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CLUSTER ENSEMBLES, QUANTIZATION
AND THE DILOGARITHM

 V V. FOCK  A B. GONCHAROV

A. – A cluster ensemble is a pair (X ,A) of positive spaces (i.e. varieties equipped with
positive atlases), coming with an action of a symmetry group Γ. The space A is closely related to the
spectrum of a cluster algebra [12]. The two spaces are related by a morphism p : A −→ X . The
space A is equipped with a closed 2-form, possibly degenerate, and the space X has a Poisson struc-
ture. The map p is compatible with these structures. The dilogarithm together with its motivic and
quantum avatars plays a central role in the cluster ensemble structure. We define a non-commutative
q-deformation of the X -space. When q is a root of unity the algebra of functions on the q-deformed
X -space has a large center, which includes the algebra of functions on the original X -space.

The main example is provided by the pair of moduli spaces assigned in [6] to a topological surface S
with a finite set of points at the boundary and a split semisimple algebraic group G. It is an algebraic-
geometric avatar of higher Teichmüller theory on S related to G.

We suggest that there exists a duality between theA andX spaces. In particular, we conjecture that
the tropical points of one of the spaces parametrise a basis in the space of functions on the Langlands
dual space. We provide some evidence for the duality conjectures in the finite type case.

R. – Un ensemble amassé est une paire (X ,A) d’espaces positifs (i.e. de variétés munies
d’un atlas positif) munis de l’action d’un groupe discret. L’espace A est relié au spectre d’une algèbre
amassée [12]. Les deux espaces sont liés par un morphisme p : A −→ X . L’espace A est muni d’une
2-forme fermée, éventuellement dégénérée, et l’espace X est muni d’une structure de Poisson. L’appli-
cation p est compatible avec ces structures. Le dilogarithme avec ses avatars motiviques et quantiques
joue un rôle fondamental dans la structure d’un ensemble amassé. Nous définissons une déformation
non-commutative de l’espace X . Nous montrons que, dans le cas où le paramètre de la déformation
q est une racine de l’unité, l’algèbre déformée a un centre qui contient l’algèbre des fonctions sur l’es-
pace X originel.

Notre exemple principal est celui de l’espace des modules associé dans [6] à une surface topologique
S munie d’un nombre fini de points distingués sur le bord et à un groupe algébrique semi-simple G.
C’est un avatar algébro-géométrique de la théorie de Teichmüller d’ordre supérieur sur la surface S à
valeurs dans G.

Nous évoquons l’existence d’une dualité entre les espaces A et X . Une des manifestations de cette
dualité est une conjecture de dualité affirmant que les points tropicaux d’un espace paramètrent une
base dans l’espace d’une certaine classe de fonctions sur l’espace Langlands-dual. Nous démontrons
cette conjecture dans un certain nombre d’exemples.
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1. Introduction and main definitions with simplest examples

Cluster algebras are a remarkable discovery of S. Fomin and A. Zelevinsky [12]. They are
certain commutative algebras defined by a very simple and general data.

We show that a cluster algebra is part of a richer structure, which we call a cluster ensem-
ble. A cluster ensemble is a pair (X ,A) of positive spaces (which are varieties equipped with
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positive atlases), coming with an action of a certain discrete symmetry group Γ. These two
spaces are related by a morphism p : A −→ X , which in general, as well as in many inter-
esting examples, is neither injective nor surjective. The space A has a degenerate symplectic
structure, and the space X has a Poisson structure. The map p relates the Poisson and de-
generate symplectic structures in a natural way. Amazingly, the dilogarithm together with
its motivic and quantum avatars plays a central role in the cluster ensemble structure. The
space A is closely related to the spectrum of a cluster algebra. On the other hand, in many
situations the most interesting part of the structure is the space X .

We define a canonical non-commutative q-deformation of the X -space. We show that
when q is a root of unity the algebra of functions on the q-deformed X -space has a large
center, which contains a subalgebra identified with the algebra of functions on the original
X -space.

The main example, as well as the main application of this theory so far, is provided by
the (X ,A)-pair of moduli spaces assigned in [6] to a topological surface S with a finite set
of points at the boundary and a semisimple algebraic group G. In particular, the X -space
in the simplest case when G = PGL2 and S is a disc with n points at the boundary is the
moduli spaceM0,n.

