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Abstract

Floods are rare phenomena that can impose severe human and financial consequences. Usu-
ally, in flood analysis, the differences in simultaneity and interaction of floods in different
regions are not considered. Insufficient knowledge on managing these extreme events may
lead to a catastrophic disaster. Due to different precipitation intensities and forms, distinct
atmospheric circulation patterns, and seasons, floods have different types. Also, extreme
events’ triggering mechanisms could be different when some individual events happen at the
same time in multi-site locations. Large-scale precipitation combined with melting snow in
different locations of a region brings discharge flow peaks from different areas together and si-
multaneously leading extreme floods. Coincidence flood occurrences can cause unpredictable
losses and destruction downstream. Another approach of flood frequency analysis is investi-
gating the general flood occurrences. These floods can happen individually in different parts
of a catchment. However, they can be shared partly with simultaneous floods. Traditionally,
researchers focus more on the univariate analysis and have less attention on the multivariate
analysis. The multivariate extreme analysis is a method that can investigate spatiotemporal
information on flood behavior. The main concern of this research is understanding flood
behavior regarding the simultaneous and general occurrence that can contribute to efficient
flood risk management. Also, this research’s objective is to comprehend the nexus of a catch-
ment, river system processes, geological aspects, and their interactions leading to peak river
floods. Understanding the clustering of extreme floods can give researchers more insight into
flood defense and protection. Clustering can divide a region into distinct areas that demand
different action plans for flood management and risk analysis. Also, the insurance and rein-
surance industries can calculate new coefficients to estimate risk and damages for each cluster
area. The multidimensional flood clustering of two flood occurrence types is another con-
sidering point applied in this research. According to the problems faced, clustering methods
are assessed for simultaneous and general flood occurrences to suggest appropriate methods
for further research. With this backdrop, this dissertation discusses the spatiotemporal mul-
tivariate analysis and quantitative characteristics of simultaneous and general floods of the
Neckar River and its tributaries to provide new insights to flood protection and risk analysis.
The Neckar has an annual discharge average of 158 m3/sec and the highest calculated daily
areal precipitation of 97 mm over the catchment.

This thesis investigates 55 years of daily discharge flow from 1961 to 2015 for 46 mea-
surement gauges in the Neckar catchment. First, simultaneous occurrences of extreme floods
are investigated. Then, hierarchical clustering and multidimensional scaling are performed
to cluster the sub-catchments that react similarly. To perform clustering methods, two dis-
similarity metrics and five linkage methods are calculated and applied. Obtained clusters are
then evaluated to determine the best possible clustering map. As a result, the catchment
is divided into three cluster areas. Due to the geophysical complexity of the upper Neckar,



this area is separated into west and east. The rest of the catchment is also grouped as a
separate cluster. In the next step, the Principal Component Analysis (PCA) is applied to
the data set to capture the primary behavior of the discharge signals over the Neckar. Here,
the PCA cross-validation is performed to find the best number of components for the time
series reconstruction. The three first principal components are chosen to reconstruct a new
time series. Then, the difference between the original and reconstructed time series matrices
is obtained as a residual time series. Afterward, independent simultaneous peaks per year
are selected from the absolute residual matrix. Subsequently, as the distance matrix, the
correlation between the pair sets of selected peaks is determined to assess the relationship of
the simultaneous events in different sub-catchments. Next, hierarchical clustering is applied
to cluster the multi-site catchments into different groups with a similar reaction. As a result,
clusters are defined to show the region with different behavior concerning a flood reacting
mechanism. Finally, the region is divided into the three main clusters, two of which belong to
the specific geological karst and crystalline rock basin and the highest elevation. The results
illustrate a particular pattern for flood occurrence magnitude corresponding to each group
of sub-catchments. The applied PCA-AHCT (Agglomerative Hierarchical Cluster Tree) are
compared with those of the AHCT methods in the previous steps. Consequently, the sim-
ilarities among acquired clusters are statistically assessed. Thus, this clustering can be a
fundamental and innovative method in multivariate analysis of risk analysis and hydrological
modeling by considering the simultaneous occurrence of floods.

The general floods are clustered using a distribution-based dissimilarity matrix. In the
first instance, the general floods are identified. Then the Kolmogorov-Smirnov statistics are
calculated from the empirical cumulative distribution functions of the general flood series.
Finally, hierarchical clustering is performed to find possible groups of floods in different
sub-catchments. The obtained clusters are evaluated and validated with three clustering
evaluation criteria. Also, the optimum number of clusters for the Neckar catchments is
determined. Five different linkage methods lead to different clustering results; however, the
catchment center area is clustered in the same group in all of them. Usually, Jagst and Kocher
rivers react distinctly from the other part. Also, the first upstream sub-catchments plus a
part of the Enz are in the same cluster. An optimization scheme clustering is the applied idea
to innovatively cluster the general floods with a less possible presumption for clustering, such
as the number of clusters. The simulated annealing is employed in an intertwined and robust
way to cluster extreme flood series. Here, the Silhouette coefficient is used for optimization’s
objective function role. As a result, the Robust Simulated Annealing is introduced as a new
tool for multidimensional clustering. However, this method needs to be investigated and
developed further.

The applied flood frequency analysis showed that the flow-connected regions on the main-
stream reacted similarly when general floods happened. The topography and geography had
more impacts on simultaneous occurrences of severe floods. Due to this, the upper Neckar
with high elevations and different geological properties are separated from the rest of the basin
and divided into two distinct areas, where the Neckar and Fils rivers flow. It demonstrates
that simultaneous incidences distinctly respond from the general occurrences of floods.

“My knowledge has reached the point where I know that I do not know.”

Avicenna - Ibn-e-Sina



Kurzfassung

Überschwemmungen sind seltene Phänomene, die viele menschliche und finanzielle Kosten
verursachen können. In der Regel werden bei der Hochwasseranalyse die Unterschiede
in der Gleichzeitigkeit und der Wechselwirkung von Hochwassern in verschiedenen Re-
gionen nicht berücksichtigt. Das unzureichende Wissen für den Umgang mit diesen Ex-
tremereignissen kann zu Katastrophen führen. Aufgrund unterschiedlicher Niederschlagsin-
tensität und -typen, unterschiedlicher atmosphärischer Zirkulationsmuster und Jahreszeiten
gibt es verschiedene Arten von Überschwemmungen. Auch die Auslösemechanismen von Ex-
tremereignissen können unterschiedlich sein, wenn einige Einzelereignisse zur gleichen Zeit an
mehreren Orten auftreten. Großflächige Niederschläge in Kombination mit Schneeschmelze in
verschiedenen Orten einer Region bringen Abflussspitzen aus verschiedenen Gebieten zusam-
men und führen so zu extremen Hochwassern. Gleichzeitig auftretende Hochwasser können
unvorhersehbare Verluste und Zerstörungen flussabwärts verursachen. Ein anderer Ansatz der
Hochwasserhäufigkeitsanalyse ist die Untersuchung des allgemeinen Hochwasservorkommens.
Diese Hochwasser können individuell in verschiedenen Teilen eines Einzugsgebietes auftreten.
Sie können aber auch teilweise mit gleichzeitigen Hochwassern zusammen fallen. Traditionell
konzentrieren sich Forscher mehr auf die univariate Analyse und schenken der multivariaten
Analyse weniger Aufmerksamkeit. Die multivariate Extremwertanalyse ist ein Algorithmus
der raum-zeitliche Informationen liefern kann. Das Hauptanliegen dieser Forschung ist das
Verständnis des Überschwemmungsverhaltens hinsichtlich des gleichzeitigen und allgemeinen
Auftretens, das zum Hochwasserrisikomanagement beitragen kann. Außerdem ist es das Ziel
dieser Forschung, den Nexus eines Einzugsgebiets, die Prozesse des Flusssystems, geologische
Aspekte und ihre Wechselwirkungen zu verstehen, die zu Spitzenhochwassern führen. Das
Verständnis des Clustering von extremen Hochwassern kann den Forschern mehr Einblicke
in den Hochwasserschutz geben. Die Clusterbildung kann eine Region in verschiedene Ge-
biete unterteilen, die unterschiedliche Aktionspläne für das Hochwassermanagement und die
Risikoanalyse erfordern. Außerdem kann die Versicherungs- und Rückversicherungsbranche
neue Koeffizienten zur Abschätzung von Risiko und Schäden für jedes Clustergebiet berech-
nen. Das mehrdimensionale Hochwasserclustering von zwei Hochwasserereignistypen ist ein
weiterer Gesichtspunkt, der in dieser Forschung angewendet wird. Entsprechend der Prob-
lemstellung werden Clustermethoden für gleichzeitige und allgemeine Hochwasserereignisse
bewertet, um geeignete Methoden für weitere Forschungen vorzuschlagen.

Daher werden in dieser Dissertation die raum-zeitliche multivariate Analyse und die quan-
titativen Eigenschaften von simultanen und allgemeinen Hochwassern des Neckars und seiner
Nebenflüsse betrachtet, um neue Erkenntnisse für den Hochwasserschutz und die Risikoanal-
yse zu gewinnen. Der Neckar hat einen mittleren Abfluss von 158 m3/sec und den höchsten
aufgezeichneten Tagesniederschlag von 97 mm im Einzugsgebiet.



In dieser Doktorarbeit werden 55 Jahre Tagesabflüsse von 1961 bis 2015 für 46 Messpegel
im Neckareinzugsgebiet verwendet. Zunächst wird das gleichzeitige Auftreten von Ex-
tremhochwassern untersucht. Dann werden das hierarchische Clustering und die multidimen-
sionale Skalierung durchgeführt, um die Teileinzugsgebiete zu clustern, die ähnlich reagiert
haben. Zur Durchführung der Clustering-Methoden werden zwei Dissimilaritätsmetriken
und fünf Verknüpfungsmethoden berechnet und angewendet. Dann werden die erhaltenen
Cluster ausgewertet, um die bestmögliche Clusterkarte zu bestimmen. Als Ergebnis wird
das Einzugsgebiet in drei Clusterbereiche unterteilt. Aufgrund der geophysikalischen Kom-
plexität des oberen Neckars wird dieser Bereich in West und Ost unterteilt. Der Rest des
Einzugsgebietes wird ebenfalls als eigener Cluster gruppiert. Im nächsten Kapitel wird die
“Principal component analysis” (PCA) auf den Datensatz angewendet, um das primäre Ver-
halten der Abflusssignale über dem Neckar zu erfassen. Hier wird die PCA-Kreuzvalidierung
durchgeführt, um die beste Anzahl von Komponenten für die Zeitreihenrekonstruktion zu
finden. Die drei ersten Hauptkomponenten werden ausgewählt, um eine neue Zeitreihe zu
rekonstruieren. Dann wird die Differenz zwischen der ursprünglichen und der rekonstruierten
Zeitreihenmatrix als Restzeitreihe ermittelt. Danach werden aus der absoluten Residual-
matrix unabhängige gleichzeitige Peaks pro Jahr ausgewählt. Anschließend wird als Dis-
tanzmatrix die Korrelation zwischen den Paarsätzen ausgewählter Peaks bestimmt, um die
Beziehung der gleichzeitigen Ereignisse in verschiedenen Teileinzugsgebieten zu beurteilen.
Als nächstes wird hierarchisches Clustering angewendet, um die Multi-Site-Einzugsgebiete
in verschiedene Gruppen mit ähnlicher Reaktion zu clustern. Als Ergebnis werden Cluster
definiert, um die Region mit unterschiedlichem Verhalten bezüglich eines Hochwasserreaktion-
smechanismus darzustellen. Schließlich wird die Region in die drei Hauptcluster unterteilt,
von denen zwei zu dem spezifischen geologischen Karst- und Kristallinfelsbecken und der
höchsten Erhebung gehören. Die Ergebnisse zeigen ein bestimmtes Muster für das Aus-
maß des Hochwasserereignisses, das jeder Gruppe von Teileinzugsgebieten entspricht. Die
Ergebnisse der angewandten PCA-AHCT (Agglomerative Hierarchical Cluster Tree) werden
mit denen der AHCT-Methoden aus dem vorherigen Kapitel verglichen. Folglich werden
die Ähnlichkeiten zwischen den gewonnenen Clustern statistisch ausgewertet. Somit kann
dieses Clustering eine grundlegende und innovative Methode in der multivariaten Analyse der
Risikoanalyse und der hydrologischen Modellierung unter Berücksichtigung des gleichzeitigen
Auftretens von Hochwassern sein.

Die allgemeinen Überschwemmungen werden mithilfe einer verteilungsbasierten Dissimi-
laritätsmatrix geclustert. Zunächst werden die allgemeinen Hochwasser identifiziert. Dann
werden die Kolmogorov-Smirnov-Statistiken aus den empirischen kumulativen Verteilungs-
funktionen der allgemeinen Hochwasserreihen berechnet. Schließlich wird ein hierar-
chisches Clustering durchgeführt, um mögliche Gruppen von Hochwassern in verschiede-
nen Teileinzugsgebieten zu finden. Die erhaltenen Cluster werden mit drei Clustering-
Evaluationskriterien bewertet und validiert. Außerdem wird die optimale Anzahl von Clus-
tern für die Neckareinzugsgebiete ermittelt. Die fünf verschiedenen Verknüpfungsmethoden
erhalten unterschiedliche Cluster; bei allen wird jedoch das Einzugsgebietszentrum in einen
Cluster eingeordnet. In der Regel werden die Flüsse Jagst und Kocher deutlich vom anderen
Teil abgesetzt. Auch die ersten flussaufwärts gelegenen Teileinzugsgebiete sowie ein Teil der
Enz befinden sich im gleichen Cluster. Ein Optimierungsschema Clustering ist die ange-



wandte Idee, um die allgemeinen Hochwasser innovativ zu clustern, mit weniger notwendigen
Vorgaben für das Clustering, wie z.B. die Anzahl der Cluster. Das Simulated Annealing wird
in einer verflochtenen und robusten Weise eingesetzt, um extreme Hochwasserserien zu clus-
tern. Hier spielt der Silhouette-Koeffizient die Rolle der Zielfunktion für die Optimierung.
Als Ergebnis wird das Robust Simulated Annealing als neues Werkzeug für mehrdimension-
ales Clustering eingeführt. Diese Methode muss jedoch noch weiter erforscht und entwickelt
werden.

Die angewandte Hochwasserhäufigkeitsanalyse zeigte, dass die mit dem Fluss verbun-
denen Regionen am Hauptstrom ähnlich reagieren, wenn allgemeine extreme Hochwasser
auftreten. Die Topographie und die Geographie hatten jedoch mehr Einfluss auf das gle-
ichzeitige Auftreten von schweren Hochwassern. So ist der obere Neckar mit hohen Erhebun-
gen und unterschiedlichen geologischen Eigenschaften vom Rest des Einzugsgebietes getrennt
und in zwei unterschiedliche Bereiche aufgeteilt, in denen Neckar und Fils fließen. Es zeigt
sich, dass sich die gleichzeitigen Ereignisse deutlich von den allgemeinen Hochwasserereignis-
sen abheben.

„Mein Wissen hat den Punkt erreicht, an dem ich weiß, dass ich es nicht weiß.”

Avicenna - Ibn-e-Sina





1 Introduction

1.1 Motivation

Extreme floods are triggered by large-scale precipitation or a combination of snowmelt and
rainfall. These events are considered as one of the principal natural disasters in the world.
Approximately one billion people in the world live in floodplains (Baldassarre et al., 2013). In
Europe, floods have led to more than 426 billion euros of loss between 1980 – 2017 (European
Environment Agency, 2019). Notably, in Germany, two catastrophic floods in 2002 and 2013
have resulted in losses of 26 billion dollars (Schröter et al., 2015). Additionally, in 2016, the
losses were estimated to be 4.1 billion dollars for a couple of extreme events (van Oldenborgh
et al., 2016; MunichRe, 2019). These massive losses compel us to explore upcoming threats
in ways that were not considered in traditional frequency analysis.

The usual flood assessments in the occurrence frequencies have been exerted by a vast range
of techniques to perform univariate analyses of extreme events. Nevertheless, univariate
statistics cannot discover the flood spatial interactions within catchments, because the flood
leading mechanisms in different catchment locations can be different. Therefore, the multi-
variate extreme value statistics might cover both time and space characteristics of the floods
at the same time, although, multivariate analysis of such variables is rarely performed for
extreme values (Favre et al., 2004). Traditional multivariate extreme value statistics have
constraints on handling the dependence structure (Wyncoll and Gouldby, 2015).

Moreover, the time series of discharge flows have various influential elements, such as linear
trends and seasonal and cyclical terms (Ming et al., 2017; Milliner et al., 2018). These series
have vivid periodic terms that are probably caused by some geomorphological features and
meteorological signals, which should be considered (Schmidt et al., 2008; Moeeni et al., 2017).

This recently developed understanding of floods requires new approaches to investigate. By
investigating the spatial characteristics of large-scale floods, the flood protection network
can be adjusted by recognizing new spatiotemporal patterns of floods to apply a robust
method to notify danger before a disaster. Multivariate analysis of extreme floods is the
focus of this study, which can overcome some disadvantages of the univariate analysis. The
proposed thesis aims to investigate the flood interactions and the coincidence of flood events
to comprehend the relevant processes and causes leading to extreme floods. In addition, this
research tries to understand better the spatial aspect of the flood generating mechanism.
Moreover, we assess the possibility of improving the current hydrological models to perform
better simulation, based on newly proposed methods for identifying spatial clustering of
extreme flood occurrences.
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1.2 Challenges in flood analysis

Flood risk assessment requires precise statistical analyses of discharge flows for insurance
and reinsurance purposes or for the design of appropriate flood protection systems (Ehmele
and Kunz, 2019). Besides, flood defenses are critical components to protect against them.
Therefore, it is essential to deal accurately with their effects and consider the concurrency of
flood occurrences at multiple locations. The risk arises when massive floods coincide in the
mainstream and its tributaries. This enhanced risk is characterized by flood magnitude and
occurrence date (Chen et al., 2012). Further, the multivariate analysis can be inappropriate
when the extreme values of all variables are unlikely to occur together. However, recent
developments in multivariate extreme value methods have removed and solved some of these
constraints and opened opportunities for improving flood risk analysis methods (Heffernan
and Tawn, 2004). Falter et al. (2015) proposed a novel approach innovatively evaluating river
flood risk by considering magnitudes of peak discharge, but still, the concurrency of floods
was not assessed in their work.

This dissertation mainly focuses on three approaches to the clustering of flood occurrences.
The first challenge is how simultaneous occurrences occur; the second one is how do general
floods react and interact with each other? i.e., to what extent they happened in the case
study’s basin? The third one is the spatial extent to which floods relate to each other.
Different techniques of clustering are developed to present the most significant algorithms for
the clustering of extreme events. In the end, this thesis will answer the difference between
these two approaches, and if the general and concurrent floods behave differently in their
spatiotemporal dependencies? The three challenges are discussed in the following sections.

1.2.1 Simultaneously occurrences of floods

Floods that simultaneously affect many sites might be considerable challenges to systematize
flood disaster management for the indemnification and reinsurance industry (de Moel et al.,
2009). So far, much has been investigated in terms of crisis mitigation and risk evaluation
(Brázdil et al., 2006; Baldassarre et al., 2013; Alfieri et al., 2014; Haigh et al., 2016; Dewan
et al., 2019; Diederen et al., 2019). Nevertheless, they mostly did not take the simultaneous
occurrence of floods into account, which plays a significant role in planning and flood risk
management. Flood hazards could remarkably increase if floods arrive simultaneously in
rivers (Mirza, 2003; McPhillips et al., 2018; Kundzewicz, 2019). The synchronized forms of
flooding approach to an accumulation of losses with the risk assessment required to be ex-
panded to a notion representing the spatial risk of flooding (Uhlemann et al., 2010). A similar
simultaneous occurrence of peak flows caused devastating damage (Mirza, 2002). Therefore,
the depth and extent of floods and associated damage are extensive when the major rivers
reach their peaks simultaneously with distinct causative mechanisms (United Nations, 1964;
Bertle, 1973). The contemporaneous incidences of extreme floods may have a detrimental
impact on society and urban areas more than an individual occurrence (Leonard et al., 2014;
Hao et al., 2018; McPhillips et al., 2018). After the destructive flood on the Meuse river in the
Netherlands with the characteristic of coinciding in several basins, the government decided
to evacuate around two hundred thousand people living in the floodplain areas (Geertsema
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et al., 2018). Furthermore, simultaneous occurrences of floods are crucial in designing power
plants and hydraulic structures (Newton, 1983). These floods depend on weather circulation
patterns (Pedrozo-Acuña et al., 2014). Therefore, assessment of coincident occurrences of
extreme floods plays a pivotal role in diminishing possible damages and levels of risk. Con-
sequently, in this regard, two questions come up: To what extent simultaneous behavior of
extremes is similar to each other in different catchments? Furthermore, what are the reasons
for having probable distinct clusters in the catchment? Accordingly, the thesis will answer
the above questions. Also, one of the primary concerns of this research is to understand
better the synchronous occurrence of floods in upstream sub-basins that can contribute to
flooding risk management by defining areas that may have distinct exposure factors.

1.2.2 General flood behavior

In addition to the synchronization extent of flood events in the previous section, the spatial
relationship of general floods between various drainage basins is studied in this part. Here,
the challenge is, how do the designated algorithms for clustering in the previous section
work for the peaks without considering the concurrent events?. This challenge will focus on
general floods. Traditionally, researchers have tried to find and identify the flood types and
patterns (Thieken, 2009; Glaser et al., 2010; Hattermann et al., 2012; Hall and Blöschl, 2018).
Nevertheless, it is not clear that how do general floods react in different sub-catchments in
a basin. However, recently, it became visible that flood patterns have changed in terms of
magnitude and timing due to climate change (Blöschl et al., 2017, 2019). Therefore, another
challenge in incidences of extreme events examination is to discover probable changing points
in time series in different catchment areas. Therefore, there may be different clusters of floods
prior-to these possible alteration points.

This part will endeavor to answer the question: Is a pairwise assessment of flood in both
general (common) and simultaneous terms sufficient to describe the multidimensional behav-
ior? Or some other innovative methods should be taken into account? In conclusion, we will
answer whether the resulting clusters for simultaneous events are the same as the general
flood clusters or not and what factors caused these possible differences. Therefore, the main
achievement of solving this challenge is understanding to what extent floods react together
in time and space.

1.2.3 Clustering algorithms

In addition to the last two challenges, the method of performing clustering is also one of
the challenges of this research. Such that, what kind of clustering method is suitable for
extreme floods, or what are the differences between the various methods, was formulated
during the analysis in the previous two sections. Several different methods have been studied
and implemented in this dissertation that have the ability to analyze multidimensional space
properly. Finally, a new method is developed for clustering occurrences of extreme events by
applying the optimization scheme.

The thesis attempts to answer the following questions. Which regions of the catchments
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reacted differently in severe events and what was the reason? How different are the results
of employed clustering methods in this study? Furthermore, how near the different resulting
clusters are to each other, and how far are they? Is there any alternative way for a multivariate
extreme value analysis for flood risk management?

