178 research outputs found

    Duality and separation theorems in idempotent semimodules

    Get PDF
    We consider subsemimodules and convex subsets of semimodules over semirings with an idempotent addition. We introduce a nonlinear projection on subsemimodules: the projection of a point is the maximal approximation from below of the point in the subsemimodule. We use this projection to separate a point from a convex set. We also show that the projection minimizes the analogue of Hilbert's projective metric. We develop more generally a theory of dual pairs for idempotent semimodules. We obtain as a corollary duality results between the row and column spaces of matrices with entries in idempotent semirings. We illustrate the results by showing polyhedra and half-spaces over the max-plus semiring.Comment: 24 pages, 5 Postscript figures, revised (v2

    Characterization of tropical hemispaces by (P,R)-decompositions

    Get PDF
    We consider tropical hemispaces, defined as tropically convex sets whose complements are also tropically convex, and tropical semispaces, defined as maximal tropically convex sets not containing a given point. We introduce the concept of (P,R)(P,R)-decomposition. This yields (to our knowledge) a new kind of representation of tropically convex sets extending the classical idea of representing convex sets by means of extreme points and rays. We characterize tropical hemispaces as tropically convex sets that admit a (P,R)-decomposition of certain kind. In this characterization, with each tropical hemispace we associate a matrix with coefficients in the completed tropical semifield, satisfying an extended rank-one condition. Our proof techniques are based on homogenization (lifting a convex set to a cone), and the relation between tropical hemispaces and semispaces.Comment: 29 pages, 3 figure

    Subset Polynomial Semirings and Subset Matrix Semirings

    Get PDF
    In this book authors introduce the notion of subset polynomial semirings and subset matrix semirings. The study of algebraic structures using subsets were recently carried out by the authors. Here we define the notion of subset row matrices, subset column matrices and subset m × n matrices. Study of this kind is developed in chapter two of this book. If we use subsets of a set X; say P(X), the power set of the set X.... Hence if P(X) is replaced by a group or a semigroup we get the subset matrix to be only a subset matrix semigroup. If the semiring or a ring is used we can give the subset collection only the semiring structure. The collection of subsets from the polynomial ring or a polynomial semiring can have only a semiring structure. Several types of subset polynomial semirings are defined described and developed in chapter three of this book

    Cluster ensembles, quantization and the dilogarithm

    Get PDF
    Cluster ensemble is a pair of positive spaces (X, A) related by a map p: A -> X. It generalizes cluster algebras of Fomin and Zelevinsky, which are related to the A-space. We develope general properties of cluster ensembles, including its group of symmetries - the cluster modular group, and a relation with the motivic dilogarithm. We define a q-deformation of the X-space. Formulate general duality conjectures regarding canonical bases in the cluster ensemble context. We support them by constructing the canonical pairing in the finite type case. Interesting examples of cluster ensembles are provided the higher Teichmuller theory, that is by the pair of moduli spaces corresponding to a split reductive group G and a surface S defined in math.AG/0311149. We suggest that cluster ensembles provide a natural framework for higher quantum Teichmuller theory.Comment: Version 7: Final version. To appear in Ann. Sci. Ecole Normale. Sup. New material in Section 5. 58 pages, 11 picture

    Discrete Painlevé equations from Y-systems

    Get PDF
    We consider T-systems and Y-systems arising from cluster mutations applied to quivers that have the property of being periodic under a sequence of mutations. The corresponding nonlinear recurrences for cluster variables (coefficient-free T-systems) were described in the work of Fordy and Marsh, who completely classified all such quivers in the case of period 1, and characterized them in terms of the skew-symmetric exchange matrix B that defines the quiver. A broader notion of periodicity in general cluster algebras was introduced by Nakanishi, who also described the corresponding Y-systems, and T-systems with coefficients. A result of Fomin and Zelevinsky says that the coefficient-free T-system provides a solution of the Y-system. In this paper, we show that in general there is a discrepancy between these two systems, in the sense that the solution of the former does not correspond to the general solution of the latter. This discrepancy is removed by introducing additional non-autonomous coefficients into the T-system. In particular, we focus on the period 1 case and show that, when the exchange matrix B is degenerate, discrete Painlev\'e equations can arise from this construction
    corecore