This pair of moduli spaces is an algebraic-geometric avatar of higher Teichmüller theory
on S related to G. In the case G = SL2 we get the classical Teichmüller theory, as well as
its generalization to surfaces with a finite set of points on the boundary. A survey of the
Teichmüller theory emphasizing the cluster point of view can be found in [7].

We suggest that there exists a duality between the A and X spaces. One of its manifes-
tations is our package of duality conjectures in Section 4. These conjectures assert that the
tropical points of the A/X -space parametrise a basis in a certain class of functions on the
Langlands dual X/A-space. It can be viewed as a canonical function (the universal kernel)
on the product of the set of tropical points of one space and the Langlands dual space.

To support these conjectures, we define in Section 5.1 the tropical limit of such a universal
kernel in the finite type case. Another piece of evidence is provided by Chapter 12 in [6].

In the rest of the introduction we define cluster X - andA-varieties and describe their key
features. Section 1.1 provides background on positive spaces, borrowed from Chapter 4 of
[6]. Cluster varieties are defined in Section 1.2. In Section 1.3 we discuss one of the simplest
examples: cluster X -variety structures of the moduli spaceM0,n+3. In Section 1.4 we sum-
marize the main structures of cluster varieties. In Section 1.4 we discuss how they appear in
our main example: higher Teichmüller theory.

1.1. Positive schemes and positive spaces

A semifield is a set P equipped with the operations of addition and multiplication, so that
addition is commutative and associative, multiplication makes P an abelian group, and they
are compatible in a usual way: (a + b)c = ac + bc for a, b, c ∈ P . A standard example
is given by the set R>0 of positive real numbers. Here are more exotic examples. Let A be
one of the sets Z, Q or R. The tropical semifield At associated with A is the set A with the
multiplication ⊗ and addition ⊕ given by

a⊗ b := a+ b, a⊕ b := max(a, b).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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One more example is given by the semifield R>0((ε)) of Laurent series in ε with real coeffi-
cients and a positive leading coefficient, equipped with the usual addition and multiplication.
There is a homomorphism of semifields −deg : R>0((ε))→ Zt, given by f 7−→ −deg(f). It
explains the origin of the tropical semifield Zt.

Recall the standard notation Gm for the multiplicative group. It is an affine algebraic
group. The ring of regular functions on Gm is Z[X,X−1], and for any field F one has
Gm(F ) = F ∗. A product of multiplicative groups is known as a split algebraic torus over Z,
or simply a split algebraic torus.

Let H be a split algebraic torus. A rational function f on H is called positive if it belongs
to the semifield generated, in the field of rational functions onH, by the characters ofH. So
it can be written as f = f1/f2 where f1, f2 are linear combinations of characters with pos-
itive integral coefficients. A positive rational map between two split tori H1, H2 is a rational
map f : H1 → H2 such that f∗ induces a homomorphism of the semifields of positive ra-
tional functions. Equivalently, for any character χ of H2 the composition χ ◦ f is a positive
rational function onH1. A composition of positive rational functions is positive. Let Pos be
the category whose objects are split algebraic tori and morphisms are positive rational maps.
A positive divisor in a torus H is a divisor given by an equation f = 0, where f is a positive
rational function on H.

D 1.1. – A positive atlas on an irreducible scheme/stackX over Q is a family of
birational isomorphisms

(1) ψα : Hα −→ X, α ∈ CX ,

between split algebraic tori Hα and X, parametrised by a non empty set CX , such that:

i) each ψα is regular on the complement of a positive divisor in Hα;

ii) for any α, β ∈ CX the map ψα,β := ψ−1
β ◦ψα : Hα −→ Hβ is a positive rational map (1).

A positive atlas is called regular if each ψα is regular.

Birational isomorphisms (1) are called positive coordinate systems on X. A positive
scheme is a scheme equipped with a positive atlas. We will need an equivariant version of
this definition.

D 1.2. – Let Γ be a group of automorphisms of X. A positive atlas (1) on X is
Γ-equivariant if Γ acts on the set CX , and for every γ ∈ Γ there is an isomorphism of algebraic
tori iγ : Hα

∼−→ Hγ(α) making the following diagram commutative:

(2)

Hα
ψα−→ X

↓ iγ ↓ γ

Hγ(α)

ψγ(α)−→ X.

(1) A positive atlas covers a non-empty Zariski open subset of X, but not necessarily the whole space X.
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Quite often a collection of positive coordinate systems is the only data we need when work-
ing with a positive scheme. Axiomatizing this observation, we arrive at the category of posi-
tive spaces defined below.