In summary, the thesis’s objective is to understand the flood triggering and reaction areas
coherently due to the interactions of meteorological variables, catchment properties, and river
network processes. Furthermore, the question of how they extend in space and time will be
answered. Therefore, clustering simultaneously occurrence and general largest floods in a
catchment is proposed using distinct clustering methods in the multidimensional space.

1.3 Scopes and chapters of the thesis

This study aims to address the three challenges discussed in the last section. The thesis is
comprised of seven chapters as follows:

Chapter one : Introduction, explains the necessity of investigating the clustering of
extreme events in hydrology. First, the simultaneous occurrence of flood events is described
and then the general behavior of flood occurrences is demonstrated. Third, the clustering
challenges are expressed.

Chapter two : Study area and data, gives a brief assessment of the study domain and
the discharge data. The major tributaries of the Neckar catchment are introduced. This
chapter illustrates the catchment delineation based on discharge gauges coordinates. Next,
it explains some of the physical characteristics of the regions, like streams, distance to the
outlet, longitudinal profile of the river, and the slope’s steepness. In the following parts,
probable trend and the slope of changes in the time series is investigated. Finally, it presents
probable breakpoint/s in time series.

Chapter three : Hierarchical cluster analysis of the simultaneous occurrence of

floods, focuses on the floods, which happened at the same time and tries to find out the
interconnection of the concurrent most enormous floods in space. The simultaneous flood
identification distinguishes this part from the general flood behavior. Next, hierarchical
clustering is employed to explain to what extent the synchronous floods react in the basin.
Also, Multidimensional scaling as a method for dimension reduction is applied here. The last
part demonstrates the difference between the two mentioned methods.

Chapter four : PCA-based clustering of the simultaneous occurrence of floods,
starts with an overview of principal component techniques, such as time series reconstruc-
tion and residual series. Then, the most prominent and common behavior, and terms are
captured to work with the residual time series. Next, flood identification is assessed with
the contemporary highest values in the residual series. Furthermore, the rank associations of
these series are scrutinized and used as an input for hierarchical cluster analysis. Eventually,
this chapter shows all the possible cluster maps and compares the distinct methods used in
this chapter and the previous one.
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Chapter five : Distribution-based clustering of general floods (KS clustering),
shifts to explore the general flood behavior. Here, instead of concentrating on the correlation
of flood series, a distribution-based analysis is examined. This chapter evaluates the pairwise
distance of flood series by utilizing the Kolmogorov-Smirnov test. Further, the similarity of
flood distribution based on the previous step is calculated. Finally, the chapter maps the
conclusive clusters.

Chapter six : Simulated Annealing clustering of general floods, introduces an in-
novative clustering algorithm, employing optimization schemes into machine learning and
cluster analysis. This chapter presents two intertwined Simulated Annealing optimization
schemes as a robust technique to find the most similar flood reaction areas.

Chapter seven : Conclusion, presents a summary of the thesis to answer research ques-
tions.

The flow diagram of this thesis is shown in Figure 1.1.
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Figure 1.1: The flow diagram of the thesis





2 Study area and data

In hydrology, understanding the catchment area and its properties as well as evaluating and
pre-processing data play a key role. In this thesis, the study area is the Neckar catchment and
the data is daily discharge flow measurements across the basin. Besides, the precipitation time
series is employed briefly to check the identification of simultaneous occurrences of floods.
In the continuation of the chapter, initially, the catchment is delineated. Then some of the
physical features of the catchment are investigated. Finally, a trend test, the slope of changes
and breakpoints of discharge time series are analyzed and detected. This information may
show a significant relationship between the possible clusters and regions with similar trends
or slope of changes.

Figure 2.1: Coordinate of the Neckar catchment in the southwest of Germany

The Neckar is a tributary of the Rhine river with a length of 367 km and is located in
the southwest of Germany. The catchment area is approximately 14000 square kilometers,
covering around 40% of Baden-Württemberg (BW) state’s area. The study region is split
into 46 sub-catchments with various drainage sizes between 60 to 14000 km2. The average
flow at the outlet of the Neckar river near Heidelberg is 158 m3/sec. According to the Digital
Elevation Model (DEM) map of the catchment in Figure 2.1, the highest elevation point



8 Study area and data

is located in the south and southwest of the area (Greene et al., 2019). The elevation in
the study area varies from 97 to 851 m. The most important tributaries of the Neckar,
respectively, are Enz, Kocher and Jagst rivers. Afterward, Nagold, Rems, and Fils are other
vital branches of the river (Table 2.1).

Table 2.1: Major tributaries of the Neckar River

Rivers Catchment area (km2) Length of record

Enz 2223 1961-2015
Kocher 1989 1961-2015
Jagst 1837 1961-2015
Nagold 1144 1961-2015
Fils 699 1961-2015
Rems 583 1961-2015

The local topography mainly adjusts the precipitation in the region. The highest mean
annual precipitation of 2000 mm was recorded in the northern Black Forest, which is in the
southwest of the Neckar (Emblemsvåg, 2012; Seidel et al., 2012). By moving to the east of
the region, the mean annual precipitation is reduced to around 800-1000 mm (Bürger et al.,
2006). Besides, the most extensive daily precipitation recorded among selected stations from
1961 to 2015 is 97 mm.

The geological unite of the Neckar basin is characterized by a gentle dipping of the formations
towards the southeast. Nine major geological units were recognized, of which six were catego-
rized as freshwater aquifers. Furthermore, the impermeable crystalline rock was specified as
the bottom of the aquifer system (Götzinger et al., 2008). Diverse geological formations form
the uppermost aquifer in distinct catchment regions (Jagelke and Barthel, 2005). Conse-
quently, the existence of the dipping layers may lead to a complex hydrogeological condition.

In addition, some anthropogenic changes have affected the river and subsequent discharge
flow in the independent tributaries of the study area. For example, Kalweit et al. (1993);
Bormann (2010) mentioned that around 60 constructed reservoirs enhanced the catchment’s
complexity.

2.1 Catchment delineation

Regarding coordinates of measurement gauges in the Neckar basin, sub-catchments are de-
lineated (Schwanghart and Kuhn, 2010; Schwanghart and Scherler, 2014). All the stations
and their river tributaries in the catchment are shown in Table 2.2.
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Table 2.2: Discharge measurement gauges in the Neckar catchment
Nr. ID Area(km2) Name River Nr. ID Area(km2) Name River

1 406 4.12∗102 Rottweil Neckar 24 2452∗ 3.75∗102 Nagold Nagold

2 409 6.53∗102 Oberndorf Neckar 25 2471∗∗ 7.50∗10 Gruol Stunzach

3 411 1.11∗103 Horb Neckar 26 2477∗∗ 1.77∗102 Oberensingen Aich

4 420 2.32∗103 Kirchentellinsfurt Neckar 27 2489∗ 1.49∗102 Tübingen Steinlach

5 422 1.77∗102 Riederich Erms 28 3421 1.65∗103 Vaihingen Enz

6 427 3.96∗103 Plochingen Neckar 29 3465 1.94∗103 Stein Kocher

7 434∗∗ 5.04∗102 Murr Murr 30 3470 1.82∗103 Untergriesheim Jagst

8 454 1.26∗104 Rockenau Neckar 31 3498 1.29∗103 Kocherstetten Kocher

9 460∗ 4.56∗102 Meckesheim Elsenz 32 4408∗ 2.10∗102 Owingen Eyach

10 463∗ 6.64∗10 Süßen Lauter 33 4416⊗ 1.37∗104 Heidelberg Neckar

11 473∗∗ 2.46∗102 Abtsgmünd Lein 34 4421∗ 1.56∗102 Mosbach Elz

12 477 1.02∗103 Dörzbach Jagst 35 4422 1.06∗103 Pforzheim Enz

13 478∗ 2.13∗102 Sennfeld Seckach 36 4427 7.02∗102 Plochingen Fils

14 1411∗ 1.65∗102 Schwabsberg Jagst 37 4428 7.41∗102 Gaildorf Kocher

15 1412 8.08∗102 Elpershofen Jagst 38 36056∗∗ 4.16∗102 Pforzheim Würm

16 1439∗ 1.45∗102 Geislingen Fils 39 40670∗ 1.26∗102 Rangendingen Starzel

17 1452∗ 5.83∗10 Unterlenningen Lauter 40 44603∗ 1.16∗102 Bad Urach Erms

18 1458∗ 8.82∗10 Kirchheim Lindach 41 46349 4.79∗102 Wöllstein Kocher

19 1462 2.87∗103 Wendlingene Neckar 42 46358∗ 1.12∗102 Hüttlingen Kocher

20 1470∗ 5.69∗102 Neustadt Rems 43 76121∗ 1.15∗102 Geislingen Eyb

21 2406∗ 1.23∗102 Sachsenheim Metter 44 76123∗ 2.82∗102 Neuenbürg Enz

22 2431 1.91∗102 Wendlingen Lauter 45 76178∗∗ 2.77∗102 Geislingen Bühler

23 2446∗ 1.67∗102 Horgen Eschach 46 76179 3.86∗10 Salach Fils

⊗: The outlet of the Neckar catchments in the Ziegelhausen in Heidelberg.
∗: The headwater subcatchment.
∗∗: The headwater subcatchment not on the outer border of the catchment.

The subcatchment area in this thesis is calculated based on all areas behind the selected
gauge. The subcatchments areas range between almost 39 km2 in Salach on Fils river (station
Nr.46 (76179)) and 13722 km2 in Heidelberg on the Neckar river. Station Nr.33 (4416) in
Heidelberg is the outlet of the study area. The headwater subcatchments like station Nr.14
in Schwabsberg on the Jagst River are the stations where there is no measurement gauge
before that. Usually, these gauges are located on the border of a catchment. However, due to
the topography of the Neckar catchment, some headwater stations are in the middle of the
case study (such as station Nr.38 in Pforzheim on the Würm River. Therefore, it is possible
to have distinct behavior in the headwater subcatchment areas.

The result of the catchment delineation based on 46 stations is illustrated in Figure 2.2, where
each station is the outlet of its sub-catchment.

In the left panel of Figure 2.2a, each sub-catchments area is mapped with distinct colors and
the red dots are shown the location of outlets for each of them. Figure 2.2b is illustrated the
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(a) Sub-catchments in the Neckar basin
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(b) Biggest streams in the Baden Württemberg

Figure 2.2: The Neckar catchment delineation, based on measurement stations

main streams of the Neckar that are mainly in the BW state. In the middle of the map, the
major rivers of the Neckar are clearly shown that lead to the Rhein river in the Northwest
(top left) corner of the map. Yellow color parts are the highest elevation in the region of the
Swabian Jura and the Black forest. Also, it is possible to point to the Danube River source
in the south and southeast on this map.

2.2 Physical characteristics of the catchment

2.2.1 Main river

The major streams in the study area are demonstrated in the previous map (see fig. 2.2).
Here, it is essential to recognize the main river and its tributaries in the catchment area.
Figure 2.3 shows the mainstream and other adjunct rivers.
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Figure 2.3: Mainstream in the Neckar

The blue line shows the mainstream of the catchment, which all other tributaries lead the
flow in the Neckar catchment. The dark color streams are taken other paths and then are
joined the main river. This indicates the different topographic sections and divisions in this
area.

The distances from each drainage sub-basin along the flow network are calculated to gain
more insights into the physical characteristics of the Neckar. From two different perspectives,
the distance of catchments from the outlet of the Neckar has been studied. The first is the
top view and the second one is the cell by cell longitudinal profile. At the end of the thesis,
it will determine any relationship between resulted clusters and distances to the outlet.
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Figure 2.4: Cellwise distance to the outlet in the Neckar catchment, a) Distance from each drainage
basin along with the flow network, b) Density function of cell distances to the outlet
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In contrast to the Euclidean distance, the hydrological distance presented in Figure 2.4 shows
distinct behavior. In some parts of the catchment, such as Northeast and partly west, the
hydrological distance is longer than the Euclidean distance (Farther distances areas are shown
in red). Also, in part b of Figure 2.4, the most frequent distance to the outlet is around 250 to
300 km. Then, at approximately 100 km from the catchment outlet, the most comprehensive
section is visible.

2.2.2 Longitudinal profile

The mainstream of the Neckar starts 360-370 km from the outlet in Heidelberg. The highest
elevation point of the main river is 550 m and the lowest elevation is 97 m above sea level.
In the lower elevation, many fluctuations are visible on the map between 40 to 120 km from
the outlet (see fig. 2.5).
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Figure 2.5: The longitudinal profile of the mainstream

2.2.3 Steepness of slopes

In order to understand better the longitudinal profile of the catchment, the steepness of slopes
is calculated (Schwanghart and Scherler, 2017) and the results in three parts are presented
in Figure 2.6.

In Figures 2.6a and 2.6b, the hillslope gradient on the mainstream is plotted. These figures
show more visible information in comparison to Figure 2.5. Besides, the most considerable
gradient is obtained for two sections of 60 to 110 km and after 350 km to the outlet. Further-
more, the longitudinal profiles of the other branches are also shown in Figure 2.6c. Compared
to the main river route, the highest gradient exists at an altitude of 250 to 400 meters. Also,
this figure shows that after joining most of the river tributaries to the main river at a distance
of 140 km from the outlet, the gradient of the slope changed more sharply.
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Figure 2.6: The steepness of slopes over the Neckar catchment
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2.3 River regulations

River regulation controls the variability of stream flows or river water levels to fulfill human
demands for different purposes. Water supplies, irrigation agriculture, hydroelectric power
generation, navigation, and flood control, and land drainage are examples of river regulation
(Petts, 1999). It is an essential tool for socio-economic development, which is controlled by
the coordinated regulation of flows throughout entire river basins (Nikitina et al., 2010). River
regulation can be made in four main ways. First, flow regulation is achieved by building large
dams, often in the headwaters of rivers or in canyons downstream. This form of regulation
aims to reduce floods, increase flows in the river during the dry season, or save water from
one year to the next. Second, it is possible to regulate rivers by building a chain of major
dams or hydraulic structures. Third, constructing a series of run-of-river impoundments to
maintain water levels, managed by navigation weirs and locks. Usually, they include low-head
hydroelectric power plants. Fourth, building a channel to regulate rivers or lead streamflow
to small lakes to protect the environment and to do sport (Petts, 1999).

(a) Dams, reservoirs in the Neckar basin (b) Hydraulic structures in the Neckar basin

Figure 2.7: The Neckar catchment delineation, based on measurement stations

In Figure 2.7a, the green dots are dams (Stauanlage), including the built flood protection
structures (Hochwasserschutz), fish ponds (Fischteich), bathing lakes (Badesee), energy gener-
ation structure (energiegewinnung), environmental protection structure (Naturschutz), screes
(Schlamm) and sport water structures. The tiny black shapes are the small water bodies such
as reservoirs and lakes in the Neckar catchment. In total, there are 4111 water bodies and
423 dams in the Neckar basin before the outlet near Heidelberg (LUBW, 2021). In Figure
2.7b, the red dots are all hydraulic structures in three categories of the regulatory, river bed,
and hydropower structures which equal to 4406 constructions. Among these constructed
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buildings, 94% of structures are currently active (LUBW, 2021). Figure 2.7 shows that the
Neckar is a highly regulated river.

unclassified/not rated

1 unchanged to slightly changed

2 changed moderately

3 changed significantly

4 greatly changed

5 very much to completely changed

Figure 2.8: The main river channel structural changes

The Neckar River originates from the southwest and flows to the south of the study area.
Then the streamflow completely changes direction and continues to the north. The Plochingen
station (Nr. 6) is the place of flow diversion and it is the outlet of the upper Neckar (shown as
red circle). Almost, every part of the Neckar river after this point was greatly to completely
changed, which is shown in orange and red color in Figure 2.8. Before this point, usually, the
revise was slightly to significantly changed (LUBW, 2021). Also, a part of the map in dark
blue color is not rated yet.

2.4 Data and time series evaluation

The discharge flow measurement data of the Neckar basin is considered for this thesis,
which is kindly provided by Landesanstalt für Umwelt, Messungen und Naturschutz Baden-
Württemberg (LUBW). Also, precipitation data issued by Deutscher Wetterdienst (DWD) is
used to verify individual events. The daily discharge time series from 1961 to 2015 is studied
for 46 gauges in different parts of the basin. Also, the Copula-based method is employed for
infilling missing values in time series (Bárdossy and Pegram, 2014).

In order to accurately evaluate the input data, the data is first divided into different time
intervals: day of the year, week of the year, month of the year and yearly distribution. Then,
the discharge flows per different temporal resolutions are displayed in Figure 2.9. Figure
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(d) Discharge per year

Figure 2.9: Discharge flow in different period of time intervals

2.9b shows a more clear difference among decades. Measured discharges after 2004 have
shown less volatility. Most of the time, their maximum measured volumes are less than the
maximum discharge volumes in previous years, except for the first five weeks of the year. On
the monthly scale, the highest river discharge volumes have a downward deviation, except
for January. However, in the first three months of the year, the minimum volumes of river
water in the early years are much lower than the average of the lowest discharge measured
in other years (see fig. 2.9c). The scatter points in different years are the occurred floods in
a year at the top of the plot. Each year is plotted with different colors to see the extent of
scattering data in different years as the symbol of extreme events (see fig. 2.9d). In total,
the results express that the range of discharge series has been changed and it is necessary to
calculate the amount of likely changes per year.

2.4.1 Trend analyses

A non-parametric trend test using the Mann-Kendall Tau-b technique is performed for all
designated temporal resolutions to investigate the stationarity of the discharge time series
(Mann, 1945; Kendall, 1948). Putting the trend significance of a time series on a map shows
the trend pattern in space. Then a probable trend line is plotted by employing ordinary least-
squares and Sen’s slope to see the possible orientation of changes. In general, trends usually
meaningful for the independent data. Here, the independent data could be the extremes.
Therefore, it is recommended to apply the phase randomisation method on the dependent
data to catch the possible trend/s (Radziejewski et al., 2000).

The results of Figure 2.10 show that changes in time intervals significantly alter the result
of the Mann Kendall test so that by moving from daily to yearly resolution, fewer stations
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(a) Daily time interval (b) Weekly time interval

(c) Monthly time interval (d) Yearly time interval

Figure 2.10: Mann Kendall trend analysis in different time intervals for the discharge time series in
the Neckar at the significance level of 0.05

are reported to have a significant trend. In Figure 2.10a, only three small sub-catchments in
different parts of the region have no trend over time. The highlighted point in the four parts
of Figure 2.10 is that all the sub-basins along the main river, always have a significant trend
at α = 0.05 level in different time intervals.

2.4.2 Theil-Sen’s slope

The Theil–Sen’s slope estimator, or the Kendall robust line-fit method, also known as Sen’s
slope, is a robust linear regression method. It chooses the median slope among all lines
through pairs of sample points (Sen, 1968; Theil, 1992). Theil–Sen’s slope can be calculated
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efficiently and is insensitive to outliers. It can be significantly more accurate than simple
linear regression for skewed and heteroskedastic data and can be estimated besides simple
least-squares even for normally distributed data (Peng et al., 2008; Danziger, 2020).

1970 1980 1990 2000 2010
0

200

400

600

800

1000

1200

1400

1600

1800

D
is

c
h

a
rg

e
 (

m
3
/s

e
c
)

Discharge time series of station Nr.33, Theil-Sen Slope = 0.196, LSline slope = 0.13

Discharge

Sens slop trend line

Ordinary Least Squares

Figure 2.11: The slope of changes in the discharge time series

Figure 2.11 shows a positive slope for both methods. The least-squares linear regression
presents 0.13 m3/sec per year increase of discharge and the Theil-Sen’s slope shows a higher
ascent with around 0.20 m3/sec per year. This slope of the line indicates that over time, the
river flow has consistently increased despite seasonal fluctuations.
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Figure 2.12: The Sen’s slope of changes in the discharge time series

Different sub-catchments in the Neckar show distinct slopes of changes in discharge time
series. The sub-catchments near the outlet have a solid positive slope of changes; however,
most areas have no slope or small negative slopes (see fig. 2.12). The reason for this difference
can be flood protection structures built after the Plochingen as the outlet of the upper Neckar.

2.4.3 Change points detection

According to previous steps and observing the various slopes of change in the discharge time
series, it is necessary to determine any possible breakpoint/s at different time intervals. Also,
Blöschl et al. (2017) detected noticeable patterns of flood timing shift over European countries
for the last fifty years. The following steps are taken to detect probable change points in a
signal, i.e., time series (Lavielle, 2005; Killick et al., 2012):

1. A spot is chosen and the signal is split into two sections.

2. An empirical estimate of the least squared line for each section is computed.

3. At each point within a section, the property deviates from the empirical estimate is
determined and the deviations for all points are added.

4. The total residual error using section by section deviation addition is found.

5. The location of the division point is changed until the total residual error is achieved a
minimum.

The target is to minimize the Sum of Squared Errors (SSE) of linear regression and observa-
tion for a given signal xm,xm+1, . . . ,xn. The algorithm employs as total deviation the sum
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of squared differences between the signal values and the Least-Squares linear fit (LS line) via
the values, which is shown as follows (Killick et al., 2012):

x̂(t) =
Sxt|

n
m

Stt|
n
m

(t−µ([tm . . . tn]))+µ([xm . . . xn]) (2.1)

and the SSE is equal to:
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(2.2)

where Sxy|nm, µ, σ2, χ and ∆ are the sum of squares of two sections x and y, mean, variance
and a given the section empirical estimate and the deviation measurement, respectively. If
there are K changing points in the series, then equation 2.3 should minimize as follows:

J(K) =
K−1∑

r=0

kr+1−1∑

i=kr

∆
(
xi;χ

([
xkr

, · · ·xkr+1−1

]))
+βK, (2.3)

where k0 and kK are the first and the last sample of the signal, respectively, the β specifies
the minimum improvement in total residual error for each changing point as a minimum
threshold.

Figure 2.13 illustrates a linear regression line into different sections of the discharge time
series of the station Nr. 33 in Heidelberg.

A breakpoint appears in all time intervals in the year 1989. Also, both separated sections
have shown a downward tendency; however, in Figure 2.11, a positive slope is reported. As
it is clear, especially in Figures 2.13c and 2.13d, that the slopes of the red lines are steeper in
the first part between 1961 to 1989 than in years between 1989 to 2015. This difference and
breaking point may also have occurred in a series of floods. As a result, it can be considered
and clustered separately for these two time periods. Moreover, there is the possibility to
detect the potential change points using phase randomization in the dependence data set
(Radziejewski et al., 2000).

This section gives us better information and perspective on the status of the data and the
characteristics of the catchment area, which will lead to the interpretation of the clustering
maps in the following chapters.
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(b) Weekly time series
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(c) Monthly time series
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Figure 2.13: The detection of change point/s in the outlet of the Neckar catchment
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occurrence of floods

3.1 Introduction

Floods are one the most destructive natural disasters which have to be controlled and mon-
itored to protect society. These extreme events brought hundreds of billion economic losses
only in Europe in the last decades. However, the flood protections and consequential dam-
ages are various in different countries. Particularly, in Germany, a couple of catastrophic
floods happened in 2002, 2013 and 2016, which caused more than 30 billion dollars damages
(Schröter et al., 2015; van Oldenborgh et al., 2016; MunichRe, 2019).

