,Cj) is the distance between centroids of cluster Ci and Cj. σi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
ni

∑

x∈i
(x − Ci)

2
√

is the standard deviation of the distance of data points in cluster i. 

Sum ratio of within-cluster scatter 
to between-cluster separation. A lower DB index relates to a model with 
better separation between the clusters. Similar to CH index, it does not 
work well with arbitrary shapes. 

clusterSim:: 
index.DB 

(Davies and 
Bouldin, 1979) 

Silhouette index 
Silhouette =

1
k
∑k

i=1
1
ni

∑

x∈Ci

b(x) − a(x)
max[a(x); b(x)]

a(x) =
1

ni − 1
∑

y∈Ci y∕=x
d(x, y) is average distance of data point x with all other data 

points in same cluster 

b(x) = min
j∕=i

[
1
nj

∑

y∈Cj

d(x,y)

]

is the average distance of x with all data points in the 

closest cluster. 

Sum of pairwise difference of between-cluster distances, b(x), and within- 
cluster distances a(x). Higher values indicate better clustering results. It is 
computationally intensive to estimate. 

cluster:: 
silhouette 

(Rousseeuw, 
1987) 

SD index a SD = α × Scat(k) + Dis(k)
α = Dis(kmax) is a weighting factor. 

Scat(k) =
1
k
∑k

i=1
‖ σ(vi) ‖

‖ σ(v) ‖

Linear combination of average scattering of clusters, Scat(k) and total 
separation between clusters Dis(k). Scat(k) is calculated as the ratio of 
cluster variance to data set variance. Dis(k) estimates the separation based 
on the distances between cluster centers. 

clv::clv.SD (Halkidi et al., 
2000) 

(continued on next page) 
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Table 6 (continued ) 

Indexes Equation 
k :number of clusters 
j: a data point 
n: number of data points 
Ci cluster i 

Note R-packages References 

σ(vi) is the variance vector for each variable in the cluster i and σ(v) vector of 
variances in all dataset. 

Dis(k) =
Dmax

Dmin

∑k
i=1

(
∑k

j=1
‖ Ci − Cj ‖)

− 1 

Dmax and Dmin the maximum and minimum distance between cluster centers 
SDbw index SDbw = Scat(k) + Den(k)

Scat(k) is defined the same as SD index. 

Den(k) =
1

k(k − 1)
∑k

i=1

∑k
j=1,j∕=i

den(Ci ∪ Cj)

max(den(Ci), den(Cj))

den(Ci) =
∑

x∈Ci

f(x,ui)

ui is the center of Ci 

f(x, ui)= {
0 if d(x, ui) > stdv

1 otherwise 
stdv is the average standard clusters 

Introduced the intercluster density measure, Den(k), based on SD index. It 
evaluates the average density between pairwise clusters, den(Ci ∪ Cj), in 
relation to the density within clusters, den(Ci) and den(Cj). 

clv::clv.SDbw (Halkidi and 
Vazirgiannis, 
2001) 

Clustering Validation index 
based on Nearest 
Neighbours (CVNN) 

CVNN(C, η) = Sep(C, η)
maxC∈Γ(sep(C, η))

+
com(C)

maxC∈Γ(com(C))

sep(C, η) = max1≤i≤k

(
1
ni

∑

j∈Ci

qη(i)
η

)

com(C) is average of all within-cluster dissimilarities. 
qη(i) is the number of observations among η nearest neighbours that are in other 
clusters 
Γ is all possible clustering results compared. 

CVNN is based on the intercluster separation, sep(C,η), and intracluster 
compactness, Com(C,η). sep(C,η) measures the level of overlap (with 
points’ nearest neighbours) in the highest overlapping cluster. The two 
terms were normalised before adding them up. Smaller values indicate 
better clustering. 

fcp::cvnn (Liu et al., 2013) 

Gap index G(k) = En(log(Wk)) − log(Wk)

Wk =
∑k

i=1
1

2ni
Di 

Di =
∑

j, j′ ∈Ci

dj,j′

Wk measures the expected pooled within-cluster sum of squares around 
the cluster means. The ideal is to compare Wk obtained from the data 
with its expectation under a null reference distribution of the data (e.g., 
uniform distribution). When there are smaller subclusters within large 
well-separated clusters, it can show non-monotonic behavior, so it is 
important to evaluate the overall gap curve rather than simply take the 
optimal value. 

cluster::clusGap (Tibshirani et al., 
2001) 

a ‖ X ‖=
̅̅̅̅̅̅̅̅̅
XTX

√
, X is a column vector.  
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and will give preferences to algorithms that minimize the within-cluster 
variation (such as K-means). However, they may fail in detecting more 
complicated data structures such as arbitrarily shaped clusters. Cluster 
separation measures how distinct or well-separated the clusters are. 
Pairwise cluster distances, such as centroid linkage shown in Fig. 4 and 
R-squared can be used in this framework. 