A groupoid is a category where all morphisms are isomorphisms. We assume that the set
of morphisms between any two objects is non-empty. The fundamental group of a groupoid
is the automorphism group of an object of the groupoid. It is well defined up to an inner
automorphism.

D 1.3. – Let GX be a groupoid. A positive space is a functor

(3) ψX : GX −→ Pos.

The groupoid GX is called the coordinate groupoid of a positive space. Thus for every ob-
ject α of GX there is an algebraic torus Hα, called a coordinate torus of the positive space X ,
and for every morphism f : α −→ β in the groupoid there is a positive birational isomor-
phism ψf : Hα −→ Hβ .

Let ψ1 and ψ2 be functors from coordinate groupoids G1 and G2 to the category Pos. A
morphism from ψ1 to ψ2 is a pair consisting of a functor µ : G2 → G1 and a natural trans-
formation F : ψ2 → ψ1 ◦ µ. A morphism is called a monomial morphism if for every object
α ∈ G2 the map Fα : ψ2(α)→ ψ1(µ(α)) is a homomorphism of algebraic tori.

E 1. – A positive variety X provides a functor (3) as follows. The fundamental
group of the coordinate groupoid GX is trivial, so it is just a set. Precisely, the objects of GX
form the set CX of coordinate charts of the positive atlas on X. The morphisms are given
by the subset of CX × CX consisting of pairs of charts with nontrivial intersection, with the
obvious source and target maps. In particular, the morphisms form the set CX × CX if X is
irreducible. The functor ψX is given by ψX (α) := Hα and ψX (α→ β) := ψα,β .

E 2. – A Γ-equivariant positive scheme X provides a positive space X given by
a functor (3). The fundamental group of its coordinate groupoid is isomorphic to Γ.

Given a split torus H and a semifield P , we define the set of P -valued points of H as

H(P ) := X∗(H)⊗Z P,

where X∗(H) is the group of cocharacters of H, and the tensor product is with the abelian
group defined by the semifield P . A positive birational isomorphism ψ : H → H ′ induces a
map ψ∗ : H(P )→ H ′(P ).

E 3. – If At is a tropical semifield, then the map ψ∗ is given by a piece-wise linear
map, the tropicalization of the map ψ.

An inverse to a positive map may not be positive – the inverse of the map x′ = x+y, y′ = y

is x = x′ − y′, y = y′. If ψ−1 is also positive, the map ψ∗ is an isomorphism.

Given a positive space X there is a unique set X (P ) of P -points of X . It can be defined
as

X (P ) =
∐
α

Hα(P )/(identifications ψα,β∗).
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For every object α of the coordinate groupoid GX there are functorial (with respect to the
maps X → X ′) isomorphisms

X (P )
∼
= Hα(P )

∼
= P dimX .

Therefore the fundamental group of the coordinate groupoid acts on the set X (P ).

A positive space X gives rise to a prescheme X ∗. It is obtained by gluing the tori Hα,
where α runs through the objects of GX , according to the birational maps ψf corresponding
to morphisms f : α→ β. It, however, may not be separable, and thus may not be a scheme.
Each torus Hα embeds to X ∗ as a Zariski open dense subset ψα(Hα).

The ring of regular functions on X ∗ is called the ring of universally Laurent polynomials
for X and denoted by L(X ). In simple terms, the ring L(X ) consists of all rational functions
which are regular at every coordinate torus Hα.

It is often useful to take the affine closure ofX ∗, understood as the spectrum Spec(L(X )).
The positive structure on X ∗ provides the semifield of all positive rational functions

on X ∗. Intersecting it with the ring L(X ) we get the semiring L̃+(X ). As the example
1 − x + x2 = (1 + x3)/(1 + x) shows, a rational function can be positive, while the coeffi-
cients of the corresponding Laurent polynomial may be not. So we define a smaller semiring
L+(X ) of positive universally Laurent polynomials for X as follows: an element of L+(X )

is a rational function on X ∗ whose restriction to one (and hence any) of the embedded
coordinate tori ψα(Hα) is a linear combination of characters of this torus with positive
integral coefficients.

1.2. Cluster ensembles: definitions

They are defined by a combinatorial data seed – similar (2) to the one used in the definition
of cluster algebras [12].