Therefore, flood risk assessment and flood defenses require precise analyses to design ap-
propriate flood management systems. After these massive floods in the Elbe and Danube
catchments, the German water and planning regulations were subjected to several amend-
mentations (Petrow et al., 2006). The socio-economic losses of the floods proved that it is
substantial to accurately deal with and consider the concurrency of flood occurrences. Floods
that simultaneously affect many sites might be a problem for systematic flood disaster man-
agement and the indemnification and reinsurance industry. So far, they have not taken the
simultaneous occurrences of extremes into account, which play a significant role for planers
and water resources executives (de Moel et al., 2009). Thus, a tremendous challenge still
remains for quantifying the potential and actual flood damages.

This chapter focuses on the spatiotemporal multivariate analysis of extreme floods, which
can overcome some disadvantages of the univariate analysis. The univariate flood frequency
analysis is broadly used in hydrological studies. Nevertheless, univariate statistics cannot
discover the flood spatial interactions within catchments. The peaks, primary behavior, and
dynamics of floods are required as the main properties for every veritable analysis. Further-
more, in the spatiotemporal space, these elements can be taken into account. Comprehensive
multivariate analysis is rarely performed in this issue because the minimal available number
of multivariate models are not well suited to represent extreme values (Favre et al., 2004).
The limited approach is inappropriate when the extreme values of all variables are unlikely to
occur together or when the interest supports the joint distribution, where only some subsets
of components are extremes.

The proposed research aims to investigate the coincident occurrence of flood events. More-
over, we assess the possibility of improving the current hydrological models to perform better
on the peak values based on newly proposed clusters of extremes. Also, one of the pri-
mary concerns of this research is to understand better the synchronous occurrence of floods
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in upstream sub-basins that can contribute to flooding risk management. Due to different
spatiotemporal precipitation distributions and the resulting outflows in these sub-basins.

3.2 Methodology

3.2.1 Flood events identification

In this research, the two biggest events per year for 55 years are selected for each location.
These two events have to be independent of each other (∨i,1 ⊥⊥ ∨i,2). On the other hand,
the second biggest peak should not be in ten-day intervals of the highest discharge in a
year. Furthermore, each peak should come from a single and separate rainfall event (not the
accumulation of complementary precipitation events in a period of ± 10 days).

t∨i,1
−10 < t∨i,2

< t∨i,1
+10 (3.1)

where ∨i,1 and ∨i,2 are the two biggest independent maximums in the ith year and t∨i,1
and

t∨i,2
are the day indices of their occurrences in that year.

3.2.2 Simultaneous events and their corresponding peaks

The flood event identification presented in the last step illustrates actual independent extreme
floods in the time series. Some floods arose at different times and some at the same time
window. Two days before and after each incident has been selected to find the simultaneous
occurrences. If there is a peak at one station and at the other it is not, the corresponding peak
in the time interval has been found. This procedure does not neglect any of these highest
values and keeps all possible information about the extreme event.

Figure 3.1: The procedure of flood events identification
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In Figure 3.1, the top panel shows the time series of a station, and the bottom panel is for
another station. Two left figures show the identified events independently from 1961 to 1965
in red dots. Some of the events happened at the same time (within two days intervals), and
some individually took place. In the middle, individual events are displayed in red circles.
These circles are the events that occurred independently. The figures on the right illustrate
the corresponding discharge with the star shape symbol for each individual event (red circles).
The highlighted yellow bound is a time window in which the corresponding discharge has the
highest value.

3.2.3 Investigation of association and distance matrix - (pairwise investigation)

Pairwise associations and correlations are calculated for all discharge series. Peak discharges
are analyzed to identify the frequencies of simultaneous floods. The time series are reduced
to the time steps where there was a flood in at least one of the investigated catchments.
Based on these correlations, Euclidean distance and Kendall distance are calculated. This
procedure may lead to different clusters of simultaneously occurring floods depending on the
considered series.

Every two stations have a pair set of coinciding extremes, which can be a minimum number
of 110 pairs (i.e., two events per year). The minimum condition can arise when all peaks took
place at the same time and be synchronized. Furthermore, 220 pairs would be a maximum
range, thus pointing to a lack of coincidence in the peaks. To find the similarity of the
orderings of the data when ranked by each of the quantities, Kendall’s Tau correlation of each
pair is calculated, and the square correlation matrix is computed. The distance matrix to
clarify the discrepancies among stations is evaluated with two the following distance methods
regarding this matrix.

Kendall’s Tau coefficient

Kendall’s Tau is grounded on counting the number of (i, j) couples, for i < j, that are com-
patible, for which Xa,i −Xa,j and Yb,i −Yb,j have the same sign (Kendall, 1948). Additionally,
the equation for Kendall’s Tau-b subtends an improvement in the normalizing constant for
the ties.

The coefficient (τ) is determined for column Xa in matrix X and column Yb in matrix Y , as:

τ =
2K

n(n−1)
(3.2)

where

K =
n−1∑

i=1

n∑

j=i+1

ξ∗(Xa,i,Xa,j ,Yb,i,Yb,j) (3.3)

and

ξ∗(Xa,i,Xa,j ,Yb,i,Yb,j) =





1 if (Xa,i −Xa,j)(Yb,i −Yb,j) > 0

0 if (Xa,i −Xa,j)(Yb,i −Yb,j) = 0

−1 if (Xa,i −Xa,j)(Yb,i −Yb,j) < 0





(3.4)
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The range of correlation is from −1 to +1. A value of −1 portends that one column ranking
is the converse of the other, while a value of +1 demonstrates that the two rankings are
identical. A value of 0 designates no relationship between the columns.

Distances are performed as follow (Equations 3.5 and 3.6):

Euclidean distance:

ejk =

√√√√
n∑

n=1

(xij −xik)2, 0 < ejk < ∞ (3.5)

where j and k are two objects, n is the number of attributes available in the data objects,
xij and xik are the values of the ith attribute of objects j and k, respectively.

Kendall’s Tau distance:

dij =
√

1− τij , 0 < dij < +1 (3.6)

The term of “Kendall distance”, defined as Equation 3.6, where τij is the rank correlation
between selected peak pair set of objects i and j, dij is the distance of two objects i and j in
terms of rank correlation, respectively.

3.2.4 Hierarchical cluster tree

Among the statistical methods used to investigate the spatiotemporal variations of clima-
tological variables, the application of multivariate techniques by cluster analysis has been
increasing in recent years (Modaresi Rad and Khalili, 2015). Clustering is the unsupervised
classification of pattern recognition (Jain et al., 1999) and can delineate homogeneous re-
gions and identify regional and global climate patterns (Unal et al., 2003; Lyra et al., 2014;
Corporal-Lodangco and Leslie, 2017). The hierarchical cluster analysis technique is closely
related to the quality and types of variables that can be grouped under different aspects
and to identify similarity and dissimilarity patterns among study variables. Thus, due to
the flexibility of combinations of similarity methods and metrics, hierarchical cluster analysis
is suitable for different purposes and situations, making its application comprehensive and
valuable for different types of variables and studies (Santos et al., 2019).

The clustering of catchments based on floods’ simultaneous occurrence can be done by con-
sidering different dependence measures. Since a visual identification of clusters with similar
flood behavior is impossible for multivariate cases, a geometric approach will be selected in-
stead. Hierarchical algorithms do not construct a single partition with k clusters, but they
deal with all values of k in the same run. It means if k = 1, all objects would be together
in the same group, and if k = n, every object configures in an individual group includes only
one value (Kaufman and Rousseeuw, 2009).

The hierarchical algorithm produces a dendrogram representing the nested gathering of pat-
terns and similarity levels at which clusters change (Jain et al., 1999). The clustering process
is performed by combining the most similar patterns in the cluster set to form a bigger
one. The different hierarchical clustering algorithms are investigated, including Unweighted
Pair Group Method with Arithmetic mean (UPGMA), Ward, Single, and Complete linkage
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methods (Day and Edelsbrunner, 1984; Bouguettaya, 1996; Jain et al., 1999; Murtagh and
Contreras, 2011, 2012; Bouguettaya et al., 2015).

3.2.4.1 Agglomerative Hierarchical Cluster Tree (AHCT)

Albeit pairwise investigations are unable to detect higher-order dependencies, but in some
cases may occur that output derived from clustering is likely to have more severe consequences
than foreseen from the pairwise investigation. Clustering may occur on slightly lower quan-
tiles than pairwise tail dependence, which might lead to seemingly tail-independent pairs of
catchments becoming dependent on large-scale flooding (Heffernan and Tawn, 2004). Hence,
Davidson and Ravi (2005) presented an agglomerative hierarchical clustering by definition of
some constraints, which improved the result of clustering. Agglomerative constructs hierar-
chy in the opposite direction, which makes different results. This method begins when all
objects are away from each other, then two clusters are merged in each level. It will continue
until one object remains only (Kaufman and Rousseeuw, 2009).

3.2.4.2 Construct agglomerative clusters for linkage

Linkage is defined as the distance between two clusters. Pursuant mathematics describes the
linkages employed by diverse methods:

Cluster r is organized from clusters p and q. nr is the number of objects in cluster r. xri is
the ith object in cluster r.

Single linkage uses the smallest distance between objects in the two clusters, because of that
it is also called nearest neighbor.

d(r,s) = min(dist(xri,xsj)), i ∈ (i, ...,nr), j ∈ (1, ...,ns) (3.7)

Complete linkage as the farthest neighbor exerts the largest distance between objects in the
two clusters.

d(r,s) = max(dist(xri,xsj)), i ∈ (1, ...,nr), j ∈ (1, ...,ns) (3.8)

Average linkage employs the average distance between all pairs of objects in any two clusters.

d(r,s) =
1

nrns

nr∑

i=1

ns∑

j=1

dist(xri,xsj) (3.9)

Weighted average linkage employs a recursive definition for the distance between two clusters.
If cluster r was constructed by combining clusters p and q, the distance between clusters r

and s is defined as the average of the distance between p and s and the distance between q

and s.

d(r,s) =
(d(p,s)+d(q,s))

2
(3.10)

Ward Jr (1963) presented a method that has been widely applied in semi-supervised learn-
ing. Ward is the Unique one among the agglomerative clustering methods, which is relayed
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on an inner squared distance criterion, producing clusters that minimize within-groups dis-
persion between objects. Besides, Ward's method is fascinating because it seeks clusters in
multivariate space (Murtagh and Legendre, 2014).

d(r,s) =

√
2nrns

(nr +ns)
||x̄r − x̄s||2 (3.11)

where || ||2 is the Euclidean distance. nr and ns are the numbers of elements in clusters r

and s. Also, x̄r and x̄s are the centroids of clusters r and s.

3.2.4.3 Optimal leaf tree

An optimal leaf order catches a dendrogram tree, the corresponding distance (tree,D), and
reflects an optimal leaf ordering for the hierarchical dual cluster tree. This optimal ordering
tree maximizes the sum of the similarities between adjacent leaves by flipping tree branches
without dividing the clusters (Bar-Joseph et al., 2001). Also, the optimal leaf order returned
as a length-M vector, where M is the number of leaves. Leaf order is a permutation of
the first mth vector, giving an optimal leaf ordering based on the specified distances and
similarity transformation.

3.2.4.4 Goodness-of-clustering

3.2.4.4.1 Inconsistency coefficient

The inconsistency coefficient is computed for each link k, as (Zahn, 1971; Jain and Dubes,
1988):

Yk =
Zk − h̄

σh
(3.12)

Where Y is the inconsistency coefficient for links in the hierarchical cluster tree Z. Also, h̄ is
the mean and σh is the standard deviation of all the links’ heights included in the calculation.
For links that have no further links below them, the inconsistency coefficient is set to 0.

3.2.4.4.2 Cophenetic coefficient

The cophenetic distance of two objects measures how similar those two objects have to be
to be grouped into the same cluster. In terms of clustering in the dendrogram form, the
cophenetic distance between two objects is the height of the dendrogram, where the two
branches that include the two objects merge into a single branch. Thus, it is a measure of
how accurately the tree demonstrates the dissimilarities among observations. The cophenetic
distance between two observations is demonstrated in a dendrogram by the altitude of the
connection at which those two observations are first attached. This altitude is the distance
between the two sub-clusters that are merged by that link. The cophenetic correlation for
a cluster tree (Z) is described as the linear correlation coefficient between the cophenetic
distances acquired from the tree, and the actual distances/dissimilarities from the cluster
configuration (Sokal and Rohlf, 1962; Farris, 1969; Holgersson, 1978). The largest cophenetic
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correlation coefficient, the more desirable hierarchical clusters. The magnitude of this factor
should be near to 1 for a high-quality solution. This measure can be employed to compare
alternative cluster solutions obtained using different algorithms. The cophenetic correlation
between Z (hierarchical cluster tree) and Y (distance matrix) is defined as:

C =

∑

i<j

(Yij −y)(Zij −z)

√∑

i<j

(Yij −y)2
∑

i<j

(Zij −z)2
(3.13)

Where Yij is the distance between objects i and j in Y . Zij is the cophenetic distance between
objects i and j, from Z. y and z are the mean of Y and Z, respectively. Also, the output
value (C), is the cophenetic correlation coefficient.
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Figure 3.2: An example of dendrogram and its cophenetic distances ci,j between four stations.

An example of the dendrogram and the associated cophenetic distance is shown in Figure 3.2.
Two downstream subcatchments and two upstream on the main river are selected, and their
floods are identified in Table 3.1. Naturally, the magnitude of floods is higher in downstream
than upstream. Therefore, The cophenetic distance between the first and second stations and
third and fourth stations are low. It means, subcatchments with similar floods are clustered in
the same cluster. Bigger substatements are in the red cluster and small ones are in cyan. The
difference between the two low flood objects is small, then their cophenetic distance (C3,4) is
much lower than the two biggest in downstream (C1,2). Cophenetic distances between stations
2 and 4 are huge and therefore, they cannot be similar to each other and be defined as separate
groups. The Pearson’s correlation coefficient corresponds to a quantitative comparison of the
linear correlation between arrows, equal to 0.99 in this example. The Spearman’s correlation
coefficient (ρ) corresponds to a qualitative comparison of the clustering, which considers the
ranks of the cophenetic distances between shapes. Here, ρ equals to 0.85.

In this example, the average flood in the first station (Rockenau) is 865.25 (m3/sec), and
the standard deviation equals 425.20 (m3/sec). The average of floods in different locations



30 Hierarchical clustering of the simultaneous occurrence of floods

Table 3.1: Description of floods and selected station for the cophenetic example

Nr. Mean∗ SD Area(km2) Location

1 865.25 425.20 1.26∗104 Downstream

2 916.86 373.05 1.37∗104 Downstream

3 50.50 24.38 4.12∗102 Upstream

4 66.78 30.66 6.53∗102 Upstream

∗: in (m3/sec)

shows apparent differences in up and mainstreams. Therefore, the high distances bring a
high cophenetic coefficient, and low distances (similar series) have a low coefficient.

3.2.5 Silhouette value

The Silhouette value of each point is a scale of how similar that point is to points in its cluster
compared to points in other clusters. In fact, one of the best cluster configuration validation
techniques is the Silhouette coefficient (Chaimontree et al., 2010). The Silhouette value s(i)

for the ith point is defined as (Rousseeuw, 1987; Kaufman and Rousseeuw, 2009):

s(i) =
b(i)−a(i)

max(a(i), b(i))
, if |Ci| > 1 and i ∈ Ci (3.14)

where |Ci| is the number of members in the cluster that i is a member of it and d(i, j) is the
distance between data points i and j in the cluster Ci. a(i) is the mean distance from the
ith point to other points in the same cluster as i,

a(i) =
1

|Ci|−1

∑

j∈Ci,i6=j

d(i, j) (3.15)

and b(i) is the minimum average distance from the ith point to points in a different cluster
(where Ck 6= Ci), and minimized over clusters.

b(i) = min
k 6=i

1

|Ck|

∑

j∈Ck

d(i, j) (3.16)

Global Silhouette score is define as:

S =
1

N

∑

i

s(i) (3.17)

The range of the Silhouette value is from –1 to 1. A high Silhouette value indicates that i

is well matched to its cluster, and poorly matched to other clusters. The clustering solution
is appropriate when most points have a high Silhouette value, and if multiple points have a
negative or low value, the clustering solution might have too many/few clusters. Silhouette
values as a clustering assessment measure can be implemented with any distance metric.
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3.2.6 Multidimensional scaling (MDS)

The Multidimensional Scaling (MDS) is a set of mathematical approaches to discover the
“Hidden structure” of the dataset (Kruskal and Wish, 1978). This technique employs the
proximities among various sorts of input objects. The output is a spatial representation on
a map, consisting of a geometric configuration of points. Each point in the configuration
corresponds to one of the objects. This configuration points out the hidden structure in
the inputs and often makes the data much easier to comprehend. By reflecting the data
structure, it means that the more considerable the dissimilarity (or the smaller the similarity)
between the two objects, as shown by their proximity value, the further apart they should
be in the spatial map. MDS is occasionally used indirectly to analyze data that are not
proximities, by forming them as an intermediate step. The first theory of Multivariate analysis
begun in the 1930s and was restricted to the multivariate normal distribution. Classical
multidimensional scaling procedures stem back to Torgerson (1952); however, the basis of
the recent multidimensional scaling was grounded by Seber (1984). Cox and Cox (2000)
explained a narrow definition of multidimensional scaling, looking for low dimensional space.
In other words, data in the form of points can be a plot with a scatter plot, but this plot
might not be convenient in the pairwise distance form. While scatter plots of the input data
make it straightforward to compare Euclidean distance, it does not work with other inter-point
distances or more comprehensive dissimilarities. Also, it is complicated to illustrate distances
in the multidimensional space. Hence, some dimension reduction is needed to represent data
in a small number of dimensions. Therefore, an appropriate way to measure how near or far
two set points is multidimensional scaling, which is a novel method that allows visualizing
how near points are to each other for various sorts of dissimilarity or distance. MDS does
not demand raw data, but only a matrix of pairwise distances or dissimilarities.

A distance matrix D estimates the inter-point distances of a point X configuration in a low-
dimensional space p. That is, the elements of D, denoted dij , may be calculated from X by
using the following equation Hintze (2019):

dij =

√√√√
p∑

k=1

(xij −xik)2 (3.18)

The classical MDS algorithm is as follows in these steps:

1. From D calculate A =
{

−1
2dij

2
}

.

2. From A calculate B = {aij −ai. −a.j +a..}, where ai. is the average of all aij across j.

3. Find the p largest eigenvalues λ1 > λ2 > ... > λp of B and corresponding eigenvectors
L = (L1,L2, ...,Lp) which are normalized so that L

′

iLi = λi. (Assumption: p is selected
so that the eigenvalues are all relatively large and positive).

4. The coordinates of the objects are the rows of L.

The classical way is to minimize the sum of squared differences. That is when a straight-
forward solution is possible (i.e., when D is a Euclidean distance matric), the solution (L),
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minimizes the sum of squared differences between the actual dij ’s (elements of D) and the
d̂ij ’s based on L.

Here, multidimensional scaling is used as a tool to visualize clusters in a 2d space.

3.3 Results

3.3.1 Investigation of association and distance matrix

The Kendall’s τ correlation is calculated among flood series. After that, every two sites
had an absolute correlation between the greatest contemporary cases. Figure 3.3 shows the
relationship between each station to the others.
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Figure 3.3: Rank correlation among all pair sets of extremes

On the left, the correlation matrix shows a positive correlation among almost all stations,
caused by the proximity and the larger scale of weather patterns. The dark red shows a
stronger relationship between two points, and pixels with near-zero values express no cor-
relation. On the right figure, the range of changes in correlation is drawn. The large-size
catchments have a higher correlation with other catchments, and smaller catchments gen-
erally have a lower correlation. This figure shows that some of the sub-catchments reacted
opposite each other.

To convert this non-tangible plot to an explicit configuration, Figure 3.4 is illustrated. Then,
for each measurement gauge as a reference, the rank correlation is traced in the space.
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Figure 3.4: The simultaneous occurrence of the largest floods regarding the reference stations; Left:
Rottweil - Right: Sennfeld

Two sub-catchments are selected from two distinct parts of the region to show various spatial
reactions. Rottweil on the left figure as an upstream part is settled on; the darker red shows a
strong association with the reference. This station is the origin of the main river (the Neckar
river) in this case study area. It shows, neighboring sub-catchments react at the same time
and with the same harmony in this part. Also, station Sennfeld in the north had different
relationships to other catchments. All red color areas had a meaningful correlation with the
reference catchments (highlighted in blue circle) in terms of vis-a-vis incidences. Although
this station is located close to the outlet of the catchment. But it is located on the outer edge
of the catchment and is one of the headwater subcatchments. Figure 3.4 shows an individual
relationship of the selected subcatchments with other parts of the catchment. Therefore,
still, the behavior of the region is almost obscure. The clustering analysis, by combining 46
dimensions, provides reasonable classes in the Neckar basin.

3.3.2 Cluster analyzing

3.3.2.1 Hierarchical tree and verification

Based on computed distance matrices, hierarchical cluster trees are calculated. This clus-
tering reflects the simultaneous behavior of extremes in different catchments. In Figure 3.5,
two samples of the linkage method are plotted with the highest Silhouette and cophenetic
indices. The shape, structure and height of trees show distinguished groups.
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Figure 3.5: Hierarchical cluster tree of the simultaneous occurrence of the largest floods

Dendrogram presented similarities between the simultaneous peak discharges of the sampling
sites. Furthermore, the three main clusters in this figure are entirely vivid. However, inside
each batch, some sub-clusters illustrate the interconnection of sub-basins in a specific area.
Therefore, to decide which linkage method or corresponding tree is more relevant to this
research, and as a result, do the clustering based on that, three verification methods are
exerted.

The mean of the inconsistency coefficient is reported in Table 3.2.
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Table 3.2: Mean of inconsistency coefficient of the hierarchical cluster tree

Dist. Complete Average Weighted Ward Single

Inconsistency
coefficient

Euc. dist. 0.542 0.540 0.542 0.544 0.515
Kend. dist. 0.524 0.543 0.561 0.537 0.513

Number of zeros
Euc. dist. 17 16 16 18 15
Kend. dist. 18 15 15 18 14

The lowest ratio is the Single one, and all the other factors are just about the same. It shows,
different linkage methods reacted similarly. The higher the value of inconsistency coefficient,
the less similar the objects connected by the link. Due to the low number of zeros in the Single
method, it might be critical to quickly decide which linkage method is more appropriate in
this research. The zero coefficients express the links which had no further links below them in
the hierarchical tree. This factor is independent of the distance matrix; ergo, the cophenetic
technique is applied in the pursuing step.

Also, the cophenetic coefficient is calculated and written in Table 3.3 for five linkage algo-
rithms.