Hubert Γ statistic as well as modified and normalized Hubert Γ sta-
tistic (Halkidi et al., 2002) adopt a similar idea to CPCC. They aim at 
comparing agreement/disagreement between the clustering results with 
the underlying data structure. As RMSSD, R-squared and Γ statistic are 
all evaluating one aspect of the clustering criteria, they will all mono-
tonically increase when the number of clusters increases (Xiong and Li, 
2013). A common method is to apply the “elbow” method to identify a 
drastic changing point in the fitting index. However, the “elbow” 
method is commonly ambiguous and subjective. 

As compactness and separation measures both only provide limited 
information on their own, they are usually combined to form overall 
indicators of a balanced with-in cluster homogeneity and between- 
cluster separation. Well known examples are Calinski-Harabasz (CH) 
index (Caliński and Harabasz, 1974), Dunn index (Dunn, 1974), 
Davies–Bouldin (DB) index (Davies and Bouldin, 1979) and Silhouette 
index (Rousseeuw, 1987), see details in Table 6. Most of these indexes 
give preference to spherical or convex shapes and do not work well with 
arbitrary shapes. CH Index was also found to be more sensitive to noise 
in the data (Xiong and Li, 2013). A few recently developed indexes have 
moved slightly away from evaluating purely compactness and separa-
tion. For example, SDbw index proposed by Halkidi and Vazirgiannis 
(2001) extended the SD index by introducing a density measurement 
that compares density areas between clusters with density within clus-
ters, considering well-separated clusters should have considerable den-
sity decay in the area separating them. Another index that was found to 
be able to work properly in arbitrarily shaped clusters is the Clustering 
Validation index based on Nearest Neighbors (CVNN). CVNN evaluates 
whether data points were grouped into the same clusters as their nearest 
neighbors, which facilitates the rationale of density-based clustering 

algorithms. 
For model-based clustering, goodness-of-fit indexes, such as 

Bayesian information criterion (BIC), are commonly used as relative 
criteria to compare between models (Fraley and Raftery, 1998). Hy-
pothesis testing can also be employed to select the best numbers of 
clusters, e.g., Vuong-Lo-Mendell-Rubin adjusted likelihood ratio test 
(Vuong, 1989) and bootstrapped likelihood ratio test (McLachlan, 
1987). 

These criteria measure different types of clustering quality and 
should be chosen according to the clustering method(s) used and the 
features of the data. In practice, users should aim to report results from 
multiple criteria to obtain a more comprehensive view of clustering 
performance. 

5.2. Resampling and cross-validation 

An important validation process (e.g., choosing the best number of 
clusters) to include for all clustering tasks is resampling and Cross- 
Validation (CV). This is because many methods are sensitive to small 
variations in data and random seed and the risk for overfitting is high. 
Many types of resampling and validation methods have been developed 
(Fig. 14). All these methods involve creating subsamples of the data to 
establish models jointly to improve the stability and generalizability of 
the model as well as to avoid over-fitting the data. The common CV 
regime involves using both training dataset(s) (e.g., identifying best 
hyperparameters) and testing dataset(s) (e.g., prediction accuracy). As it 
is not possible to evaluate prediction accuracy in clustering (unknown 
cluster membership), CV is commonly used to in hyperparameter se-
lection (e.g., number of clusters) using training datasets. However, 
testing data can be used to evaluate the generalizability of the estab-
lished model (e.g., whether the clusters identified in the testing data 
under the same modelling parameters were consistent with training 
data). 

K-fold CV, Monte Carlo CV and Bootstrap are commonly used for 
selecting the best modelling parameters (Sylvain and Alain, 2010). 

Fig. 14. Common Methods for Resampling and Cross Validation (CV). 
Note: (A) The total sample can be randomly split into half with one being the “training data” and one being the “testing data”. The optimal model can be obtained in 
the training data, and then evaluated in the testing data. (B) In k-fold CV, the total dataset is randomly split into k-fold with equal size. Then the data can be organised 
into k pairs of training (k-1 folds) and testing datasets (1-fold). The commonly used method is the 10-fold CV. When k is the same as the sample size, the method 
became leave-one-out CV. (C) Monte Carlo CV, repetitively randomly samples a proportion of data into the training data and leaves the remaining data for testing. 
When the population is large, a much smaller number of training and testing samples can be selected. (D) Bootstrap creates random samples using sampling with 
replacement. Therefore, one observation can be sampled into a resampled dataset multiple times. 
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These methods have different assumptions, advantages, and disadvan-
tages; however, they can yield comparable results when properly spec-
ified (Molinaro et al., 2005). Bootstrap can retain the same sample size, 
establish confidence limits for hard clustering methods (Suzuki and 
Shimodaira, 2006) and apply in hypothesis testing (McLachlan, 1987). 
However, bootstrap samples cannot be used to evaluate agreements 
between sampled datasets (no one-to-one matching due to sampling 
with replacement) and can introduce high bias and unstable results 
(Efron and Tibshirani, 1997; Kohavi, 1995). 