1.2.1. Seeds and seed tori. – Recall that a lattice is a free abelian group.

D 1.4. – A seed is a datum (Λ, (∗, ∗), {ei}, {di}), where
i) Λ is a lattice;
ii) (∗, ∗) is a skewsymmetric Q-valued bilinear form on Λ;
iii) {ei} is a basis of the lattice Λ, and I0 is a subset of basis vectors, called frozen basis vec-

tors;
iv) {di} are positive integers assigned to the basis vectors, such that

εij := (ei, ej)dj ∈ Z unless i, j ∈ I0 × I0.

The numbers {di} are called the multipliers. We assume that their greatest common divi-
sor is 1.

Seeds as quivers. A seed is a version of the notion of a quiver. Precisely, let us assume for
simplicity that the set of frozen basis vectors is empty. A quiver corresponding to a seed is a
graph whose set of vertices {i} is identified with the set of basis vectors {ei}; two vertices i, j
are connected by |(ei, ej)| arrows going from i to j if (ei, ej) > 0, and from j to i otherwise;

(2) Although different in detail – we do not include the cluster coordinates in the definition of a seed, and give a
coordinate free definition.

4 e SÉRIE – TOME 42 – 2009 – No 6



CLUSTER ENSEMBLES, QUANTIZATION AND THE DILOGARITHM 871

the i-th vertex is marked by di, see Fig. 1. The (enhanced by multipliers) quivers we get have
the following property: all arrows between any two vertices are oriented the same way, and
there are no arrows from a vertex to itself. Clearly any enhanced quiver like this corresponds
to a unique seed.

3

F 1. Picturing seeds by quivers – we show di’s only if they differ from 1.

Lattices and split algebraic tori. Recall that a lattice Λ gives rise to a split algebraic torus

XΛ := Hom(Λ,Gm).

The set of its points with values in a field F is the group Hom(Λ, F ∗).
An element v ∈ Λ provides a character Xv of XΛ. Its value on a homomorphism x ∈ XΛ

is x(v). The assignment Λ −→ XΛ is a contravariant functor providing an equivalence of
categories

the dual to the category of finite rank lattices ∼−→ the category of split algebraic tori.

The inverse functor assigns to a split algebraic torus T its lattice of characters Hom(T ,Gm).
There is the dual lattice

Λ∗ := Hom(Λ,Z).

An element a ∈ Λ∗ gives rise to a cocharacter

ϕa : Gm −→ Hom(Λ,Gm).

On the level of F -points, ϕa(f) is the homomorphism v 7−→ fa(v).
The seed X -torus is a split algebraic torus XΛ := Hom(Λ,Gm). It carries a Poisson struc-

ture provided by the form (∗, ∗):

{Xv, Xw} = (v, w)XvXw.

The basis {ei} provides cluster X -coordinates {Xi}. They form a basis in the group of
characters of XΛ.

The basis {ei} provides a dual basis {e∗i } of the lattice Λ∗. We need a quasidual basis {fi}
given by

(4) fi = d−1
i e∗i .

Let Λ◦ ⊂ Λ∗ ⊗ Q be the sublattice spanned by the vectors fi. The seed A-torus is a split
algebraic torus

AΛ := Hom(Λ◦,Gm).

The basis {fi} provides cluster A-coordinates {Ai}.
Let O(Y )∗ be the group of invertible regular functions on a variety Y . There is a map

d log∧d log : O(Y )∗ ∧ O(Y )∗ −→ Ω2(Y ), f ∧ g 7−→ d log(f) ∧ d log(g).
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872 V. V. FOCK AND A. B. GONCHAROV

The skew-symmetric bilinear form (∗, ∗), viewed as an element of
∧2 Λ◦i , provides an element

W ∈ O(AΛ)∗ ∧ O(AΛ)∗.

Applying the map d log∧d log to W we get a closed 2-form Ω on the torus AΛ:

Ω := d log∧d log(W ) ∈ Ω2(AΛ).

There is a non-symmetric bilinear form [∗, ∗] on the lattice Λ, defined by setting

(5) [ei, ej ] := (ei, ej)dj .

There is a natural map of lattices

p∗ : Λ −→ Λ◦, v 7−→
∑
j

(v, ej)e
∗
j =

∑
j

[v, ej ]fj .

It gives rise to a homomorphism of seed tori

(6) p : AΛ −→ XΛ.

The following lemma is straightforward.

L 1.5. – The fibers of the map p are the leaves of the null-foliation of the 2-form Ω.
The subtorus UΛ := p(AΛ) is a symplectic leaf of the Poisson structure on XΛ.