Table 3.3: The cophenetic coefficient of various linkage methods, based on distance matrices

Complete Average Weighted Ward Single

Euclidean distance 0.725 0.787 0.676 0.730 0.630
Kendall distance 0.672 0.784 0.786 0.649 0.710

For the Euclidean distance, the best score is achieved by the Average algorithm and then
Ward, Complete, Weighted, and Single, respectively. However, Average is still in the top two
in the Kendall distance, but Weighted had the highest coefficient. The Single is in the third
rank, and Complete and Ward are in order. So far, the Average method and then Ward or
Weighted are reasonable for continuing phases of this research. However, the interpretation of
the Single algorithm is for the shortest distance among the objects, and the shortest distance
among dissimilarities means finding the most irrelevant catchments. Therefore, selecting the
best two linkage methods took all three validation parameters into account.
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Figure 3.6: Silhouette coefficient of the different hierarchical trees

The Silhouette factor is the most widely used clustering validation, owing to employing all
possible related variables, including similarity metrics, estimated classes, distance matrix, and
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tree. The x-axis of a plot is the Silhouette coefficient, and y-axis is all the stations into three
clusters. The Silhouette coefficient shows the validity of each cluster, as it cleared the best
two linkage methods to cluster in this area are Average (UPGMA) and Ward algorithms.
According to Figure 3.6, the Complete, Weighted, and Single methods represented many
negative values that show an unreliable cluster tree. Therefore, concerning the above plot,
the two best possible ways of clustering the sub-basins are chosen.

3.3.2.2 Mapping clusters

Regardless of the results of the verification coefficients, the clusters are mapped into Figure
3.7. These maps illustrate massive differences by employing different nexus as well as distinct
distance methods.
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Figure 3.7: Spatial mapping of different hierarchical clustering

In Figure 3.7, it is evident that the application of each linkage manner can make a diverse
pattern. However, concerning the research objectives and the result verification on dissimilar-
ity and inconsistency and Silhouette value, the most considerable ways to interpret clustering
are selected.

After realizing the best possible solidarity algorithm, the next step is to transform achieved
outcomes and clusters to the map in a spatial domain using computed trees. In Figure 3.8,
clustering is accomplished using Euclidean distance and with the two best linkage methods.
Average and Ward linkage had the best verification factors among the others.
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(a) Average linkage algorithm (b) Ward linkage algorithm

Figure 3.8: Clustering the simultaneous occurrences of the largest flood events using Euclidean dis-
tance

Results came from clustering represented three regions that have a well-defined flood mech-
anism. In Figure 3.8, synchronic occurrences of flood events are clustered using Euclidean
distance. In this figure, the west part of the upper Neckar catchment is wholly separated
from the other sub-catchments. The Average algorithm is used in Figure 3.8a, and the Ward
linkage method is implemented in Figure 3.8b. The difference between these two plots is
within clusters two and three. However, they had the most common reaction areas. After-
ward, the distance method is changed to discover the difference between a varied distance
manner to investigate the probable difference between these two methods.
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(a) Average linkage algorithm (b) Ward linkage algorithm

Figure 3.9: Clustering the simultaneous occurrences of the largest flood events using Kendall distance

These two maps have the main pattern in clusters and only minor differences between second
and third clusters, which is shown in Figure (3.9). Despite changing the distance algorithm,
the clustered regions are mostly identical by using these two linkage methods. Only discharge
gauges Nr. 1470 and 1411 reacted critically with this kind of clustering. The Silhouette
diagram only for Average and Ward algorithms in two distance directions is projected to
show the difference more visible. Then, by doing multidimensional scaling, the final clusters
have become visible. These results show that the upper Neckar (described under Figure 2.8)
is fully separated from the rest of the catchment. Also, the two disputed subcatchments are
located on the Rems and Jags rivers with dozens of dams and hydraulic structures. In the
west of the map, three subcatchments are clustered into the third cluster in yellow. The
fewest hydraulic structures and dams have been constructed in this area. Exactly, after the
Plochingen station (No. 427), the third cluster is started, where the main river has been
mostly regulated.
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Figure 3.10: Silhouette coefficient of different hierarchical clusters

These algorithms with two different distance types are plotted to verify hierarchical clustering
in the Neckar basin. By plotting Silhouette coefficient diagrams of the most sensible linkage
methods in Figure 3.10, three out of four sub-figures except the lower left diagram (3.10a)
show a unique problem in the third cluster, which appears in the last figure. Therefore,
despite verifying the hierarchical cluster trees in the Neckar basin, two critical stations are
still dubious. However, the Average linkage method employing Kendall distance reliably
clustered the area.

3.3.3 Interpretation of AHCT using MDS

To visualize the multivariate data to the 2d plot, MDS is accomplished, and the result is
revealed in Figure 3.11. Ten first eigenvalues are plotted in Figure 3.11a. These components
explained more than 90 percent of the total variances of the dataset. In the next part of
the plot, all the stations based on the Kendall distance of the correlation matrix are plotted.
The nearer stations had a strong relationship with each other, and the farther had a weak
connection. As it came to perceive, in this plot, separated groups are apparent.
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Figure 3.11: Multidimensional scaling of the largest floods in the Neckar catchment

The first two components of the matrix of selected peaks contribute more than 65% to the
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variance. By applying multidimensional scaling, interactions of the gauges are disclosed. This
visualization shows that the first two eigenvalues capture the differences. As is clear from
Figure 3.11b, the map might be divided into three concentration points. First is on the low
right corner, second on the top right and one or two dots near them (Nr. 1470 or Nr. 1411),
and third the remaining spots. Consequently, MDS and hierarchical tree clustering with the
selected linkage methods are compared on the same map.
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Figure 3.12: Comparison between multidimensional scaling and hierarchical clustering

Three determined classes are transformed into the scatter plot and in two-dimensional space.
Each group is drawn with a specific color that is recognizable and comparable with the others.
Regarding the above Figure (3.12), Ward linkage works very similar with both distance
matrices and shows well-defined clusters. This algorithm illustrates consistent results that
are not altered by changing the calculation of the dissimilarity matrix. In the first row of the
above figure, this comparison is plotted by employing Euclidean distance, and the second row
belongs to Kendall tau-based distance. The determined clusters are accepted by hierarchical
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clustering, multidimensional scaling, and verified with the goodness of fit methods. Therefore,
multidimensional scaling is verified entirely with the hierarchical clustering in both distance
matrices. The small differences within the appointed manner appear here on the upper
left side of Figure 3.12 between the light blue and yellow clusters and precisely for the
measurement gauges of 1411 and 1470 on the southeast of the basin.

3.4 Conclusions

Floods destruction in vulnerable areas of river plains is critical for the community due to
the high potential of casualties. Extreme events analysis has high uncertainty and is not
well described in multidimensional space so far. High-resolution data and novel concepts for
quantifying interactions undertake a primary step to achieve new results. However yet, the
simultaneous occurrence of flood events has not been taken into account seriously. Identifying
typical clusters of vulnerable flood areas requires a classification of concurrent flood patterns,
which spatially shows to what extent floods happen simultaneously. In this thesis, the flood
classification objective is formulated to determine concurrent flooding patterns merged by
complementary and common patterns. These different classifications are compared to figure
out how much the pattern is responsible for coincidence and to what extent this is a random
effect as an individual pattern.

The clustering methods are used to estimate better multiple flood events evolution, which
depend on the contribution of many sub-catchments. Also, clustering is a new method in mul-
tivariate analysis of the simultaneous occurrence of floods. For this reason, the hierarchical
cluster tree and multidimensional scaling are applied. Neither of these methods needs initial
assumptions, and they act independently of additional presumptions. The trees are formed
based on rank correlation matrices of the highest occurrence of the floods in 55 years, and
various linkage methods evaluated them. The Average group method appeared to produce
the best values for two verification statistics, and the Ward algorithm is in the second rank.
After Silhouette verification, which is the best integrated method for clustering validation,
the results show that the Average (UPGMA) and Ward linkage methods are well-matched
clustered in the Neckar basin. Therefore, these two linkage methods are selected for the
following steps. Furthermore, The Neckar is split and mapped, and despite the small dif-
ferences between the algorithms, the same pattern of clustering emerged. Then, these maps
are compared by the outcome of multidimensional scaling. The results of MDS and Ward
linkage in Agglomerative Hierarchical Cluster Tree (AHCT) perfectly matched each other,
and consequently, the figure resulting from these two methods is selected as the final map.

The results show the simultaneous occurrences of high discharges operating as a function of
the basin’s topology and the precipitation’s seasonality as the primary input of hydrological
analysis. To conclude, the Neckar is divided into three major clusters: the first one is around
the western part of the upper Neckar catchment and seized by the Black Forest and Swabian
Alps, the second cluster is primarily located in the eastern region of the upper Neckar, with
smaller sub-catchments and the karstic geology features. These two clusters are locating in
the high elevation areas (see Figures 2.1 and 2.2b). The third part is the remaining area of
the Neckar basin, which is a lowland area compared to the other parts. It can be mentioned
that a reason for some clustering mismatches might be due to the anthropogenic alterations
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in this area. Besides, the difference among clusters is observed in the southeast of the Neckar
basin, where a dipping of formation characterizes the geological structure. It could be the
reason for the disagreements. The turning point in this region is in the Plochingen, where the
third cluster begins on the main river. After this point, the main river is mainly regulated
(see Figure 2.8). Therefore, there is not a unique cluster on the main river. Most of the high
elevated headwater subcatchments are located in the south and southwest of the Neckar (see
Table 2.2), which are clustered into first and second clusters. These two clusters are in the
upper Neckar region. In addition, there are three subcatchments in the west of Neckar, two
of which are categorized as headwater regions. They clustered in the third cluster; it might
be due to the small number of water reservoirs and dams in this part of the basin on Nagold
river. The second cluster is mainly located in the upper Neckar, including subcatchments
not on the main river, and they are on the Fils and Rems tributaries.





4 PCA-based clustering of the simultaneous

occurrence of floods

4.1 Introduction

Extreme floods management is considered one of the most complex challenges in hydrology.
Lack of sufficient knowledge of these events can lead to cataclysmic natural disasters. Floods
have different types due to the distinct circulation patterns, seasons, and forms of precipita-
tion. Also, the mechanism of triggering extremes could be different. Synchronous occurring
floods can generally make a convergence of peaks in different catchment regions that can
cause unpredictable losses and corresponding destruction downstream. Thus, investigating
the mechanism of simultaneous floods is one of the newest challenges for hydrologists. Due
to synchronized flood events in the Rhine, Main, and Neckar rivers in the last two decades,
enormous losses near the urban regions took place (McPhillips et al., 2018; Kundzewicz,
2019; Modiri, 2021). After the flood in 1995 on the Meuse river in the Netherland, the gov-
ernment decided to evacuate around two hundred thousand people living in the flood plain
areas (Geertsema et al., 2018). Past research has briefly pointed to the destructive nature of
simultaneous floods in different parts of the World (Yinkang, 1996; Ahmad, 2003; Prohaska
et al., 2008; Tsivtsivadze et al., 2019). These experiences showed concurrent extremes might
deteriorate a get worse influence, leading to massive socio-economical impacts than a partic-
ular incidence form of an extreme (Meade et al., 1991; Leonard et al., 2014; Hao et al., 2018;
McPhillips et al., 2018). Besides, flood defenses are critical components when it comes to
flood perils. Therefore, it is substantial to deal accurately with their effects and consider the
simultaneous flood occurrences.

An underlying problem in the flood analysis is that traditionally risk is estimated using one-
dimensional extreme value statistics and ignoring multidimensional floods’ interplay (Zhou
et al., 2019). Different spatiotemporal precipitation events and the resulting outflows cause
various combinations that can afford undercurrents to extreme floods (Blöschl et al., 2017,
2019). The risk arises when massive floods coincide in the mainstream and its tributaries.
This enhanced risk is characterized by flood magnitude and occurrence date (Chen et al.,
2012). Therefore, one of the major concerns of this chapter is to gain a better systemic
understanding of multivariate analysis of such different flood-triggering regions to develop a
methodology to simulate their behavior.

The discharge time series has various influential elements, including a spatiotemporal factor,
like linear trend and seasonal terms (Ming et al., 2017; Milliner et al., 2018). Hydrological
series have vivid periodic terms that are caused by seasons, geomorphological and meteoro-
logical patterns (Schmidt et al., 2008; Moeeni et al., 2017). Floods are events that rarely



46 PCA-based clustering of the simultaneous occurrence of floods

occur and do not follow the primary behavior of the time series. In this chapter, initially,
the Principal Component Analysis (PCA) is applied to the data set to capture the primary
behavior of the discharge series over the Neckar. The first principal components that explain
the high level of variances are chosen to reconstruct a new time series. Then, the difference
between the original and reconstructed time series matrices is obtained as a residual time
series. PCA is employed to separate the hydrological signal from temporally incoherent and
spatially correlated noise (Milliner et al., 2018). In recent years, the residual time series has
become a heated research topic in time series analysis (Yuan et al., 2018; Tan et al., 2020).
The residual time series is computed by filtering the reconstructed time series from the orig-
inal discharge time series. Effective extraction of residual time series is quite beneficial in
catching pure extreme magnitudes out of seasonal trends and linear relations.

Therefore, this study considers the spatiotemporal multivariate analysis and quantitative
characteristics of synchronous floods of the Neckar River and its tributaries to provide new
insights to flood protection and risk analysis. Finally, the proposed chapter aims to investigate
the coincidence occurrence of flood events in different clusters. These clusters incorporate
components that can be used independently for developing models or integrated hydrological
modeling. The difference between this chapter and the last one is the application of PCA
on clustering analysis. Thus, the clustering maps can be a valuable decision aid for flood
protection authorities and water management. Moreover, obtained clusters will be evaluated
by different cluster evaluation methods to determine the best data grouping.

4.2 Methodology

In this chapter, the combination of statistical and dimension reduction methods is used to
cluster the simultaneous occurrence of flood events. The PCA residual clustering technique,
a hybrid method, aims to cluster data to capture similarities between the dependency of
magnitudes of the biggest flood events. PCA is used to calculate the statistical residuals from
the original series and reconstruct the time series based on selected principal components. In
the next step, we compare the maps with the adopted clustering presented in the previous
chapter and its relevant published researches (Modiri and Bárdossy, 2018, 2019b, 2021),
intending to compare the current results following the last findings. The following section
will outline the theoretical background of PCA and hierarchical clustering.

4.2.1 Principal Component Analysis (PCA)

PCA has been previously used to quantify the importance of the parameters that affect
extreme events (Hudson and Colditz, 2003; Kourgialas et al., 2015). One of the main ap-
plications of the PCA technique is for identifying patterns and consequently clustering in
multivariate data sets. This method can help express the data to highlight the similarities
and dissimilarities, which may be challenging to investigate otherwise. The principal com-
ponents are identified as physically independent processes controlling the variance in the
hydrological time series’ essential parameters. The relative importance of each variable is de-
fined based on the amount of variance explained by each of the principal components. One of
the PCA’s key advantages is its low noise sensitivity (Karamizadeh et al., 2013). PCA should
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be used mainly for variables which are strongly correlated. It is widely used to understand
better the role of the nexus of climate variability (Thornton et al., 2006; Hudson et al., 2019;
Koradia et al., 2019; Bahrami, 2019; Martínez et al., 2020; Rahman and Rahman, 2020). It
is exclusively substantial when the variables vary simultaneously in multiple spatiotemporal
dimensions (King and Jackson, 1999). The principal component analysis performed in this
work aims to establish a process that neglects natural periodic terms and their effect on
discharge time series in the spatial patterns and over the temporal changes. In other words,
floods usually do not follow the main pattern of the time series, and they rarely occur. Thus,
removing the underlying behavior of the hydrological time series lets us be one step near to
the actual magnitude of floods. Consequently, it may improve the understanding of flood
generating mechanisms in simultaneous occurrences.

PCA is defined as an orthogonal-linear transformation that transforms the data into a new
coordinate system. The greatest variance by some scalar projection of data lies on the
first coordinate as a first principal component. Subsequently, the second greatest variance
lies in the second coordinate, continuing to the last PC (Jolliffe, 2002). Consider an n ∗ p

data matrix, X, with standardized values. Each of the n rows expresses a different time
step, and each of the p columns gives the measurement in a gauge. The transformation is
mathematically defined by a set of size l of p-dimensional vectors of coefficients w(j) that map
each row vector x(i) of X to a new vector of the principal component as a score t(i), given by:

tj(i) = x(i) ·w(j) for i = 1, . . . ,n j = 1, . . . , l (4.1)

where

w(j) = (w1, . . . ,wp)(j)

t(i) = (t1, . . . , tl)(i)

As follows that the individual variables t1, . . . , tl of t considered over the data set consecutively
acquire the maximum possible variance from X, with each coefficient vector w bounded to
be a unit vector, where l is usually selected to be less than p to reduce dimensionality.

4.2.1.1 Components computations

The first component

In order to maximize the variance, the first coefficient vector w(1) has to satisfy:

w(1) = arg max
‖w‖=1

{
∑

i

(t1)2
(i)

}
= arg max

‖w‖=1

{
∑

i

(
x(i) ·w

)2
}

(4.2)

Equivalently, writing this in the matrix form gives:

w(1) = arg max
‖w‖=1

{‖Xw‖2} = arg max
‖w‖=1

{
wT XT Xw

}
(4.3)
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Since w(1) has been specified to be a unit vector, it also equivalently serves:

w(1) = arg max

{
wT XT Xw

wT w

}
(4.4)

The expected result for the matrix XT X is that the maximum possible value is the largest
eigenvalue of the matrix, which arises when w is the commensurate eigenvector.

The first principal component of x(i) accepted as a score t1(i) = x(i).w(1) in the transformed

coordinates, or as the corresponding vector in the original variables,
{

x(i).w(1)

}
w(1).

Further components

The jth component can be found by subtracting the first j −1 principal components from X:

X̂j = X −
j−1∑

s=1

Xw(s)w
T

(s) (4.5)

and then finding the coefficient vector, which extracts the maximum variance from this new
data matrix:

w(j) = argmax
‖w‖=1

{
‖X̂jw‖2

}
= arg max

{
wT X̂T

j
X̂jw

wT w

}
(4.6)

It reveals that this gives the remaining eigenvectors of XT X, with the maximum values for
the amount in braces given by their corresponding eigenvalues. Thus, the coefficient vectors
are eigenvectors of XT X.

The jth principal component of a data vector x(i) can, therefore, be given as a score tj(i) =

x(i).w(j) in the transformed coordinates,
{

x(i).w(j)

}
w(j), where w(j) is the jth eigenvector of

XT X.

Therefore, the complete principal components decomposition of X can be given as:

T = XW (4.7)

Where W is a p∗p matrix of coefficients whose columns are the eigenvectors of XT X. Columns
of W multiplied by the square root of corresponding eigenvalues, eigenvectors scaled up by
the variances, are called “loadings” in PCA.

4.2.1.2 Singular Value Decomposition (SVD)

The principal components transformation in this research is associated with the Singular
Value Decomposition (SVD) of X:

X = UΣW T (4.8)
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Here Σ is an n ∗ p rectangular diagonal matrix of positive numbers σ(k), called the singular
values of X; U is an n∗n matrix, the left singular vectors of X is the columns with the length
n orthogonal unit vectors, and W is a p∗p matrix whose columns are orthogonal unit vectors
of length p and called the right singular vectors of X (see Figure 4.2a).

In terms of this factorization, the matrix XT X can be written:

XT X = WΣT UT UΣW T

= WΣT ΣW T

= W Σ̂2W T

(4.9)

where Σ̂ is the square diagonal matrix with the singular values of X and the excess zeros
chopped off that satisfies Σ̂2 = ΣT Σ. Comparison with the eigenvector factorization of XT X

establishes that the right singular vectors W of X are equivalent to the eigenvectors of XT X,
while the singular values σ(k) of X are equal to the square root of the eigenvalues λ(k) of
XT X.

The score matrix T by using the singular value decomposition can be written as:

T = XW

= UΣW T W

= UΣ

(4.10)

Each vector of T is given by one of the left singular vectors of X multiplied by the corre-
sponding singular value. Therefore, computing the SVD is a standard way for calculating
the principal components of a data matrix.

4.2.1.3 PCA and SVD properties

PCA finds directions of maximal variance of data. This technique determines mutually
orthogonal directions. In other words, all the directions or the new features they find have
an extensive global constraint, namely that they must be mutually orthogonal.
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Figure 4.1: An example for the PCA’s properties
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In Figure 4.1, two measurement are randomly selected to show PCA’s property. On the left,
actual discharges are plotted so that they have a correlation of approximately 0.83. In the
middle, the original data is standardized. Each series of data has an average of zero and a
standard deviation of one. As a result, the correlation should not change, and it is equal to
0.83. On the right, the data is transformed to the principal component space. The two first
PCs are illustrated, which correlate equally to zero. Consequently, regarding PCA’s property,
the correlation of all two PCs is equal to zero as its definition.

The principal component analysis is usually explained via an eigendecomposition of the co-
variance matrix. However, in the current research, it is performed via singular value decom-
position of the data matrix X. Mathematically, there is no difference between whether PCA
is calculated based on the data matrix directly or on its covariance matrix. The possible
difference is solely due to numerical precision and complexity. In general, applying SVD
directly to the data matrix is numerically more stable than to the covariance matrix.

𝛴𝑈𝑋 𝑊𝑇
𝑛 × 𝑝 𝑛 × 𝑛 𝑛 × 𝑝 𝑝 × 𝑝(a) SVD’s schematic matrices properties

𝛴𝑈1 𝑊𝑇𝑛 × 𝑝 𝑛 × 𝑛 𝑛 × 𝑝 𝑝 × 𝑝𝑋0−1 111 −0.58−0.58−0.58
0.710
−0.71

0.41
0.41−0.82 1.730 01.41 0−1 −100 0

(b) A simple mathematical example of SVD performance

Figure 4.2: SVD’s properties

A schematic example of SVD matrices is visualized in Figure 4.2. SVD is more stable than
typical eigenvalue decomposition procedures, especially for the highly collinear regressors
in the machine learning approach. For example, 1000 random samples are generated for
testing the stability of SVD and eigenvalue decomposition. In many cases, the eigenvalue
decomposition method shows no small eigenvalues, which would lead to the singularity of the
matrix. However, SVD is relatively twice more precise on a small eigenvalue determination,
which may be essential depending on the problem. It is always possible to decompose a real
matrix X into the SVD’s components. These components are unique. In this chapter, PCA
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is applied using SVD directly on the original standardized matrix.

4.2.1.4 Dimension reduction

The truncation of a matrix T using a truncated singular value decomposition generates a
truncated matrix with the nearest possible matrix of rank L to the original matrix, known
as the Eckart–Young theorem (Eckart and Young, 1936; Johnson, 1963). By having the
eigendecomposition, a truncated n ∗ L score matrix TL can be obtained by holding only the
first L principal components that are produced by using the first L largest singular values
and corresponding singular vectors, as follows:

TL = ULΣL = XWL (4.11)

where the matrix TL has only L columns and n rows. Namely, PCA acquires skill in a linear
transformation, addressed by:

t = W T x, x ∈ Rp, t ∈ RL, (4.12)

where columns of p ∗ L matrix W configure an orthogonal structure for the L uncorrelated
components of representation t. Construction of the transformed data matrices using L

columns, this scoring matrix maximizes the variance in the original data, minimizing the
total squared reconstruction errors.

‖TW T −TLW T
L ‖2

2 = ‖X −XL‖2
2 (4.13)

The reduction of dimensions can be appropriate when the signals of variables within a data
set are noisy. Dimensionality reduction can be a necessary step for visualizing and processing
high-dimensional data sets while retaining as much variance in the data set as possible. Thus,
PCA can concentrate the most detail of the signal into the first few principal components,
which can usefully be captured by dimensional reduction.