K-fold CV is perhaps theoretically more attractive as it explores all 
possible combinations of small groups of data. As the parameter k is 
commonly recommended to be between 10 and 20 (Kohavi, 1995), the 
method is also practically more desirable due to the lower computa-
tional cost (Molinaro et al., 2005). However, due to its restricted number 
of resampling datasets, it may not be a preferred method for clustering 
ensemble. 

There is no optimal CV method for all different practical problems 
and the performance of CV depends on whether sampled data represent 
the underlying distribution. The choice of CV model can be based on 
features of the dataset as well as the overall clustering framework (e.g., 
whether clustering ensemble is used), and evaluation pipelines can be 
established to ensure CV leads to stable and generalizable results (e.g., 
testing with more than one CV methods). 

6. Workflow and reporting 

Different clustering methods and different procedures employed may 
result in different partitioning of a data set. The optimal solution is 
largely dependant on the type of data used and how well the heterog-
enous groups were reflected by the data. Although there are no gold- 
standard procedures, here we provide a general guide for the clus-
tering workflow, which could assist with improving the quality, effi-
ciency, and transparency of clustering tasks. The recommended 
workflow consists of six steps (Fig. 15). It is important to apply the data 
pre-processing procedures, pretesting, clustering model optimization 
and visual evaluation within the CV loop (e.g., dimensionality reduction 
in each resampled dataset) to avoid overfitting and reduce bias. After the 
clusters were identified, there is a need to further validate their mean-
ingfulness (e.g., evaluate how clustering results correlate with external 
variables) and external validity (e.g., evaluate whether the identified 
clusters are generalizable in external data). 

To achieve greater research transparency, the analysis plan should be 
pre-registered and results should be reported with sufficient details, 
including nature of data, theory supporting possible subgroups, detailed 
analysis procedures, implementation methods (e.g., software packages, 
code), validity and generalizability of findings. Although Aldenderfer 
and Blashfield (1984) established the original framework for reporting 
clustering results, their recommendations were outdated to meet the 

Table 7 
Check-list for pre-registration and reporting clustering analysis.   

Pre- 
registration 

Final publication 

Nature of the data and variables Context Context & results 
Rationale/theory supporting clustering analysis (e.g., theory supporting possible subgroups which can be identified using 

selected variables) 
Context Context & discussion 

Data pre-processing procedures Methods Methods & results 
Similarity/distance measure(s) and justification Methods if 

used 
Methods if used 

Pre-clustering testing Methods Methods & results 
Clustering method(s) and justification Methods Methods & results 
Selecting modelling parameters Methods Methods & results 
Missing data and methods to deal with missingness Methods Methods & missingness 
Resampling, CV, and/or external validation Methods Methods & results 
Visual representation of clustering results Methods Methods & results 
Evaluation of cluster meaningfulness Methods Methods & results 
Computer program(s), package(s), function(s) and associated version Not necessary All details 
Sensitivity analysis Methods Methods & results 
Deviation from analysis plan – Methods & results 
Research data (or synthetically generated data) and analysis code for replication – Supplementary files or citable 

resources  

Fig. 15. Clustering Workflow. 
Note: PCA: Principal Component Analysis; UMAP: Uniform Manifold Approximation; t-SNE: T-distributed Stochastic neighbor Embedding. 
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needs of increasing complexity in analysis procedures. Therefore, we 
proposed an additional checklist for both pre-registration and final 
publication (Table 7). 

7. Summary 

Clustering analysis is a longstanding but rapidly evolving machine 
learning area. Clustering methods are often difficult to choose, justify, 
robustly conduct, evaluate and validate. There have been many inno-
vative clustering methods developed and/or applied in mental health 
research, such as FRF (Feczko et al., 2018) and HYDRA (Varol et al., 
2017) as mentioned above. Tokuda et al. (2018) developed a multi-view 
clustering based on a non-parametric Bayesian mixture model for 
depression subtyping. Chen et al. (2020) applied fuzzy C-means and 
GMM jointly to identify ambiguous data points which may not belong to 
any schizophrenia subtypes. Dwyer et al. (2020) used a consensus 
clustering based on nonnegative matrix factorization to evaluate psy-
chosis subgroups. To deal with the high dimensionality issue in neural 
imagining data, Chang and colleagues combined deep autoencoder with 
clustering ensembles (Chang et al., 2021). Most of these advanced 
modelling approaches have been applied in neuroscience. The current 
standard practice of using clustering models in mental health research 
remains relatively simple and lacks a robust framework. Across fields, 
research is also largely limited to describing empirical findings. We hope 
our overview and recommendations can assist mental health researchers 
to use these methods efficiently, transparently and robustly to produce 
results that lead towards clinical use and theoretical understanding of 
principles underlying illness. 
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