The symplectic structure on UΛ induced by the form Ω on AΛ coincides with the symplectic
structure given by the restriction of the Poisson structure on XΛ.

Summarising, a seed i gives rise to seed X - and A-tori. Although they depend only on
the lattice Λ, we denote them by Xi and Ai to emphasize the cluster coordinates on these
tori provided by the seed i.

1.2.2. Seed mutations. – Set [α]+ = α if α ≥ 0 and [α]+ = 0 otherwise. So [α]+ =

max(0, α).

Given a seed i and a non-frozen basis vector ek, we define a new seed i′, called the seed
obtained from i by mutation in the direction of a non-frozen basis vector ek. The seed i′ is ob-
tained by changing the basis {ei} – the rest of the datum stays the same. The new basis {e′i}
is

(7) e′i :=

{
ei + [εik]+ek if i 6= k

−ek if i = k.

We denote by µek(i), or simply by µk(i), the seed i mutated in the direction of a basis vector
ek. By definition, the frozen/non-frozen basis vectors of the mutated seed are the images of
the frozen/non-frozen basis vectors of the original seed.

The basis {fi} in Λ◦ mutates as follows:

(8) f ′i :=

{
−fk +

∑
j∈I [−εkj ]+fj if i = k

fi if i 6= k.

Therefore, although the definition of the lattice Λ◦ involves a choice of a seed, the lattice does
not depend on it.
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R. – The basis µ2
k({ei}) does not necessarily coincide with {ei}. For example, let

Λ be a rank two lattice with a basis {e1, e2}, and (e1, e2) = 1. Then

{e1, e2}
µ2−→ {e1 + e2,−e2}

µ2−→ {e1 + e2, e2}.

However, although the seeds µ2
k(i) and i are different, they are canonically isomorphic.

1.2.3. Coordinate description

D 1.6. – A seed i is a quadruple (I, I0, ε, d), where

i) I is a finite set, and I0 is a subset of I;

ii) ε = εij is a Q-valued function on I × I, such that εij ∈ Z, unless (i, j) ∈ I0 × I0;

iii) d = {di}, where i ∈ I, is a set of positive rational numbers, such that the function

ε̂ij = εijd
−1
j is skew-symmetric: ε̂ij = −ε̂ji.

Definitions 1.4 and 1.6 are equivalent. Indeed, given a seed from Definition 1.6, we set

Λ := Z[I], ei := {i}, i ∈ I, (ei, ej) := εij d
−1
j .

The non-symmetric bilinear form is the function ε:

[ei, ej ] = εij .

The function ε is called the exchange function. The numbers {di} are the multipliers. The
subset I0 ⊂ I is the frozen subset of I, and its elements are the frozen elements of I. Elements
of the set I are often called vertices.

The Poisson structure on the torus Xi looks in coordinates as follows:

(9) {Xi, Xj} = ε̂ijXiXj , ε̂ij := εijd
−1
j .

The 2-form Ω on the torus Ai is

(10) Ω =
∑
i,j∈I

ε̃ijd logAi ∧ d logAj , ε̃ij := diεij .

The homomorphism p – see (6) – is given by

(11) p : Ai −→ Xi, p∗Xi =
∏
j∈I

A
εij
j .

Given a seed i = (I, I0, ε, d), every non-frozen element k ∈ I − I0 provides a mutation in
the direction k seed µk(i) = i′ = (I ′, I ′0, ε

′, d′): one has I ′ := I, I ′0 := I0, d
′ := d and

(12) ε′ij :=


−εij if k ∈ {i, j}
εij if εikεkj ≤ 0, k 6∈ {i, j}
εij + |εik| · εkj if εikεkj > 0, k 6∈ {i, j}.

This procedure is involutive: the mutation of ε′ij at the vertex k is the original function εij .

This definition of mutations is equivalent to the coordinate free definition thanks to the
following lemma.

L 1.7. – One has ε′ij = (e′i, e
′
j)dj , where ε′ij is given by formula (12).
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Proof. – Clearly (e′i, e
′
k) = (ei + [εki]+ek,−ek) = −ε̂ik = ε̂′ik. Assume that k 6∈ {i, j}.

Then

(e′i, e
′
j) = (ei + [εik]+ek, ej + [εjk]+ek) = ε̂ij + [εik]+ε̂kj + ε̂ik[εjk]+

= ε̂ij + [εik]+ε̂kj + εik[−ε̂kj ]+ = ε̂′ij .