4.2.1.5 Time series reconstruction

The flow discharge time series consists of a linear trend, periodic terms such as annual and
semi-annual signals, offsets, and noise. Usually, hydrological models cannot correctly simu-
late the extreme components. Therefore, first, the underlying pattern among hydrological
time series needs to be investigated, and consequently, new series will reconstruct. Then, the
residual series should be calculated. The implemented method in this chapter is first intro-
duced by (Modiri and Bárdossy, 2019a). Then, the reconstructed time series are computed
using the SVD based PCA and as follows:

RcL = T1,...,L ∗W ′
1,...,L +σX +µX (4.14)

T is the score matrix and W ′ transposes the coefficient matrix for the first L components.
σX and µX are the standard deviation and mean of the original matrix X, respectively.
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Figure 4.3: A schematic example of data reconstruction using three first PCs (Williams, 2016)

Figure 4.3 is an example for the reconstruction of data with the first three principal com-
ponents. A data matrix on the left is approximated by the product of a n ∗ l matrix T and
a l ∗ p transpose matrix W. This product is at most a rank-l matrix (in this case l = 3).
Each paired column of loadings and row of components form an outer product, so the full
reconstruction can also be thought of as a sum of l rank-one matrices. Finally, the mean and
standard deviation have to be added to the reconstruction matrix to take the standardized
value to the original form of data. The residual series represents the difference between the
observations and the PCA’s reconstructed series.

4.2.1.6 PCA cross-validation

It is always critical to determine the optimum number of principal components to reconstruct
the time series. The leave one out cross-validation or so-called Jackknife can evaluate the
quality of PCA to realize the appropriate number of dimensions by calculating Predicted
sum of squares (PRESS) (Krzanowski, 1987; Diana and Tommasi, 2002; Abdi and Williams,
2010). Here, the Moore-Penrose pseudo-inverse method is applied to calculate the amount
of PRESS and to correctly solve the problem of total least squares in the cross-validation
(Penrose, 1955; Golub and Kahan, 1965; Barata and Hussein, 2012; Josse and Husson, 2012).

Let the data set consist of n points in d-dimensional space in Equation 4.15. First, perform
PCA on the training set X

(−i) with an excluded single test data point x
(i) to compute

reconstruction error. Then, take a certain number k of principal axes as columns of U
(−i),
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and find the reconstruction error as follows:

∥∥∥x
(i) − x̂

(i)
∥∥∥

2
=

∥∥∥∥x
(i) −U

(−i)
[
U

(−i)
]⊤

x
(i)
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2

, x
(i) ∈ R

d, i = 1 . . .n. (4.15)

Next step is to leave out one data point x
(i) at a time, compute PCA on the training data,

but then to loop over dimensions of x
(i), leave them out one at a time and compute a

reconstruction error using the rest.

PRESS =
n∑

i=1

d∑

j=1

∣∣∣∣∣x
(i)
j −

[
U

(−i)
[
U

(−i)
−j

]+
x

(i)
−j

]

j

∣∣∣∣∣

2

(4.16)

Considering the inner loop, one point x
(i) is left out and computed k principal components

on the training data, U
(−i). Then, keep each value x

(i)
j as the test and employ the remaining

dimensions x
(i)
−j ∈ R

d−1 to perform the prediction. The prediction x̂
(i)
j is the j-th coordinate

of the projection of x
(i)
−j (i.e., in terms if the least squares) onto subspace spanned by U

(−i).

Find a point ẑ in the principal component space R
k, which is closest to x

(i)
−j by computing

following equation:

ẑ =
[
U

(−i)
−j

]+
x

(i)
−j ∈ R

k, (4.17)

where U
(−i)
−j is U

(−i) with j-th row kicked out, and [.]+ stands for pseudoinverse. Finally,
map ẑ back to the original space as follows:

U
(−i)

[
U

(−i)
−j

]+
x

(i)
−j (4.18)

Then take its j-th coordinate [·]j .

4.2.2 Flood events identification

In this chapter, the flood detection method is similar to the methods described in Section
3.2.1 processes. The difference is that the two biggest events per year in the absolute residual
series for 55 years are selected for each gauge.

4.2.3 PCA-based hierarchical clustering of concurrent floods

In the following steps, the concurrency of peaks is recognized (see Section 3.2.2). Further
the pairwise rank correlations of coinciding extremes are taken into account and different
distance matrices are calculated (see sections 3.2.3 and 3.2.4).

Figure 4.4 illustrates the applied algorithms in this chapter.
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Figure 4.4: The applied algorithms in PCA-AHCT clustering

Also, the fast Fourier transform (FFT) periodicity detection is implemented for determining
the most prominent cycles of the flood series (Lohre et al., 2003; Jalón-Rojas et al., 2016;
Stojković et al., 2017). These cycles mainly affect the discharge time series.

4.2.4 Clusters similarity

4.2.4.1 Rand index

A mathematical coefficient can translate and interpret non-tangible dendrograms. The Rand
index (RI) is a measurement index for the similarity between two data clusters (Rand, 1971).

If C is a ground truth cluster assignment and K the clustering, a and b can be defined as:

a: the number of pairs of elements that are in the same set in C and in the same set in K

b: the number of pairs of elements that are in different sets in C and in different sets in K

The unadjusted Rand index is then given by:

RI =
a+ b

C
nsamples

2

(4.19)

where C
nsamples

2 is the total number of possible pairs in the dataset. It does not matter if the
calculation is performed on ordered or unordered pairs as long as it is performed consistently.
However, the Rand index does not guarantee that random label assignments will get a value
close to zero (especially if the number of clusters is in the same order of magnitude as the
number of samples).
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Figure 4.5: The schematic example of Rand Index calculation

As an example, we have a five elements dataset of {A,B,C,D,E,F}. It is supposed to
use two clustering methods that place each element in the Figure 4.5. First, it is needed
to write all possible unordered pair in the dataset. Therefore, the unordered pairs are:
{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E}.

There are 10 pairs in this example. Then, the next step is to calculate a. In this case, a = 1,
which is equal to {A,B}.

Next, It is demanded to calculate b, which is the neumber of unordered pairs belong to differ-
ent clusters across two clustering methods: These are: {A,D},{A,E},{B,D},{B,E},{C,E}.

Finally, the Rand Index is (1+5)/10 = 0.6.

The ARI is the normalized difference of the RI. It assumes a generalized hypergeometric
distribution. It means the null hypothesis is that the two clusterings are grouped randomly
with a fixed number of clusters and the number of elements in each cluster (Hubert and
Arabie, 1985). It is possible to discount the expected RI E[RI] of random labelings by
defining the adjusted Rand index to counter this effect as follows:

ARI =
RI−E[RI]

max(RI)−E[RI]
(4.20)

The ARI may result in a value between 0 for completely different and 1 for identical clusters,
except when the RI is less than the expected Rand index. In this situation, the ARI can
produce negative values (Meilă, 2003; Wagner and Wagner, 2007).

For example, U and V are two random partitions with multiple cluster inside. nij is the
number of objects that are in both cluster ui and vj . Let ni and nj be the number of objects
or elements in cluster ui and cluster vi, respectively. The notations are illustrated in the
following table (Table 4.1).
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Table 4.1: The Adjusted Rand Index contingency table
X\Y Y1 Y2 · · · Ys sum
X1 n11 n12 · · · n1s a1

X2 n21 n22 · · · n2s a2
...

...
...

. . .
...

...
Xr nr1 nr2 · · · nrs ar

sum b1 b2 · · · bs

The adjusted rand index using the contingency table can be written as:

ARI =

∑
ij

(nij

2

)
−

[∑
i

(ai

2

)∑
j

(bj

2

)](n
2

)

1
2
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i

(ai

2

)
+

∑
j

(bj

2

)]
−

[∑
i

(ai

2

)∑
j

(bj

2

)]
/
(n

2

) (4.21)

where nij ,ai, bj are values from the contingency table. The n11 would be the number of times
an element in the first cluster of X and the first cluster of Y. a refers to the sum of row value
and b refers to the sum of the column value.

Assume that X = {1,2,3,3,2,1,1,3,3,1,2,2}, and Y = {3,2,3,2,2,1,1,2,3,1,3,1} are the
dataset clustered into three partitions. Each value represents each cluster. Also, the in-
dex is play an essential roll to calculate ARI. It is necessary to build the contingency table
by counting the coincidences. In Table 4.2 the contingency table are calculated.

Table 4.2: The contingency table of the test dataset
X\Y Y1 Y2 Y3 sum
X1 3 0 1 4
X2 1 2 1 4
X3 0 2 2 4
sum 4 4 4

As a result the adjusted Rand Index is equal to:

ARI =
6− [18∗18]

(12
2

)

1
2 [18+18]− [18∗18]/

(12
2

) = 0.083

4.2.4.2 Fowlkes–Mallows index

The FM is an external evaluation method that is used to measure the between two hierarchical
clusterings (Fowlkes and Mallows, 1983).

The hierarchical trees C1 and C2 are cut to produce k = 2, . . . ,n − 1 clusters for each tree.
For each value of k we can label the clusters for C1 and C2 arbitrarily from 1 to k and then
form the matrix

M = [mij ] , i = 1, . . . ,k; j = 1, . . . ,k
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where the quantity mij is the number of objects in common between the i-th cluster of C1

and the j-th cluster of C2. The FM is defined as follow:

FMk = Tk/
√

PkQk (4.22)

The measure of association (FMk) is derived from the matching matrix (M), which is formed
by cutting the two hierarchical trees and counting the number of matching entries in the k

clusters. Where, n is the number of objects, and

Tk =
k∑

i=1

k∑

j=1

mij
2 −n,

mi· =
k∑

j=1

mij ,

m·j =
k∑

i=1

mij ,

m·· = n =
k∑

i=1

k∑

j=1

mij ,

Pk =
k∑

i=1

mi·
2 −n,

Qk =
k∑

i=1

m·j
2 −n

(4.23)

The Equation 4.22 can be written in terms of contingency table definition as follow:

FM =
TP√

(TP +FP )(TP +FN)
(4.24)

Where TP is the number of True Positive, the number of pairs of points belonging to the
same clusters in both the true and predicted classes. FP is the number of False Positive,
equal to the number of pairs of points that belong to the same clusters in the true classes
and not in the predicted classes. Finally, FN is the number of False Negative, which is the
number of pair of points that belongs in the same clusters in the predicted classes and not in
the true classes.

A higher value for the FM indicates a more remarkable similarity between the hierarchical
clusters. Fowlkes–Mallows index is not sensitive to the labeling numbers. The FM index
is close to zero when labels are randomly (uniformly) assigned. Also, it is bounded at one
as the upper bound. Further, values of exactly 0 and 1 indicate purely independent label
assignments and equal labeling (with or without permutation). In addition, this index has no
assumption to compare clustering algorithms. These points, as mentioned earlier, are some
of the advantages of FM (Nemec and Brinkhurst, 1988; Wagner and Wagner, 2007).

For example, four stations in the Figure 3.8 are selected. These are stations with ID-Nr.
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4416, 454, 509, 1411. The obtained cluster labels are x1 = [3,3,1,2] in Figure 3.8a. But in
Figure 3.8b, the labels are as follows: x2 = [3,3,1,3]. According to Equation 4.22, the FM
index equals 0.577. If the labels are equal to x3 = [2,2,1,2] or x4 = [1,1,2,1], the FM would
be again equal to 0.577.
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Figure 4.6: The confusion matrix of designed example

The confusion matrix in Figure 4.6, shows that class one is 100% correctly clustered, the
second class does not exist in the second clusters. The third class label is 66.7% correct
clustered and 33.3% wrong. This matrix is an input of the Fowlkes–Mallows index, where
Equation 4.22 counts the number of elements in each row and column.

4.3 Results

4.3.1 Reconstructed time series using PCA

Since flood events rarely occur, their magnitudes and distributions do not directly follow the
annual and seasonal signals. Therefore, these series do not have the main periodic terms,
which is unnecessary in such cluster analysis. Instead, PCA is applied to catch the main and
shared behavior of all dimensions. In the following figure, the error of the cross-validation
technique in the principal component analysis is illustrated to select the appropriate num-
ber of PCs to reconstruct the new series according to the Section 4.2.1.6. Consequently,
the percentage of variability explained by the selected number of principal components is
calculated.
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(c) Explained variances by the first ten principal components

Figure 4.7: Schematic training and test samples error estimation according to the model complexity in
4.7a; determining the best number of clusters and the cut-off threshold for the explained
variability of data using the pseudo-inverse method in 4.7b; and the variances explained
by each PC for the first ten PCs in 4.7c.



60 PCA-based clustering of the simultaneous occurrence of floods

In Figure 4.7, first it is illustrated that by adding PCs the complexity of model will increase
and consequently variance will go high and bias low (Figure 4.7a). The training samples
error will decrease; however, the cross-validation error after a turning point will increase.
Therefore, it is demanded to find the optimal number of components to have the lowest
cross-validation error (Ballabio, 2009). Adding and subtracting components will cause over
or under-fitting. Then, the first ten principal components are illustrated. The Pseudo-inverse
cross-validation errors (PRESS) are shown for the first ten principal components in Figure
4.7b. By adding one by one PCs, cross-validation error decreases from 1 to 3 PCs. In fact,
the minimum point of the cross-validation error series is achieved on the third PC. Therefore,
the best number of components to reconstruct the data set is determined. The scree plot1

shows the data variances explained by each PC (Figure 4.7). This plot illustrates the first ten
components that explain 95% of the total variance. The first PC explains more than 75% of
the data set’s variability, which denotes that the discharge time series are highly correlated.
The blue line displays the accumulation of explained variances, which has an intersection
point with the third principal component. Therefore, the cut-off threshold is plotted in the
red dash line and it is equal to 85.7% of total variances. Another point that can recognize is
that the gradient of explained variances is very low and almost steady after the third PC.

Based on equations 4.12 and 4.14, and by applying the first three PCs, the reconstructed
time series for each measurement gauge is calculated.
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Figure 4.8: a) Reconstructed time series based on the first three PCs, and b) Residual time series

The first three PCs explain more than 85 percent of the discharge time series variability.
Floods are infrequent events that usually do not follow the underlying behavior of the time

1A scree plot is a line or bar plot of the eigenvalues of factors or principal components on the x-axis in
multivariate statistics. It determines the number of factors to retain in principal components to keep in a
principal component analysis (Jackson, 1993).
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series. Therefore, it is better to assess their spatial interactions when the time series does
not include the primary behavior. PCA is a great tool to catch this underlying behavior
of the study area. Extreme floods are caused and triggered by short waves, which are not
inside the principal conduct of a catchment. Thus, instead of using the reconstructed series,
the residual series are employed to concentrate on irregular series variations, i.e., mainly
short waves. In part a of Figure 4.8, the original discharge flow time series for one station
and the corresponding reconstructed time series are plotted. The two time series are highly
correlated and the reconstructed one follows the original time series’ behavior. The most
significant errors are in the case of floods. Subsequently, Figure 4.8, part b, presents the
residual series adopted by subtracting the two mentioned time series. By paying attention to
the mentioned figure, it is evident that the indices of peaks in the residual and the original
time series are almost identical. However, the amplitudes of the extremes are shrunk more
than twice the size of the original peaks. The absolute value of the residual time series is
calculated at this stage to prevent the loss of negatively sized peaks. This is because some
extremes may have a delay of several days.

4.3.2 Correlation and distance matrices of concurrent floods

By implementing the mentioned method in section 3.2.2, simultaneous occurrences in the
absolute residual time series are discerned and a new matrix of these extreme values is
assembled. Subsequently, Kendall’s Tau correlation of the residual extreme magnitudes is
calculated between a couple of event sets. After that, every two sites had a specific correlation
between the greatest contemporary cases. Figure 4.9 shows the relationship between different
stations.
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Figure 4.9: Rank correlation among all pair set of extremes

On the left side of Figure 4.9, the square rank correlation matrix is plotted, which shows
a positive correlation among most stations. However, some of the small independent sub-
catchments show a negative correlation. The dark red shows a stronger relationship between
two points, whereas the pixels with near-zero values (white pixels) express no correlation.
In the right part of Figure 4.9, the range of correlation changes is drawn. The red central
mark indicates the median, the green lozenge is the mean, and the outliers are plotted using
the ’+’ symbol. Large-scale catchments have a higher correlation with other catchments,
while smaller catchments generally have a lower correlation. This figure shows that some
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of the sub-catchments react differently. After PCA, the correlations among extremes are
weaker than their correlation in the original coordinate system of the data set. It shows that
the residual series, which has no underlying behavior of the total input dataset, has a low
relationship with the farther subcatchments. The residual series is the part of the complete
series, which primarily explains the extremes.

To transfer the non-tangible rank correlation plot to an explicit configuration, Figure 4.10
is mapped. Then, for each measurement gauge as a reference, the rank correlation is traced
over the space. The meaning of applied colors here is the same as the previous figure.

Figure 4.10: The simultaneous occurrence of the largest floods regarding the reference stations; Left:
Oberndorf - Right: Sennfeld

Two sub-catchments are selected from two distinct parts of the region to show distinct spatial
responses. In Figure 4.10, on the left, Oberndorf (ID-Nr. 409) as the upstream part is
appointed; the darker red color presents a strong association with the reference. It shows
that nearer and almost flow-connected sub-catchments react simultaneously and with the
same power harmony in this part. Also, the station Sennfeld (ID-Nr. 478) in the north
region of the Neckar has a different relationship with the other catchment. Thus, according
to the number of catchments, there are distinct flood response regions. These two figures
clearly show the purpose of performing PCA on data. In the figures mentioned earlier, only
the areas exclusively related to the excess runoff are colored red. This means that the river’s
main flow has been removed from the time series after the application of PCA. Therefore,
only values that are directly related to the flood have been analyzed. Hence, the behavior of
the area is still almost vague. Accordingly, the hierarchical cluster analysis, by combining 46
dimensions, provides reasonable behavioral groups.
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4.3.3 Cluster analyzing

4.3.3.1 Hierarchical tree and validation

Based on computed dissimilarity matrices, hierarchical cluster trees are calculated. This
clustering designates the simultaneous behavior of extremes in different catchments. In Figure
4.11, two samples of the linkage method are plotted, which had the highest Silhouette value.
The shape, structure and height of trees show distinguished groups.
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Figure 4.11: Hierarchical cluster tree of the simultaneous occurrence of the extreme floods

The dendrogram presents similarities between the simultaneous peak discharge of the sam-
pling sites that, noticeably, different groups can be distinguished from each other. Further-
more, the three main clusters in this figure are shown in three different colors. Inside each
batch, some sub-clusters illustrate the interconnection of sub-basins in a specific area. The
next step is to test the goodness of clustering to decide which hierarchical tree is more relevant
to the aim of this research. As Figure 4.11 shows, it is not easy to recognize the similarities
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between dendrograms, i.e., the class numbers and orders are not always the same. Therefore,
it is demanded to apply different indices to compare the clustering results in this multidimen-
sional space. Table 4.3 is expressed the quality of clustering using different distance metrics
and linkage methods.

Table 4.3: The Silhouette coefficient of various linkage methods based on different distance
matrices

Complete Average Weighted Ward Single

Euclidean distance 0.173 0.297 0.302 0.297 -0.016
Kendall distance 0.280 0.302 0.297 0.297 -0.016

The results are presented in Table 4.3. In the hierarchical cluster tree based on Euclidean
distance, the Weighted linkage method shows the highest score, and the Ward and Average
methods are both in the second rank. Also, the Average linkage algorithm has the top score
according to Kendall’s distance, and the Ward and Weighted methods are in the following
ranks. As it is clear, the Single linkage method is in offset for both distance methods. It
is a sign to have several negative values. Therefore, it is not recommended to highlight this
method for the following steps.

The class numbering is different for each of which stations. Now, the investigation is faced
with a question. How much different dendrograms are similar to each other?. The ten possible
combinations of the two applied distances and linkage methods for hierarchical clustering
are calculated and reported in Tables 4.4 and 4.5. These results show that the similarity
among clustering algorithms and make easy the interpretation of dendrogram trees, i.e.,
instead of plotting ten dendrograms to visually compare the similarity of members inside
each cluster, here ARI and FM, as the two external indices to measure the similarity between
two hierarchical clustering, count one by one the distribution of a member in a cluster in other
clusters. The process is not sensitive to the number of clusters and the way of numbering
each group of data. As a result, it is possible to find the most similar clusters by having the
higher indices.

Table 4.4: Contingency table of two applied distances using ARI

CompleteK AverageK WeightedK WardK SingleK

CompleteE 0.167 0.212 0.202 0.202 0.056
AverageE 0.857 0.933 1 1 0.012
WeightedE 0.796 1 0.933 0.933 0.045
WardE 0.857 0.933 1 1 0.011
SingleE -0.001 0.045 0.012 0.011 1

The results of the adjusted Rand index in Table 4.4 show the highest similarity is between
Ward linkage with Euclidean distance and Average linkage with Kendall distance. And after
that for the Complete linkage method using Kendall distance and Average and Ward methods
using Euclidean distance. Here, the Complete method with Euclidean distance shows a totally
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different clustering result in comparison to the others. Naturally, the Single method is also
acted differently from all the others and has identical clusters for both distance methods.

Table 4.5: Contingency table of two applied distances using FM

CompleteK AverageK WeightedK WardK SingleK

CompleteE 0.492 0.521 0.520 0.520 0.641
AverageE 0.901 0.957 1 1 0.569
WeightedE 0.867 1 0.957 0.957 0.579
WardE 0.908 0.957 1 1 0.569
SingleE 0.550 0.579 0.569 0.569 1

The results of FM index in Table 4.5, express the same results from the adjusted Rand
index, except the fact that the second most similar clustering is between Complete linkage
with Kendall distance and Ward linkage with Euclidean distance. Here, the AverageK and
WardE have almost identical results. Having one in the above tables is possible when the
input is the obtained floods from the residual series, which does not include the primary
behavior of the catchment.

In general, the results of the FM and ARI are mostly similar to each other. Due to the nature
of the FM index, the comparison between the single linkage method and all the others showed
a value equal to 0.6. The ARI coefficients for the single method are always near zero. The
ARI correctly shows that the differences between the Complete linkage method and the rest.
In the first row of the Tables 4.4 & 4.5, the difference between the mentioned two indices has
appeared. The clustering results for the two Complete methods are not similar to each other.
The ARI score for CompleteE Vs SingleK equals 0.056 and for CompleteE Vs CompleteK

equals 0.167. Nevertheless, the FM scores are equal to 0.0492 and 0.641 for the mentioned
comparisons, respectively. According to the Silhouette coefficient, the Single methods have
many negatives and wrong clustering. Therefore, ARI showed better results than FM for the
two methods of Complete and Single. For the others, they are mostly similar.

In general, after implementing PCA, clustering is less sensitive to the use of different distances
and linkage methods. This is a prominent point for applying this method in future studies.
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Figure 4.12: Silhouette coefficient of different hierarchical trees

By plotting Silhouette coefficient diagrams, the most reasonable linkage method can be cho-
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sen. The outcomes of Figure 4.12, in addition to the information gained from Table 4.3, are
determined as the most appropriate way to cluster simultaneous flood occurrences. Accord-
ing to Figure 4.12, the Complete, and Single methods represent many negative values, which
shows an unreliable cluster tree. The negative Silhouette value is a sign of a wrong placement
of a station in a given cluster. Therefore, concerning the above plot, the two best possible
ways to cluster the sub-basin are chosen to be Average and Weighted linkage algorithms.

4.3.3.2 Mapping clusters

Regardless of the results of the verification coefficients, the clusters are mapped in Figure
4.13. These maps illustrate differences of employing different distance and linkage methods.
However, they are mainly similar to each other and have some small differences except in the
Complete method. Then, by comparing verification coefficient and the following maps, the
best clustering map may determine. The first expectation is that, these maps should not be
very different from the last chapter. Because the main behavior of the streamflow is captured
by PCA and extracted from the time series. The identified extreme floods occurred at about
the same time as the floods in the original time series. Nevertheless, the magnitude of the
residual time series floods is lower than the primary series.
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Figure 4.13: Spatial mapping of different hierarchical clustering in PCA-AHCT
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Figure 4.13 shows that the application of each linkage method could make a diverse pat-
tern. However, the most appropriate way to interpret clustering is selected concerning the
research objectives and the verification result of the Silhouette value. The Silhouette coeffi-
cient shows the validity of each cluster. Maps with the four linkage methods (the Average,
Weighted, Ward, and Single) are mainly the same in applying distance methods, except for
one sub-catchment. However, the Single method is not successful according to the Silhouette
examination. The ARI and FM also prove that the maps obtained from the Single linkage
methods should not show the right way of clustering for floods. Also, the Complete algorithm
illustrates massive differences in clustering by employing two distinct distance methods.

The maps for the Average, Weighted, and Ward linkage methods all follow the fact that the
third cluster (Class III) starts from the outlet of the upper Neckar catchment in Plochingen
(see Table 2.2. It can be because of the massive river regulation after this point on the
Neckar river (please see Figure 2.8. Also, obviously, the three subcatchments in the west of
the basin are separated from the other in the yellow color. They are Nagold and Neuenbürg
as headwater subcatchments, Pforzheim on Enz river with (ID-Nr. 2452, 76123, 4422). In
this region, there are not many dams and reservoirs (Figure 2.7a). The Würm river near the
Pforzheim (ID-Nr. 36056) is always clustered as a part of class I in the dark blue, and it is
a headwater subcatchment. It has two reasons; the first is that this part of the catchments
is vividly separated from the rest in terms of the topographical division line around this
sub-basin. Also, there are some dams and hydraulic structures, Which distinguishes this area
from the western part of the catchment. Also, there is a sub-basin in the Average map with
the defined Kendall distance at Schwasberg (ID-Nr. 1411) on the origin of the Jagst River,
which is in class II. This headwater area has a high concentration of dams and reservoirs,
which might be the reason for having it in the different clusters. In the upper Neckar basin,
two areas are broken apart. One is on the main river Neckar and the Class II areas on the
Fils river with Karsric geological feature.

4.3.4 Comparison between PCA-AHCT and AHCT clustering methods

In this part, the two chosen clusters based on PCA-AHCT are compared with the AHCT
cluster maps presented in the preceding chapter and by (Modiri and Bárdossy, 2019b, 2021).
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Figure 4.14: Comparison between PCA-AHCT and AHCT

In Figure 4.14, three determined classes are plotted. (a) and (c) are the two selected algo-
rithms in this section, while (b) and (d) are clustering methods without applying the PCA
and reconstructed time series (normal AHCT). According to the Silhouette score presented
in Table 4.3 and Figure 4.12, the Weighted method with Euclidean distance and the Average
linkage with Kendall distance worked very well and showed well-defined clusters. Further-
more, the mentioned PCA-AHCT algorithm illustrates consistent results that are not altered
by changing the distance matrix. The AHCT method showed mostly similar clusters in this
region except for an area in the east part of Neckar in the second cluster (green color). This
sub-catchment is a station in Schwabsberg (Nr. 1411). However, this area is located in the
second cluster in all the other selected clusters in this plot.

The Rems river in the AHCT is clustered as class II, but after implementation of PCA on
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the dataset, this area is clustered in class III, which has more meaning in terms of river
regulation and geomorphology of the catchment. In general, the region is divided into the
upstream and downstream, wherein the highland region, the catchment is shown two distinct
clusters, one on the main river and another in the Fils river (in green color). The discharge
time series after starting point of the third cluster at Plochingen (ID-Nr. 427) has the highest
slope of changes, which can have some impacts on extreme as well (see Figure 2.12). Also,
all the measurement gauges along the main river are always showed a significant trend in
different time resolutions. However, floods are not a function of the leading regime of a river
(see Figure 2.10). There is another reason that between Rockenau and Plochingen (stations
454 and 427), there are not any gauges. In between, some main tributaries of the Neckar
(mentioned in Table 2.1) are connected to the main river. Therefore, it is reasonable to have
the mentioned region as a separate cluster.

Therefore, results represent three major regions that have a well-defined simultaneous extreme
flood mechanism. Despite a bit of difference in clustering by the AHCT method, the PCA-
AHCT shows the same synchronic occurrences of flood events. The west part of the upper
Neckar catchment plus Pforzheim are utterly separated from the other sub-catchments in
both methods. The difference between these plots is within clusters two and three. Despite
changing the distance algorithm, the clustered regions are mostly identical by using the
mentioned linkage methods.

4.4 Conclusions

Simultaneous flood occurrences enhance the vulnerability in river plains. Additionally, ex-
treme events analysis is not well understood in multidimensional space so far. High-resolution
data and novel concepts for quantifying interactions undertake a primary step to achieve new
results. Identifying typical clusters of vulnerable flood areas requires a classification of con-
temporary flood patterns, which spatially shows to what extent floods respond simultaneously.
In this thesis, the flood classification objective function is formulated to find out contempo-
rary flooding patterns. Different clustering approaches are compared to detect convergence
patterns of the flood flow mechanism for magnitudes of coincidence floods. Its applicability
is generally tied to flood protection, insurance, and river training.

Extreme discharge events of the river Neckar and its 46 sub-catchments are studied, and we
introduced a new approach of analysis based on the PCA residual series. The PCA algorithm
offers a pure series of discharges that are out of periodic term signals like the linear trend,
annual and semi-annual signals. Therefore, the PCA method is firstly applied to acquire the
primary behavior of the signals in the basin. After that, a new time series so-called residual
is constructed based on the first three principal components. Finally, the leave one out cross-
validation methods is applied to calculate the least predicted sum of squares to catch the
optimal number of principal components to have a better reconstructed series. These three
PCs explain more than 85% of input data’s variability.

The clustering methods are used to estimate better multiple flood events evolution, which
depends on the contribution of many sub-catchments. Also, clustering is a new metric in
multivariate analysis of the simultaneous occurrence of floods. For this reason, PCA residual
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and the hierarchical cluster tree are applied. Neither of these methods needs initial assump-
tions, and they are free of additional presumptions. The trees are computed based on rank
correlation matrices of the highest occurrence of the absolute residual floods in the period of
55 years and are evaluated by various linkage ways. Mainly the Average, Weighted, and Ward
methods have the same clusters. Then, the Silhouette score as a verification way of cluster
tree is employed to all possible clusters. Therefore, the Neckar is grouped and mapped, and
despite the small difference between the algorithms, an identical clustering pattern emerged.
Then, these maps are compared to the outcome of the AHCT method. The result in the
PCA-AHCT shows similar maps, but the AHCT has partly different behavior. Two criti-
cal stations are dubious in clustering with the AHCT method in the previous study despite
verifying hierarchical cluster trees in the Neckar basin. This study determines that the sta-
tion Schwabsberg (Nr. 1411) in Jagst tributary should be in the second cluster and station
Neustadt (Nr. 1470) in Rems’ tributary should be in the thirds cluster to have a higher
evaluation coefficient.

The ARI and FM indices also show the similarity between different clustering maps; however,
the FM measure has reported unfavorable properties for small numbers of clusters. On the
other hand, the index can be very high for independent clusterings. In this research study,
the ARI contingency table shows more reliable results. However, the results of both methods
show similar outcomes.

The results show the simultaneous occurrences of high discharges operating as a function of
the basin’s topology and geology. To conclude, the Neckar is divided into three major clusters:
the first is around the western part of the upper Neckar catchment and seized with the Black
Forest and Swabian Alps. The second cluster is primarily located in the eastern region of the
upper Neckar, which includes smaller sub-catchments and karstic geologic features. These
two clusters are in the farthest Euclidean distance to the catchment outlet as well (see fig.
2.4a). Finally, the third part is the remaining area of the Neckar basin lowland area. It can
be mentioned that a reason for some clustering mismatches between PCA-AHCT and AHCT
might be due to the anthropogenic alterations in this area or the low magnitude discharge
flow in the small catchments such as the Pforzheim. Besides, the observed difference among
clusters in the southeast of the Neckar basin can be due to the geological characteristics of a
dipping formation.

The main Neckar river is massively regulated after the Plochingen (Nr. 427), and it can be
a reason to have a distinct cluster after this point, which is separated the Neckar into two
regions: the upper Neckar and the rest in downstream regions. Also, the number of dams and
reservoirs play a significant role in having the western subcatchments of the Neckar into the
first cluster (class I) in the dark blue (please see Figure 2.7a). Also, maybe due to the high
concentration of hydraulic structures on the Rems river, it is possible to have this area (Nr.
1470) in different clusters. The PCA-AHCT advantage is highlighted, especially in this region
when the Rems is clustered as class III. As a result, being headwater subcatchment does not
play a vital role in the simultaneous flood clustering. There are several headwater areas in
the third cluster near the outlet and near the border of the Neckar. However, indirectly,
the upper Neckar with a high concentration of small-sized sub-basin and many headwater
catchments react differently from the study area’s downstream.
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Furthermore, the lack of a discharge flow measuring station along the main river Neckar
between Plochingen and Rockenau, as well as the connection of four tributaries, Rems, Enz,
Kocher, and Jagst, to the main flow path in between, might cause a difference between the
upstream and downstream in the resulted clusters in both chapter three and four.

In total, clustering is less sensitive to employing different distances and linkage methods after
implementing PCA. Therefore, it can be concluded that this is an efficient approach that can
be utilized in further clustering studies on extremes in hydrology.





5 Distribution-based clustering of general

floods

5.1 Introduction

One of the most prominent challenges in hydrology is the reliable estimation of extreme floods,
which are crucial for designing and operating flood control structures and flood defenses.
Regional flood frequency analysis (RFFA) is a general approach for estimating the magnitude
of floods with various return periods in homogeneous regions (England Jr et al., 2019). Let
assume floods are stochastic processes, and their magnitudes and frequencies can be predicted
using certain probability distributions. RFFA provides flood quantile estimates, which are
then used as the basis for designing flood defense infrastructure. The regionalization process’s
goal is to identify catchments that are similar enough to corroborate the combination of
extreme flow information on all sites in the region. Also, RFFA tries to reduce sampling
uncertainties in calculations of extreme flood events (Leščešen and Dolinaj, 2019). Thus, it
is necessary to combine streamflow data records from different sites in a geographical region
with similar flood characteristics. Similar regions can provide the basis for the computation
of extreme flood events at ungauged basins within the same geographical region.

This chapter aims to detect whether the region can be considered hydrologically homoge-
neous and determine the distribution function that best fits the observed extreme floods
(Cunnane, 1988). There are dozen of RFFA methods such as station year methods (Rosbjerg
and Madsen, 1995), Dalrymple’s method (Dalrymple, 1960), Methods based on dimensionless
moments (Stedinger, 1983; Saf, 2009) Methods based on order statistics and record exten-
sion (Kajambeu et al., 2020). As well as Bayesian methods (Reis Jr and Stedinger, 2005),
and methods based on standardised probability-weighted moments (Greis and Wood, 1981;
Ahmad et al., 1988; Deng and Pandey, 2009). Moreover, several different methods, which
are not in the context of this study. Most RFFA methods assume that some type of regional
homogeneity of flood frequency behavior exists, except the Bayesian approach and record
extension methods. The distribution and probability of exceedance floods are the basis of
each flood frequency analysis. Therefore, it is essential to investigate the regions with similar
flood behavior.

Unlike the last two chapters, clustering similar floods as the term “general floods” in the
Neckar catchment is investigated to determine possible accompaniment among floods. Thus,
in this chapter, the main concentration is not on the simultaneous occurrences of floods.
Instead, the largest floods are identified, regardless of their synchronicity. However, some
simultaneous floods may be categorized as general floods, while many floods occurred inde-
pendently.
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Many existing clustering methods are assumed the linearity of the series. However, linear
hypotheses can often not be maintained (Zhang and Chen, 2018). In this chapter, the problem
of clustering non-linear time series and distribution-based clustering are considered. We
propose implementing a two-sample Kolmogorov-Smirnov test (KS) statistic as a distance
measurement of two series by measuring the discriminatory power of a reference series and
the affinity of non-linear serial dependence structures. This statistic allows unsupervised
clustering on sets of distributions and detects the clusters in those sets.

In this part, the Cumulative Distribution Function (CDF) is the basis of clustering to group
similar CDFs into sets as realized clusters. The smaller the difference between two CDFs, the
more likely that two sets of data are in the same cluster. Furthermore, the farther apart the
two CDFs are, they can be classified into different clusters. This test can determine differences
in position and dispersion of CDFs (Mora-López and Mora, 2015). This type of clustering
is done in a multidimensional space by a hierarchical clustering tree without considering any
assumptions (Pauwels and Frederix, 2000; Modiri and Bárdossy, 2020). So far, KS statistics
applied in combination with K-means and K-medoid techniques (Wang et al., 2019; Zhu
et al., 2021) and have not been applied in hydrology. Therefore, the CDF-based clustering
on general floods is the investigated approach in Chapter 5.

Discharge
time series
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identification

(Two independent peaks/year)

AHCT

Clustered
CDFs Mapping

Distributions difference
matrix 
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Average
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Figure 5.1: The applied algorithms in the distribution-based clustering

In Figure 5.1, the stepwise procedure of this chapter is illustrated to clarify the structural
outline. First, the general floods are identified so that we have two floods every year. This
helps to maintain continuity over time in a way that we still have a flood time series. Then,
empirical cumulative distribution functions are computed and plotted to calculate the dis-
similarity matrix of the flood series. Finally, the AHCT clustering is done by implementing
five forms of linkage connections, and different criteria to evaluate the results. Further, the
return period is calculated as the basis for flood frequency analysis for the catchment outlet,
and the Flow duration curve (FDC)s are plotted for all areas. In the end, the obtained results
are illustrated as maps. Then, the resulting clusters are interpreted in terms of high and low
flood occurrences.
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5.2 Methodology

5.2.1 General floods identification

The general floods in this section are identified based on Section 3.2.1. Thus, two large
independent floods per year are selected as general floods in the Neckar region. In total,
concerning 55 years of data, each station has 110 peaks as a time series of extreme floods.
Regarding the coordinates of each sub-catchment and locating the stations upstream or down-
stream, the magnitudes of floods are not comparable. The selected peak matrix is normalized
to have the same scale data properties such as skewness and kurtosis. This process lets the
comparison of two or more data sets with different magnitudes and units.

For a random variable X with µ and σ as the mean and standard deviation, the z coefficient
of a value x is:

z =
(x−µ)

σ
(5.1)

For sample data with mean X̄ and standard deviation S, the z coefficient of a data point x

is:

z =
(x− X̄)

S
(5.2)

z scores measure the distance of a data point from the mean in terms of the standard devia-
tion. This is also called standardization of data. The standardized data set has a mean of 0

and a standard deviation of 1, keeping the original data’s shape properties.

5.2.2 Return period estimation

A recurrence interval, also known as a return period, is a statistical measurement typically
based on historical data over an extended period. It is the first step of each flood frequency
analysis. The following analysis assumes that the probability of the event occurring does not
vary over time and is independent of past events (Kang et al., 2019). There are different way
to estimate the return period; here, the inverse Weibull equation is used as follow (Selaman
et al., 2007):

Tr =
1+n

m
, (5.3)

where m is the rank of flood series and n is the number of years in the dataset. There are
two approaches to estimate the return period of the flood series. The first one is the annual
maximum series, which is the traditional way to calculate the return period. The second
method utilizes the partial duration series when we have more information about the peaks
inside the input time series. Depending on the return period approaches, the m factor can
be changed. It means, by adding other peaks, first the floods have to be sorted, and then the
rank of each element will be calculated.

There are several methods to calculate the average of recurrence exceedance interval (Tr)
explained in Selaman et al. (2007); Zhang et al. (2015). Nevertheless, the concentration of
the current research is not on this issue.
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5.2.3 Flow duration curve

The FDC is a stochastic representation of the variability of runoff, which arises from the
rainfall and snowmelt transformation all over a given catchment area (Yokoo and Sivapalan,
2011). It is a representation of the frequency distribution of streamflow at a specific time.
The temporal resolution can be very fine to a coarse-scale (Searcy, 1959; Vogel and Fennessey,
1995). Also, FDC can play an alternative delegation of the CDF of discharge flows.

A flow duration curve represents the association between the frequency and magnitude of
a time interval streamflow for a particular river basin, which provides an estimate of the
percentage of time a specific flow was exceeded over the historical time series (Vogel and
Fennessey, 1994). An FDC is the complement of the cumulative distribution function of
discharge. Each value of discharge flow (Q) has a corresponding exceedance probability (p).
The FDC is simply a layout of Qp, the pth quantile or percentile of given resolution streamflow
against exceedance probability p, where p is defined as follow:

p = 1−P{Q ≤ q}

= 1−FQ(q)
(5.4)

The quantile QP is a function of the measured streamflows. Due to the dependency of this
function to the empirical observations, it is often entitled the empirical quantile function (to
have detailed information of mathematical equations, please see Vogel and Fennessey (1994)).

5.2.4 Non-parametric distribution similarity

In this chapter, the dissimilarity among empirical CDFs is assessed to group floods with
a close distance between their distributions. The Kolmogorov–Smirnov test (KS test) is a
nonparametric test of the equality of distributions that can be used to compare two samples.
Here, the selected peaks for each discharge measurement station are a sample vector. Thus,
the two-sample KS test evaluates the difference between the CDFs of the two sample data
vectors over the range of x per data set. This test quantifies a distance between the empirical
distribution of two samples.

The cumulative distribution function F (x) of a random variable X, is:

F (x) = P(X ≤ x), x ∈ R (5.5)

The cumulative distribution function distinctively characterizes a probability distribution.
Given observations x1, . . . ,xn, the empirical distribution function Fobs (x) gives the proportion
of the data that lies below x, i.e. if the ordered observations y1 ≤ y2 ≤ ·· · ≤ yn, then:

Fobs (yi) =
i

n
(5.6)

The null hypothesis that data in vectors X and Y comes from two independent random sam-
ples from continuous distributions (populations with the same distribution) with distribution
functions F and G, respectively. Subsequently, the difference among CDFs has to be tested.
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Thus, the KS two-sample can be applied to test the null hypothesis,

H0 : F(x) = G(x), for every x,

against the general alternative

H1 : F(x) 6= G(x), for at least one x,

which utilizes the test statistic as follows (Massey Jr, 1951):

Dn,m = sup
−∞<x<∞

|Fn(x)−Gm(x)| = sup
1≤i≤n+m

∣∣∣Fn

(
z(i)

)
−Gm

(
z(i)

)∣∣∣ (5.7)

where Fn and Gm denote the empirical distribution functions for the X, and Y samples,
respectively. The Z(i) are the order statistics of the combined mentioned samples. In general,
the two-sample KS test uses the maximum absolute difference between the CDFs of the
distributions of the two data vectors. This test is conventional and free over the class of
all continuous distribution functions and consistent against any differences between F and
G; however, it is biased (Katzenbeisser and Hackl, 1986). The decision to reject the null
hypothesis in KS test is based on comparing the p-value with the significance level (α), not
by comparing the test statistic with a critical value. The null hypothesis is rejected at level
(α) for large samples, if

Dn,m > c(α)

√
n+m

n ·m
(5.8)

where n and m are the sizes of first and second sample respectively, and c(α) =
√

− ln(α
2 ) · 1

2 .

Moreover, there are some other classes of test statistics, which employ information from
all and not only the largest deviation introduced by Lehmann (1951); Rosenblatt (1952);
Kuiper (1960). Also, if the two samples have different sizes, it is possible to use another
nonparametric two-sample test such as the introduced method in Gretton et al. (2012).

As a result, clustering can be done by accepting or rejecting the null hypothesis and asymp-
totic probability.

5.2.5 Agglomerative hierarchical cluster tree based on, KS statistics

To construct clusters, the KS statistics is the basis for clustering in this part of the thesis.
This coefficient shows how near/far are two datasets’ vectors. Therefore, the square matrix of
KS statistics has to be calculated to show the maximum differences among CDFs. This matrix
is assumed to be a sort of CDF-based distance matrix employed in cluster tree computations.
The mentioned steps are similar to Section 3.2.4.

5.2.6 Clustering performance

To evaluate the clustering performance, three clustering evaluation methods are applied to
evaluate different clustering efficiency approaches. Each of these criteria follows distinct
mathematical concepts and can have different judgments. First, for the goodness of clustering,
the Silhouette coefficient algorithm is performed as it is described in Section 3.2.5.
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5.2.6.1 Calinski-Harabasz index

The Variance Ratio Criterion (VRC), so-called the Calinski-Harabasz (CH) index is defined
as follows (Caliński and Harabasz, 1974):

CHk =
SSB

SSW
×

(N −k)

(k −1)
, (5.9)

where SSB is the total between-cluster dispersion, and SSw is the overall inter-cluster dis-
persion, k is the number of clusters, and N is the number of observations.

The total between-cluster dispersion SSB is defined as:

SSB =
k∑

i=1

ni ‖mi −m‖2

=
k∑

i=1

ni(mi −m)(mi −m)T

(5.10)

where ni is the number of observations in cluster i, mi is the centroid of cluster i, m is the
overall average of the sample data, and ‖mi −m‖ is the L2 norm between the two vectors.
The L2 calculates the distance of the vector coordinate from the origin of the vector space.
It is also called as the Euclidean norm as it is calculated the Euclidean distance from the
origin.

The overall within-cluster dispersion SSw is defined as follows:

SSW =
k∑

i=1

∑

x∈ci

‖x−mi‖
2

=
k∑

i=1

∑

x∈ci

(x−mi)(x−mi)
T

(5.11)

where x is a data point, ci is the ith cluster, mi is the centroid of cluster i, the same as the
last equation, and ‖x−mi‖ is the L2 norm between the two vectors.

The larger the CHk ratio, the better the data division. Therefore, the best possible clusters
have a large between-cluster variance (SSB) and a small within-cluster variance (SSW ). As
an advantage, this score is fast to compute and consider both within and between cluster
variances (Łukasik et al., 2016; Kingrani et al., 2018)

5.2.6.2 Davies-Bouldin index

The Davies-Bouldin (DB) index is based on a ratio of within-cluster and between-cluster
distances. Davies-Bouldin Index is defined as follows (Davies and Bouldin, 1979):

DB =
1

k

k∑

i=1

max
j 6=i

{Di,j} , (5.12)
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where k is the number of clusters, and Di,j is the within-to-between cluster distance ratio for
the ith and jth clusters.

Di,j =

(
d̄i + d̄j

)

di,j
(5.13)

d̄i and d̄j are the average distance between each point in the ith and the jth clusters and
the centroid of their cluster, also known as “cluster diameter”. di,j is the Euclidean distance
between the centroids of the ith and jth clusters. A lower Davies-Bouldin index is associated
with a model with better separation between the clusters. The difference between CH and
DB indices applies differently within/between -cluster variances and distances (Ünlü and
Xanthopoulos, 2019). The computation of the Davies-Bouldin index is much less complex
than the computation of the Silhouette index, which is a significant advantage regarding
eventual real-time operation (Petrovic, 2006).

5.3 Results

In this part, the extreme floods’ return period is estimated to determine the possible dif-
ferences between the annual and partial approaches. The flow duration curves for all the
measurement gauges for the daily discharge time series are plotted and computed separately
for the flood series. Then, the Kolmogorov-Smirnov test’s statistics are calculated, and em-
pirical CDF of extreme floods is plotted. Later the polar form of the hierarchical cluster
tree is illustrated to determine the final clusters. Finally, clustered stations are shown to
present their differences in the empirical cumulative distribution functions. In addition, their
differences are illustrated in the FDC form. The resulting clusters are also mapped in space
to recognize a better group of stations. The chapter ends with a conclusion.
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Figure 5.2: The return period of extreme floods based on two approaches of annual maximum and
partial duration series at the outlet of the Neckar basin
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In Figure 5.2, the partial duration series displayed as extreme flow versus the return period
with blue stars for the extremes at the outlet of the study area. The x-axis is shown with
logarithmic scales. Also, the annual maximum series is plotted in red squares for comparison
between these two approaches. Note that the partial duration series has many more data
points and quite a few with less than a one-year return period. It shows that these peak flows
are occurring with a greater frequency than once per year. Further, the annual and partial
duration series tend to diverge for return periods below five years.

The range of changes between the highest extreme floods and the lowest is massive and around
1450 m3/sec. Therefore, it is possible to have different results for high and low volume floods.
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(b) Flow duration curve for standardized the extreme floods

Figure 5.3: Empirical flow duration curve for the discharge and biggest floods time series

Figure 5.3 shows the FDC for all the measurement gauges in the Neckar catchments. In
general, there are two parts of the figure, which are distinguished the difference in FDCs,



5.3 Results 83

in Figure 5.3a. First, the exceedance probability between 1 to 15% and then the last 15%

of the x-axis for the exceedance probability. The FCDs for the standardized discharge flows
are almost the same in between 35 to 75% of the probability. It shows that massive and low
volume discharges are the distinguishing factor of the flow. All the curves have a steep slope,
which intimates a highly variable stream whose flow is considerably due to the quick runoff
of rainfall to the stream. Figure 5.3b, only illustrates the FDCs for the standardized extreme
floods. Here, the difference is higher than the discharge time series. However, between 55 to
70 percent of the time, flood in the streams is likely to equal or exceed similar volumes. The
highest difference belongs to less than 25% of exceedance of floods.

5.3.1 KS test decisions and statistics

Here, the acceptation and rejection of the null hypothesis of the KS test are investigated
to determine the similarity of distribution type among empirical CDFs. Then, the absolute
maximum difference between CDFs is calculated and shown.

Figure 5.4 shows an overview of the similarity of the distribution of the extreme events. In
part 5.4c, the differences among CDFs are partly distinctive, especially in between 45% and
80%. Also, the differences among empirical cumulative distributions are high in the first and
the last percent of the figure; however, it is difficult to catch this point easily by checking
a single figure. Due to having more information in the KS test statistics 5.4b than the
acceptation/rejection decision in 5.4a, the results of the KS statistics are more concentrated
in this chapter. The KS statistics show the maximum distance between empirical CDF of
extreme floods, and based on this factor, clustered maps are schemed.

5.3.2 Clustering of the general floods

5.3.2.1 Polar hierarchical cluster

The polar form of AHCT is offered to present better performance for understanding cluster
trees. The agglomerative hierarchical cluster tree is computed and plotted in Figure 5.5. The
figure is divided into two parts; the upper part is for the KS statistics for Ward on the left
and the Average on the right. Different linkage methods present partly different clusters.
Also, here, clustering with KS statistics has better efficiency than the KS test decision, due
to the binary nature of the decision matrix and the existence of more information in the KS
statistics matrix. In this figure, station number 23 on the Eschach river and 44 in Neunbürg
on the Enz river, usually reacted similarly and in a group. It is easy to determine two-by-two
relationships between stations, but we still need some more interpretation.

5.3.2.2 Similarity of the general floods distributions, based on KS statistics

Figure 5.6, shows possible grouping ways in hierarchical clustering in CDF form. In Figure
5.6a, Class II is in between Class I and III. The blue and yellow colored clusters are separated
from the beginning of the CDF and change their reaction around 0.4. One of the dark blue
CDFs is acted differently after 0.82. It is a sign that, this station can be in a different cluster
for high volume floods. More consistency in the orientation of CDFs is visible in Figure 5.6b.
The two green and yellow colored clusters are started at almost similar x-axis points, around
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Figure 5.4: In (a), the yellow pixels are the duo stations that are not from the same continuous
distribution. In (b), the maximum absolute differences among CDFs are shown in detail.
The empirical CDFs of the general floods for all stations are illustrated over the Neckar
catchment, in (c).

0.3, and they shifted up and down. Between 0.65 to 0.8, they have the maximum distance
with the dark blue clusters. In Figure 5.6c, despite almost perfect separation in the low values
less than 0.1, clustering does not illustrate reasonable groups. It means the disagreement is
high in Class III with yellow color. The Ward clustering in Figure 5.6d is relatively better
than the previous clusters due to the stable separation of CDFs for the floods less than 0.8.
In Figure 5.6e, the grouping is reasonable for the yellow color, but the dark blue cannot be
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Figure 5.5: Polar AHCT Comparison between KS decision and Statistics for Ward and Average linkage
methods

in a separate group for less than 0.2.

In Figure 5.7, the high exceedance probability floods are distinctively clusters in all parts.
It means low volume floods in between 80 to 100% had completely different behaviors. In
all subplots, some headwater subcatchments are shown illustrious flow duration curves up to
50% percentage of exceedance. For the extreme floods in the window of 0 to 25 %, there is
not any pattern in FDCs. Here, all the lines are twisted into each other. Especially in the
Ward method in Figure 5.7d, it is impossible to catch any meaning for this window. However,
class II has higher standardized floods than class I and III in between 70 to 100% probability.
Therefore, it is possible to cluster low volume floods spatially, but the extreme floods did not
follow any layout in terms of flow duration curves.

5.3.2.3 Clustering validation

The obtained Clusters by Complete, Average, Weighted, Ward, and Single methods are mostly
different due to the different nature and essence of the linkage methods. Therefore, to evaluate
the performance of different clustering algorithms, the resulting clusters in the previous steps
are investigated using three described clustering evaluation methods in Section 5.2.6. The
results are reported in Table 5.1.

Table 5.1: Different clustering evaluation coefficients for various linkage methods

Complete Average Weighted Ward Single

Silhouette 0.516 0.513 0.386 0.322 0.454
Calinski-Harabasz 10.540 9.017 14.354 16.925 5.886
Davies-Bouldin 0.954 0.984 1.124 1.299 0.649

According to the clustering evaluation, the Silhouette coefficient shows that both Complete
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Figure 5.6: Resulting clusters of the standardized general floods in empirical CDF form

and Average linkage methods result in the best clusters. Nevertheless, the CH criterion shows
that the Ward method has the highest coefficient value. The DB index expresses the Single
method is the best way to cluster data, then the Complete and Average methods are the most
trustable algorithms for grouping general floods. We already know that the Single linkage
method is based on the shortest distance, and it is an appropriate way to determine the most
distinct areas or sort of outlier stations.

5.3.2.4 Optimum number of clusters

By changing the number of clusters, the evaluation coefficients of clustering are changed.
The best performance of clustering, i.e., the optimum number of clusters is shown in Table
5.2. Regarding the Silhouette coefficient, clustering into three groups has the highest rank

with both Complete and Average methods. However, the CH criterion shows better grouping
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Figure 5.7: Resulting clusters of the standardized general floods in empirical FDC form

Table 5.2: The best number of clusters regarding evaluation criterion and linkage methods

Nr. of clusters Silhouette Calinski-Harabasz Davies-Bouldin

3 0.516 (Comp.) 16.925 (Ward) 0.649 (Sing.)

4 0.463 (Sing.) 17.851 (Ward) 0.490 (Sing.)

5 0.406 (Ave.) 16.692 (Ave.) 0.491 (Sing.)

when data are clustered into four groups. Then the clustering with three clusters is in the
second rank. Davies-Bouldin also introduces the best number of clusters into three groups.
Apart from the Single linkage method in the DB criterion, the Average linkage method got
a score of 0.742 with four clusters.
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5.3.2.5 Mapping clusters

The understanding of Figure 5.6 may be difficult; therefore, Figure 5.8 can illustrate similar
groups with the same color. Therefore, the resulting clusters are plotted in Figure 5.8.
This figure shows how different sub-catchments are near/far from each other regarding the
magnitude of general floods. According to the result of the clustering evaluation, more
attention should be paid to the Complete and Ward method maps. In Figure 5.8b, almost all
the Neckar sub-catchments are grouped in the same cluster with the dark blue color and some
small sub-catchments, mainly in the border of the basin, are in other clusters. Figure 5.8d has
more details and each of the clusters has more sub-catchments inside. However, the concept
of this map and the previously mentioned maps are similar. Here, west of the upper Neckar
and parts of the Jagst and Kocher in the north of the Neckar catchment are clustered in the
same color. Some small sub-catchments in the dark blue, especially in the upper Neckar and
the Murr and Rems river, are in another group. Also, the mainstream’s sub-catchments after
Plochingen and the east part of upper Neckar are in Class II. The Single linkage method
showed the sub-catchments that acted differently from all the others. It means, in these
upstream regions, floods are way different from the rest of the catchments. In general, the
small sub-catchments and headwaters are reacted differently from the other parts of the
Neckar basin. In all the clustering maps except the Ward map, the subscatchments along the
main river are hydrologically similar to each other. However, in the Weighted methods, the
upstream and small sub-basins are recognized differently. The geologic Karstic catchments
are mainly the same as subcatchments along the Neckar river. The Jagst and Kocher, which
are separated in Figure 5.8c and 5.8d have the lowest number of hydraulic structures. It
may be a reason to have distinct behavior. The most number of hydraulic structures are
built in the center of the map on the Murr and Rems tributary (station Nr. 434 and 1470,
see Table 2.2 and Figure 2.7b), which is in class I in Figure 5.8d. The Murr is a headwater
sub-catchment in the middle of the case study. Usually, these kinds of catchments are on
the border of a catchment with high elevation. Also, the southwest to the east edge of the
Neckar with the Jura lithospheric feature with karstic limestones cause differences for some
small subcatchments upstream of the Neckar.



5.3 Results 89

(a) complete (b) Average

(c) Weighted (d) Ward

(e) Single

Figure 5.8: Mapping clusters of different linkage methods
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5.4 Conclusion

In this chapter, the existing and traditional methods of the regional flood frequency analy-
sis are briefly introduced. Then, the concepts of the recurrence interval and the differences
between the two approaches of annual maxima and partial maximum series are investigated.
Further, the flow duration curve (FDC) diagrams for the whole time series and the time series
of the maximums are then examined. This chapter uses a hybrid distribution-based hierarchi-
cal clustering with five different linkage methods to provide the best clustering performance
for the general extreme floods. The clustering maps are presented with different clusters
due to the distinct nature of linkage methods. However, in all maps, the sub-catchments
in the mainstream before the outlet are in the same cluster; the central part of the Neckar
catchment except some small upstream sub-catchments acted similarly.

Depending on clustering algorithms, the resulting clusters are better grouped in low volume
or extreme volume flood. The polar dendrogram technique provided a new perspective on
how to group data. These graphs may help readers to better catch the differences between
groups in comparison to the normal dendrogram. Clustering is calculated for both the KS
decision matrix and the KS two sample statistics matrix. The final clusters of KS statistics
are rational due to the more information in KS statistics. Afterward, the dendrogram output
on the CDF diagrams showed the distance and proximity of the clusters to each other.

The resulting clusters are compared using three clustering evaluation methods. Different
clustering criteria show different best possible linkage methods. However, the Davies-Bouldin
criterion shows the Single methods as the best performance, and it presents a grouping in a
way that, some sub-catchments reacted entirely different from all others. Therefore, the next
lower DB index is the Complete and Average, which is similar to the Silhouette coefficient
results. Depending on the research goals, the clustering evaluation must be selected to
determine the best possible data groups in the multidimensional space. In conclusion, the
Silhouette coefficients with the Complete and Average linkage methods are recommended
to evaluate the hierarchical clustering of general floods. In addition, the Calinski-Harabasz
index is appropriate when the objective is to minimize the variance employing Ward methods.
The reason why the results of the DB index differ from the other two indices is that the most
sensitive method to distances is the Single method. This evaluation criterion is based on a
ratio of within-cluster and between-cluster distances. Thus, the Single linkage is the shortest
distance and is suitable to determine utterly different behavior among stations. Moreover, it
can be helpful to find outliers in clustering, which mainly belong to small sub-catchments.

Due to investigating the optimal clustering evaluation criterion, the optimal number of clus-
ters in the Neckar catchment and for general extreme floods is three clusters. Therefore, the
Silhouette and Calinski-Harabasz as two clustering evaluation criteria are recommended that
performed better in combination with agglomerative hierarchical clustering.

Moreover, FDCs expressed that the catchment differences are bold when the low and high
flows are investigated. Also, for floods, the regions with low volume floods are easy to cluster
into different groups. However, the extreme floods did not follow any pattern on the FDCs.

To conclude, the resulting cluster maps mostly agreed that the general floods occurred sim-
ilarly in the catchment and mainly have the same clustering on the mainstream. However,
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the Ward map has more information in terms of the complexity of clustering in this region.
All the clustering maps show that the area between Horb in the middle of upper Neckar to
Rockenau, one station before the outlet of catchments, reacted similarly. The steepness of
the slope is different in between 50 and 100 km to the outlet of the Neckar catchment (see
Figure 2.6a). It can be a reason that why the last sub-catchment is differently clustered
from one station before the outlet gauge. The first three stations of the upper Neckar in the
southwest of the catchment, also have similar distribution similarities. In addition, they have
a high hillslope gradient that distinguishes them from the rest of the catchment (see Figure
2.6c). Moreover, the Jagst River in the north of this region shows different behavior, espe-
cially in Weighted and Ward maps. This pattern is similar to the monthly and yearly time
interval trend maps (see Figure 2.10). The headwaters and small catchments on upstream
of the Neckar are clustered into different classes in Figure 5.8. The highly anthropogenic
areas in the Murr and Rems plus Elsenz with the high number of dams, reservoirs, and hy-
draulic structures are the regions that are determined as different clusters. In the Weighted
and Ward maps in the mentioned figure, the Jagst and Kocher tributaries are taken apart
from their neighboring areas. It can be because of a few man-made structures in this region.
It is the same for the origin of the Enz at Neunbürg (station Nr. 76123). Therefore, the
anthropogenic changes are highlighted clearly in the class III of Figures 5.8c and 5.8d.

Almost all the regions along the main river show the same pattern. However, the origin
of the Neckar in Rottweil and Horger are always in the different cluster (see Table 2.2 and
Figure 5.8). Usually, some regions which had a negative slope of change (see Figure 2.12) for
the whole time series are clustered differently in Weighted and Ward maps. Also, the upper
Jurassic with karstic limestones and crystalline rocks in the south edge of the Neckar basin
may be the reason for having different clusters than other sub-basins along the main river. In
general, headwaters, small size catchments, and anthropogenic changes are the factors that
highly impact the resulting clusters. In addition, the existence of more than 4500 hydraulic
structures, dams, and reservoirs has an enormous impact on the hydrological investigation in
this basin.





6 Simulated annealing clustering of general

floods

6.1 Introduction

The spatial evaluation of flood hazards is of ultimate concern for urban developments, agri-
cultural and land use management, and infrastructure planning. The advancement of the
mitigation compositions may optimally reduce the devastation loss (Hosseini et al., 2020).
Improvement of the novel methods and continued promotion in developing the methods for
hazard mapping are particularly indispensable for floods risk mitigation (Bui et al., 2020;
Kalantar et al., 2021).

A new robust clustering technique is introduced and performed by implementing an opti-
mization scheme in this chapter. In other words, finding similar flood behavior in different
parts of a catchment is the goal of an optimization problem. So far, the traditional clustering
algorithms did not fully consider clustering as an optimization problem. Like the previous
chapter, the general floods are investigated to determine the best possible data groups.

Every clustering method initially demands to have the dissimilarity matrix as an input and
basis of calculations. The only similarity between this method and the applied method in
Chapter 5 is employing the same similarity matrix as the clustering input. The distance
among flood time series is calculated with the two-sample KS test. The Simulated Annealing
(SA) is the global optimization manipulated to determine and group similar sets of flood
time series. Simulated annealing is a probabilistic technique to find a global optimum of a
specified function, i.e., it is a meta-heuristic optimization algorithm to approximate global
optimization in an ample solution space.

Some researchers implemented the SA algorithm to solve the clustering problem (Klein and
Dubes, 1989; Selim and Alsultan, 1991; Bandyopadhyay et al., 2001; Maulik and Bandyopad-
hyay, 2002; Seifollahi et al., 2019). They used hybrid algorithms, which combined clustering
methods with optimization approaches. In contrast, the applied method in this section is
a robust technique that solves clustering problems by manipulating simulated annealing in
different optimization levels. The term “level” means the twisted SA loops inside an optimiza-
tion operation (Modiri and Bárdossy, 2020). The initial idea of solving problems employing
an optimization scheme for automatic clustering has been presented recently (Brown and
Huntley, 1992; Dey et al., 2019; Modiri and Bárdossy, 2020). This algorithm aims to group
flood series regardless of the initial defaults of clustering problems. Traditionally, clustering
is constrained by the number of clusters and the size of points inside each data group. The
robust and automated simulated annealing overcome such assumptions to determine the best
possible answer to the research question.
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Figure 6.1: The optimization scheme clustering, based on distribution similarity

In Figure 6.1, the flowchart of this chapter is illustrated to clarify the structural overview. The
purpose of this study is extreme events analysis. The same as preceding chapters, extracting
floods from the discharge time series is the first step. Then the maximum absolute differences
of CDFs are calculated to run the inner loop SAs. To solve and find the optimum answer of
clustering possibilities, the outer SA is considered to make a dynamic clustering algorithm
that can change the size of clusters inside the method. The factor that has to be minimized
in this algorithm is an evaluation criterion like the Silhouette coefficient of each iteration. In
the end, the clustered CDFs are determined and mapped to better illustrate the resulting
clusters.

Moreover, an event-based clustering is performed by assuming the outlet of the Neckar basin
near the Heidelberg as the reference. This investigation will show that to what extend the
extreme floods are reacted similarly comparing the biggest events in this measuring gauge.
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6.2 Methodology

6.2.1 Similarities between the cumulative distribution functions of general floods

The first input for the clustering is always the preparation of the similarity/dissimilarity
matrix. Regarding the methods described in Section 3.2.1, the general floods are identified,
and then dissimilarity among CDFs of flood series are computed based on the applied method
in Section 5.2.4. Then the calculated matrix is used as a distance matrix in the simulated
annealing to find the objective function’s global optima. The optimization needs some initial
assumptions like the number of clusters or the limiting factor for the number of stations
in a cluster, and other optimization parameters, including the number of iterations and
temperature. A newly added feature to the standard algorithm in this dissertation neglects
some of the basic assumptions. SA intertwined loops are an idea accompanied to this section.
This means, after performing a complete cycle of the SA method and finding the optimal data
and clusters, the calculations are repeated by changing the number of clusters. This process
is repeated until the best appropriate clusters and points inside clusters are identified. It is
an automatic and robust simulated annealing. In the following parts, the compositions of
this procedure are described, and the objective function is explained.

6.2.2 Simulated annealing optimization (SA)

In total, the optimization can be divided into two parts (Palop et al., 2010). Heuristic
algorithms can succeed in such shortcomings of mathematical techniques and deliver distin-
guished outcomes when applied to particular problems; however, they remain inappropriate
in a wide range of conditions. The meta-heuristic optimization techniques based on iterative
simulations have been proposed to address the mentioned problem. They provide appropriate
answers, which can be found using limited memory and computation time without requir-
ing complex derivatives (Kim et al., 2014). Many meta-heuristic algorithms that combine
rules and randomness mimicking natural phenomena have been developed. The simulated
annealing algorithm is a meta-heuristic optimization method that was initially designed to
imitate the slow cooling of metals. A progressive particle movements’ reduction characterizes
this method until the lowest possible temperature/energy state is reached (Kirkpatrick et al.,
1983).

Here, in the flood analysis, it is demanded first to determine the objective function to mini-
mize. Therefore, we must first turn to the research question for this section. In this chapter,
clustering is presented as an optimization problem. The question now is which cluster or
clusters will be the best results and what will be the spatial distribution of areas with similar
floods. By asking these questions, we have found the internal clustering criteria, which can
be expressed as the optimum parameters for measuring the quality of clusters in the opti-
mization problem. But, can the SA alone recognize the best answer? The initial answer to
this question would be a no. In multivariate statistics and in multidimensional space, where
dozens of stations in a basin are spatially distributed, it is impossible to find an optimum
score without implementing nested optimization algorithms.

According to clustering results in the previous chapters, three clusters are assumed as the
initial number of clusters. Therefore, all general flood series distributions are randomly
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Figure 6.2: The concept of the simulated annealing algorithm

divided into three groups. Then, the simulated annealing is conducted to define the optimal
solution in this step. In Figure 6.2, the stepwise procedure of the SA’s concept is illustrated.
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6.2.3 Robust Simulated Annealing (RSA)

The SA algorithm is a randomized search procedure that starts from an initial solution. A
limiting factor or a control parameter is set to an initial ‘temperature’ value, which sys-
tematically decreases according to a cooling process (Hamzadayi and Yildiz, 2013). Before
beginning the SA optimization algorithm, it is required to choose initial values for the param-
eters, the cooling process and the limiting factors as ceasing conditions in the loop (see SA
parameters in Table 6.1). The robustness of simulated annealing comes into account when
the optimal solution for initial grouping is determined. The number of points, i.e., stations,
within clusters is changed to repeat the past SA step. Therefore, it is possible to check the
dynamic size of clusters without considering initial assumptions. This step will continue until
the optimal answer is obtained. Each time the number of flood series in each group changes,
the temperature rises again, and consequently, the cooling process begins. Adding SA inter-
twined loops to each other makes it possible to eliminate other initial assumptions/values.
After finding the best answer in the previous step, increasing or decreasing the number of
clusters and then repeating the previous steps is possible. Depending on the number of it-
erations and the limiting factor in each loop, the time to find the optimal answer will also
change.

Table 6.1: Simulated annealing parameters

Parameters Initial value Sign

Nr. of cycles in the RSA 100 n
Nr. of trials per cycle in the SA 10000 m
Probability of accepting the worst solution at the start 0.7 P1

Probability of accepting the worst solution at the end 0.001 Pend

Initial temperature −1/log(P1) t1

Final temperature −1/log(Pend) tend

Cooling factor (tend/t1)1/(m−1) cf

Limited Nr. of stations in a cluster 5 lim

6.2.4 Objective function

Clustering validation has long been recognized as one of the vital issues essential to the
success of clustering applications. Here, In general, clustering validation can be categorized
into two classes: external and internal. The external validation methods consist in comparing
the results of cluster analysis to an externally known result, such as externally provided class
labels (Rendón et al., 2011a). Nevertheless, in the unsupervised learning and hydrological
clustering of a catchment, the labels are not determined, and they are precisely the goal of
clustering (Rendón et al., 2011b). Therefore, in this chapter, an internal clustering validation
is applied as the objective function of an optimization scheme problem.

Several studies have been employed the Silhouette score as a more accurate internal validation
than the others (Petrovic, 2006; Dudek, 2019; Lengyel and Botta-Dukát, 2019; Batool and
Hennig, 2021; Shutaywi and Kachouie, 2021). However, nobody employed it as a direct tool
for clustering in flood analysis. The implemented optimization algorithm tries to maximize
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the Silhouette coefficient as the fitness ratio presented in Section 3.2.5. Therefore, here some
advantages of utilizing this coefficient are described, and a schematic example is illustrated.
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Figure 6.3: A schematic example for the Silhouette score

Figure 6.3 shows the advantage of the Silhouette coefficient in employing the average of in-
tracluster distance (a) and the average of inter-cluster distances (b), which is explained in
Equation 3.14. This score uses inter-and intracluster distances in its function, while most
other methods only use intra-cluster distances (such as the elbow method). Silhouette anal-
ysis also has added advantage to find the outliers if present in a cluster (Lodhi et al., 2019).
Silhouette index for a set of sample data points is utilized to measure how well-separated
the clusters are. The search space becomes much uneven when the objective function in an
optimization problem like a clustering algorithm becomes more complex due to the multidi-
mensional inputs. However, Silhouette is an appropriate objective function for the SA-based
clustering; it is highly possible that the search algorithm does not converge as required. In
comparison several studies on different internal validation like gap statistics Tibshirani et al.
(2001), DB (Davies and Bouldin, 1979), CH (Caliński and Harabasz, 1974), elbow method
based on distortion score (Thorndike, 1953), Dunn index (Dunn, 1973), and dozens of in-
troduced indices in Liu et al. (2010), the Silhouette index is the one is more accurate than
others as objective function (Petrovic, 2006).

The adopted distribution-based dissimilarity matrix of general floods is an input of this
objective function. Each inner and outer loop of the SA algorithm reaches the optimum for
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the Silhouette coefficient. Therefore, the clustered flood series are automatically assessed by
evaluation criteria.

6.2.5 Flood events identification and rank order based clustering

The annual maxima are identified as the described method in Section 3.2.1. Then the selected
peaks have to be sorted and given a rank order. The normalized magnitude of floods are
calculated as follow to have a reasonable range of changes for the obtained extremes all over
the basin:

ni =
xi

X̄
, (6.1)

where xi is the magnitude of ith flood and X̄ is the mean of annual maxima for each mea-
surement gauge. Therefore, the rank order and the normalized floods magnitudes are the two
parameters that are used as the input of hierarchical clustering for the event-based analysis.
The clustering in this section is performed as described in Section 3.2.4.

In addition, empirical CDFs of obtained flood series clusters are plotted and calculated to
visualize the possible differences among the high and low volume floods. As a result, the
normalized series of the floods magnitudes in the same cluster are gathered as a new series,
and then empirical CDF is computed for these clusters.

6.3 Results

In this part, first, the optimization parameters in the inner loop are reported, then the results
in the outer loop for RSA are plotted. Subsequently, a map of the cluster area is illustrated to
show similar behavior regions in the basin. Next, the objective functions, the difference of two
subsequent objective functions, an average of differences, and the probability of acceptation
are plotted in Figure 6.4a. Here, the objective function is tried to be minimized and it
is equal to one minus average of Silhouette coefficient for each iteration. As a result, the
objective function series show a reasonable performance of the optimization algorithm in the
upper panel. Consequently, the best optimum result is mainly determined in the first 3000
iterations; however, the algorithm accepted some changes between 3000 to 5000. Finally, to
reach the best performance of the method, regarding temperature, the cooling rate is drawn
in Figure 6.4b. In the first stages, the temperature cools faster, and in the last stages, it
cools down very slowly. Therefore, as shown in the figure, the temperature changes in the
first 200 steps are considered to be severed. Therefore, determining optimums are correct for
each outer loop.

The determined clusters and objective function inside each outer loop are plotted in Figure
6.5. The best points in a cluster, the way of their distribution and objective functions are
illustrated in the upper panel and the current situation of each of which outer iteration is
plotted in the bottom. Concerning the assumptions, the limited number of stations in each
cluster is designed to be five in each group. It is also planned to have three clusters, the same
as previous chapters; however, RSA can also add another loop to neglect this condition. In
the upper left, the number of stations inside three clusters is drawn. There are eight and seven
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Figure 6.4: The optimization parameters in the inner loop of the applied simulated annealing

stations in the second and third clusters. The station number (ID) is recognized in the upper
middle. After 100 ∗ 10000 calculation rounds, the most optimal answer for the clustering
problem is obtained according to the presumptions made for the designated optimization
scheme. Also, the best objective function is equal to 0.752, which is occurred in the twentieth
iteration in changing the size of clusters.
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Figure 6.5: The results of robust simulated annealing optimization

6.3.1 Clustering of the general floods, based on RSA

Figure 6.6: Mapping general floods clustering using RSA

The computed results of RSA are mapped in Figure 6.6. The results indicate three major
clusters, which illustrate a particular pattern for general flood occurrences except in some
small sub-catchments. These sub-catchments show agreement with each other in each cluster.
Most sub-catchments reacted similarly in the dark blue. Some small areas on the west border
of the Neckar catchment, plus two other small ones in the upper Neckar, are in the second
cluster. The upstream of the Neckar and some parts of the Murr and the Kocher are in the
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same group. This figure shows that the mainstream sub-catchments had the same reactions
when the general flood happened. Two neighboring colors in the clustering map can be
merged. If the green and yellow areas merge, we can see that floods generally acted similarly
in all areas except upstream sub-catchments in the west (Nagold) and southwest, plus the
Murr and Kocher. Here, the headwater subcatchments play a significant role in the resulting
maps. Most of class II and III areas are classified as the two mentioned headwaters in Table
2.2.

6.3.2 Comparison between RSA and KS-based clustering methods

The distribution-based clustering and optimization scheme clustering have two distinct points
of view in the clustering approach. To compare the result of this chapter and the previous
chapter, Figures 6.6 and 5.8 are investigated. The RSA has more similarities with the Ward
cluster map. However, they have some discontinuity. Both of the methods divided the area
into the following form. Some four to five upstream sub-catchments of the upper Neckar are
in a separate group with some parts of Kocher. East of upper Neckar and the Murr, plus
some small regions in the west of the catchment, are in another cluster. Due to some preset
assumptions of the RSA method, the east part of the upper Neckar reacted similarly with
the other catchments on the mainstream.

The result of Figure 6.6 is partly similar to the previous clustering map in the last chapter.
Nevertheless, both results show that the headwaters are the areas that reacted differently
from the others. Also, the origin of the main river due to the high elevation in the region,
which is relatively always showed an unconventional reaction than others comparing all the
other clustering maps. Here the two stations of 7612 at Neuenbürg and 4422 at Pforzheim on
the Enz and Nagold rivers are shown plainly, which can be due to the red sandstone geological
feature.

6.3.3 Event based clustering

In this part, by selecting the outlet of the Neckar as a reference point, the magnitudes orders
of floods are investigated. It means if the enormous flood happened at this measurement
gauge, what was the rank or magnitude of other floods all over the basin. Therefore, first,
the functionality of floods is calculated.
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Figure 6.7: The functionality of floods in all subcatchments in comparison the outlet near the Heidel-
berg

Figure 6.7 illustrates the simultaneity of the largest floods and their magnitude. i.e, in Figure
6.7a the rows are the annual maxima. The first row is the rank of floods comparing the biggest
flood in Heidelberg (reference gauge - station Nr. 4416). The dark blue color is the biggest
event, and the light yellow is the smallest event between annual maxima. If all the regions
brought floods together with similar rank, the map has to be exactly like the color bar behind
the map. The differences happened when a sub-catchment did not bring the same or similar
order of floods compared to the rest of the case study. For example, in the first row, station
34 has a bold yellow color. It is a sign that for the biggest event in the Neckar catchment,
this area did not follow the main pattern in the basin.

Figure 6.7b, evaluates the floods using normalized flood magnitudes explained in Equation
6.1. Here, instead of the rank order, the pixel color is the normalized flood magnitudes.
The highest value is the high occurred flood magnitudes for each column (station). Here,
the same as Figure 6.7a, the first row, column 34, showed a low normalize index which is a
sign of differentiation of this sub-basin in the biggest flood in the region. These are the two
metrics that are used in the following analysis.

Figure 6.8 is a summary of the clustering results based on flood rankings compared to the
magnitude of floods in Heidelberg. The same as the clustering method and results in the
previous chapters, the dendrogram is the basis of the mapping in Figure 6.8a. Here, three
clusters are recognized in different colors. Figures 6.8a and 6.8b are plotted based on em-
ploying only first 45 rank orders to show the possible differences when the full orders are
used. Figure 6.8c is the clustering map that all the annual maxima’s ranks are employed
to achieve this map. The difference between Figures 6.8b and 6.8c is on two parts. First,
the upper Neckar is illustrated as class I (dark blue) and fully separated from the rest of
the Neckar catchment in Figure 6.8b, when only 45 biggest ranks are analyzed. However,
using all the annual maxima’s order does not recognize this area as a separate cluster. While
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Figure 6.8: Clustering based on the rank of the annual floods in the reference station near the Heidel-
berg

the two subcatchments at the Oberensingen (station Nr. 2477) and 36056 at the Pforzheim
(station Nr. 36056) are clustered as the class II (see Figure 6.8c). The similarity between
these two maps is for the rest of the catchment downstream, where the main river is massively
regulated. Also, three small subcatchments are always clustered differently. It means, these
areas did not follow the floods at Heidelberg. These regions have belonged to the small size
and headwater subcatchments on the upper Jurassic units.

In addition, the two areas colored in green in Figure 6.8c are the areas that Figure 3.7 in the
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Single linkage method showed. These are the regions that are distinguished from the others.
Furthermore, it can be because of the shell limestone hydrogeological unite in this region.

The difference between these maps is a sign that the low and high volume floods had different
behavior in this study area, which has to be investigated.
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Figure 6.9: Clustering based on the normalized magnitudes of floods in the reference station near the
Heidelberg

Figure 6.9 uses normalized flood magnitudes instead of the rank orders. Here, by using only
45 highest rows or having all the input matrix, the upper Neckar and the Würm subcatch-
ment (Nr. 36056) showed different clusters and consequently different hydrological behavior.
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Figure 6.9c using all the information illustrates that the upper Neckar except four small
subcatchments on its border, plus the Rems river are in the first cluster. The second cluster
includes the mentioned four sub-basins in upper Neckar and the Würm river.

By concentrating on the most prominent 45 events, the first four sub-catchments on the
Neckar river upstream show separation from the other parts. It means the enormous mag-
nitudes of floods are not that much related to this area (dark blue in Figure 6.9b). Also,
the Rems’ tributary (Nr. 1470) are grouped as class III, the same as all the rest of the
downstream regions.

In these figures, the outlet of Neckar is clusters similar to the upper Neckar, or at least a
part of it. However, the rest of the downstream tributaries, such as Enz, Jagst, and Kocher,
are in the same cluster until the Rockenau (one station before the outlet). It can be due
to the existence of the Heidelberg city as a population center; some river management was
performed there differently.

The obtained cluster maps express that there are differences between heavy and light floods
in the Neckar basin. However, all the identified floods were the largest floods each year.
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Figure 6.10: Empirical CDFs of the extreme normalized flood series comparing the events at Heidelberg

Figure 6.10 illustrates the empirical CDFs of normalized flood’s magnitudes as described
in Equation 6.1. The clusters are the same as Figure 6.9c. The top figure shows no clear
differences from the yellow and green clusters. But, the blue one has recognizable, especially
for the low and medium size floods (in between -2 to 1 in the x-axis of Figure 6.10a). However,
it is still not clear that how does each cluster works together.

Therefore, all values in the same clusters are gathered as a single vector, and then the ecdfs
are drawn (Figure 6.10b). Here, the class I cluster is shown distinct behavior for low, medium,
and high volume floods. The second and third clusters in green and yellow are mainly similar
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to each other. However, they are twisted, and in some parts, the second and sometimes the
third cluster has a higher F(x) value.

As a result, it is reasonable to say that the upstream regions except for the four small
subcatchment in the Neckar catchments have a different form of distribution than the others.

6.4 Conclusion

The robust simulated annealing aims to cluster flood events with a distinct approach by im-
plementing an optimization scheme. It is not a traditional test for clustering. The applied
and designated method tries to neglect initial presumption to find the optimal answer. Clus-
tering is considered as an optimization problem, where groups with small distances within
a group and large distances between groups are to be found. SA finds the optimal global
possibility of ordering stations in clusters.

The RSA clustering method is developed and needs to be investigated more in different
regions, the number of clusters, and objective functions. Each of these parameters may have
a significant effect on how data can be differently clustered. RSA solves the problem of the
number of points in a cluster and the best number of clusters. It dynamically changes the size
during the optimization procedure. Despite the good results in the inner rings, the objective
function in the outer rings did not reach a suitable level. Including at least five members
in each cluster may cause a low magnitude of the objective function. Furthermore, it seems
that other objective functions may work better. It is possible to change the control factor
to set a different number of stations inside each cluster to better compare among clustering
methods. Also, the dissimilarity matrix is adopted from a non-parametric KS test, which
is a maximum distance between two empirical CDFs. Changing this coefficient to another
dissimilarity-based factor may change the resulted maps.

In total, due to some optimization assumptions and initial values, the resulting clusters are
partly different from the resulted maps in the previous chapter. The mapping of clusters
presents areas with distinct flood behavior and demands different flood protection action
plans. Almost upstream and small-scale sub-catchments are grouped separately.

Stations in the second cluster in the west of the basin are followed a similar slope of change in
time series as Figure 2.12. Also, yellow and green regions are primarily similar to the no trend
sub-catchment in the yearly time interval in Figure 2.10d. Therefore, in the RSA method,
the results do not agree to belong to a cluster in the west part of upper Neckar and they are
divided into all three possible clusters, where the river network has a high hillslope gradient
and high elevation (see figures 2.6c and 2.2b). However, the two green sub-catchments (Class
II) are on the adjunct rivers and the flow independently leads to the mainstream. Therefore,
it is a sign that these small and independent areas have to be in a separate cluster from the
mainstream (station Nr. 2471 & 4408). However, station Nr. 40640 reacted differently. To
conclude, it can be argued that the RSA optimization method is at the initial stage of its
development and has to be further investigated. These investigations can be carried out by
running the method with different objective functions and distance matrices.

Moreover, the event-based clustering is done to show to what extent the floods are reacted
similarly to the outlet of catchment near the Heidelberg. The result shows that using the
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rank orders and normalized flood magnitudes has relatively similar clustering results. Thus,
the upper Neckar is grouped as a part that brought floods differently. Also, some small
subcatchments in this area are separated from the other neighboring regions. Also, the
Würm river is shown the same reaction as the mentioned small headwater sub-catchments.
In this area, there are shell limestone and Jurassic hydrological units. Another point is that
all the measurement gauges on the upstream of the main river, Neckar plus Fils tributary
in the East of upper Neckar with the karstic feature have distinguished empirical CDF for
normalized floods compared to the reference point in Heidelberg. Thus, almost three stages
of low, medium, and high volume flood are separated from the downstream of the Neckar
basin.





7 Conclusions

The thesis aims to address three main challenges in flood frequency analysis. One is a study
on simultaneous floods’ reaction areas. Another one is the analysis of general flood behavior
and spatial analysis of similar reaction regions. The last one is clustering these excessive
floods and investigating hybrid and innovative algorithms to reach this goal. The mentioned
challenges are addressed as follows:

For the simultaneous occurrence of floods, three forms of analysis are employed to determine
clusters where floods reacted similarly. The agglomerate hierarchical clustering, multidimen-
sional scaling for visualization, and a fusion combination of principal component analysis and
hierarchical clustering are implemented to illustrate to what extent concurrent floods can
enhance risk together. Each of these applied methods has its mathematical concepts, which
leads to different results. Both MDS and PCA-AHCT work with the principal components;
however, PCA-AHCT operates with PCA residual series, which is an innovative aspect in this
field. Consequently, the resulting clusters agree on the main clustering pattern with partly
different areas, which are mainly small sub-catchments.

For the second challenge of investigating general flood behavior, different methods are con-
sidered from previous chapters. A hybrid application of distribution-based clustering and
hierarchical clustering are merged to illustrate the regions where floods reacted similarly in
the Neckar catchment. The idea behind this is to group extreme floods by comparing the
maximum difference among CDFs of flood series. Further, an innovative and robust opti-
mization scheme for clustering is performed to recognize different groups of sub-catchments
that similarly floods occurred. Due to the distinct nature of applied clustering methods does
not assume that the final clustered maps have to be the same or primarily similar. In the
third chapter, clustering is based on traditional hierarchical clustering. The fourth chapter
presented the hierarchical clusters based on residual PCA. Both aforementioned chapters
concentrate on simultaneous occurrences of flood events. The fifth and sixth chapters have
different objectives on general flood events, which may cover some of the simultaneous flood
occurrences. These two chapters performed and introduced distribution-based clustering and
optimization-based clustering. The initial estimation of applying different methods has differ-
ent clustered maps. Therefore, five different clustering algorithms are applied on simultaneous
and general flood terms.

The final challenge for clustering is embedded in two previously mentioned challenges. In a
way, a total of five newly developed clustering methods have been employed or introduced
in this thesis. The used clustering algorithms are compared and validated to determine the
commonalities of their pattern/cluster areas concerning the mentioned challenges. Hydro-
logical models usually struggle with extremes, and it is possible to enhance the efficiency of
current models by running separately in different clusters.
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Algorithms such as the RSA tries to optimize the clustering evaluation criterion for over-
fitting and have some type of bias. Therefore, it has to be considered that the clustered
map may have an over-fitting feature. So, implementing an internal evaluation method
demands understanding the floods and their properties in the catchment. Using different
cross-validation approaches, like splitting data into test and validation parts, may solve the
mentioned problem. Probably, changing evaluation criteria can show different performances
and maps. Moreover, many factors contribute to the cooling and controlling factors, such
as other dissimilarity indices, altering the minimum number of points in a cluster, and the
probability rate curve.

Likewise, a comprehensive assessment of the catchment properties and data series is inves-
tigated to answer and address geophysical issues and the relationship between clusters and
basin areas in the second chapter. Almost half of the sub-catchments belong to the upper
Neckar, which shows a high concentration of the sub-catchments there due to high elevation.
Therefore, expecting to have different clusters in this part of the basin is not far-fetched.
However, two different aspects of evaluations expressed the fact that the general extreme
floods’ clusters followed the mainstream connected sub-basin. The simultaneous occurrences
of floods pursued more topographical and geophysics of the catchment. They indicated and
separated explicitly the upper Neckar from the rest of the catchment. It is why the investi-
gation of simultaneous occurrence of floods has to be considered in future research separately
and substantially. Also, clustering after implementation of PCA is less sensitive to utilizing
different distances metrics and linkage methods. Therefore, it can be concluded that it is an
efficient approach for further clustering studies on flood analysis in hydrology.

In the second chapter, it is shown that there is an abrupt change point in the late 80’s in
the discharge time series (see fig. 2.13). It is possible to assess and cluster on two time
periods before and after this breaking point, and consequently, different clustering results
will be illustrated. Also, different slopes of changes in discharge time series in various sub-
catchments in Figure 2.12, can cause instability in clustering for the long-term time series.
Moreover, due to the different time distribution of flood events in a year (see fig. 2.9), dividing
the whole time series into the wet and cold seasons and performing the same analysis may
show different clusters.

All areas alongside the mainstream river show a significant trend in different time intervals
(see fig. 2.10), but usually, the upper Neckar is separated in the clustering maps, which do
not follow the trend significance’s areas. Thus, trend analysis evaluation on the flood series
may illustrate a similar pattern as the resultant clusters. Furthermore, there is no precise
number of clusters, but there is an optimal one.

The clustering maps for simultaneous floods express that these floods depend on the distance
to the outlet. It means the upstream in the upper Neckar is divided into two clusters, and
the rest of the catchment is in another cluster. The upper Neckar and all the southern edge
of the basin have high elevation topography and are on Jurassic hydrogeological units. In
addition, here, the concentration of small size sub-basins is high.

The similar general floods regions are sensitive to the headwaters. Usually, these small
subcatchments reacted differently from the others. Also, the Jagst and Kocher in the East
and North of the Neckar basin showed different behavior like the three first sub-catchments
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of the main Neckar river in Weighted and Ward maps. Also, employing the RSA technique
shows that almost all the measurement areas along the main river are grouped as the same
cluster. The same as distribution-based clustering, headwater sub-basins are the points that
different clusters came up with.

Furthermore, by comparing the annual maxima at the outlet of the Neckar with the other
gauges, it is recognized that the upper Neckar is an independent area. This region has its
own behavior and does not impact the extremes very much on the outlet. Station on the
main river, and Fils tributary, both in the upper Neckar, has distinct cumulative distribution
function than the downstream (see Figure 6.10 and 6.9).

In terms of geological units, The Nagold and origin of the Enz river are on the red sand-
stone. The Würm, which always showed different reactions from neighboring regions, is on
shell limestone. Also, in general, western subcatchments and partly the Würm geological
formation are similar to the origin of the main river, the Neckar river. It can be a reason
why these mountainous sub-basins have similar behaviors. However, floods do not follow the
flow regimes and the mentioned factors mainly have a great impact on the high temporal
resolution discharge time series.

Another point is, all the southern edges of the Neckar plus the origins of the Jagst and Kocher
in the East have upper, middle, and lower Jurassic hydrological unites. These tributaries
also have a significant trend in weekly, monthly, and yearly discharge temporal resolution
in Figure 2.10. It can be due to possible different water management in these regions.
However, as mentioned, the flood time series is utterly independent of the river flow time
series. This parameter changes massively the behavior of these areas compared to the rest of
the catchment.

The presence of more than four thousand hydraulic structures, massive river regulations,
and management have greatly influenced the hydrological analysis. In such a way, one of the
central catchment areas, headwater and not on the border of the basin, has the largest number
of different structures (Murr sub-basin). Also, the lack of measurement gauges between the
outlet of the upper Neckar at the Plochingen (station Nr. 427) and the Rockenau (Nr. 454)
may cause some uncertainty in the clustered areas. In between, some of the main Neckar’s
tributaries connect to the main river, and consequently, it is impossible to investigate more
detail.
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