The lemma is proved.

1.2.4. Cluster transformations. – This is the heart of the story. A seed mutation µk induces
positive rational maps between the corresponding seed X - and A-tori, denoted by the same
symbol µk. Namely, denote the cluster coordinates related to the seed µk(i) by X ′i and A′i.
Then we define

(13) µ∗kX
′
i :=

{
X−1
k if i = k

Xi(1 +X
−sgn(εik)
k )−εik if i 6= k,

(14) Ak · µ∗kA′k :=
∏

j|εkj>0

A
εkj
j +

∏
j|εkj<0

A
−εkj
j ; µ∗kA

′
i = Ai, i 6= k.

Here if just one of the sets {j|εkj > 0} and {j|εkj < 0} is empty, the corresponding mono-
mial is 1. If εkj = 0 for every j, the right hand side of the formula is 2, and µ∗kX

′
k = X−2

k ,
µ∗kX

′
i = Xi for i 6= k.

Seed isomorphisms σ obviously induce isomorphisms between the corresponding seed
tori, which are denoted by the same symbols σ:

(15) σ∗X ′σ(i) = Xi, σ∗A′σ(i) = Ai.

A seed cluster transformation is a composition of seed isomorphisms and mutations. It
gives rise to a cluster transformation of the corresponding seed X - or A-tori. The latter is a
rational map obtained by the composition of isomorphisms and mutations corresponding
to the seed isomorphisms and mutations forming the seed cluster transformation. Given a
semifield P , cluster transformations induce isomorphisms between the sets of P -points of
the corresponding cluster tori.

Two seeds are called equivalent if they are related by a cluster transformation. The equiv-
alence class of a seed i is denoted by |i|.

Mutation formulas (12) and (14) were invented by Fomin and Zelevinsky [12]. Clearly the
functions obtained by cluster A- (resp. X -) transformations from the coordinate functions
on the initial seed A-torus (resp. seed X -torus) are positive rational functions on this torus.
The rational functions Ai obtained this way generate the cluster algebra.

1.2.5. Cluster modular groupoids. – A seed cluster transformation i → i is called trivial,
if the corresponding maps of the seed A-tori as well as of the seed X -tori are the identity
maps. (3)

We define the cluster modular groupoid G|i| as a groupoid whose objects are seeds equiv-
alent to a given seed i, and morphisms are cluster transformations modulo the trivial ones.
The fundamental group Γi of this groupoid (based at i) is called the cluster modular group.

(3) We conjecture that one of them implies the identity of the other.
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1.2.6. The A- and X - positive spaces. – We have defined three categories. The first is the
groupoid G|i|. The other two have seed A-/X -tori as objects and cluster transformations of
them as morphisms. There are canonical functors from the first category to the second and
third. They provide a pair of positive spaces of the same dimension, denoted byA|i| andX|i|,
which share a common coordinate groupoid G|i|. We skip the subscript |i|whenever possible,
writing X for X|i| etc.

1.2.7. Examples of trivial cluster transformations. – Given a seed i, denote by σij(i) a new
seed induced by the map of sets I → I interchanging i and j.

P 1.8. – Let h = 2, 3, 4, 6 when p = 0, 1, 2, 3 respectively. Then if
εij = −pεji = −p,

(16) (σij ◦ µi)h+2 = a trivial cluster transformation.

Relations (16) are affiliated with the rank two Dynkin diagrams, i.e. A1×A1, A2, B2, G2.
The number h = 2, 3, 4, 6 is the Coxeter number of the diagram. One can present these rela-
tions in the form

µi ◦ µj ◦ µi ◦ µj ◦ . . .
∼
= σh+2

ij ,

where the number of mutations on the left equals h + 2. Notice that the right hand side is
the identity in all but A2 cases. We prove Proposition 1.8 in Section 2.5.

1.2.8. Special cluster modular groupoid and modular groups. – Special trivial seed cluster
transformations are compositions of the one given by (16) and isomorphisms. We do not
know any other general procedure to generate trivial cluster transformations.

D 1.9. – Special cluster modular groupoid Ĝ is a connected groupoid whose ob-
jects are seeds, and morphisms are cluster transformations modulo the special trivial ones.

The fundamental group Γ̂ of the groupoid Ĝ is called the special cluster modular group.

So there is a canonical functor Ĝ → G inducing a surjective map Γ̂→ Γ.

The groupoid Ĝ has a natural geometric interpretation, which justifies Definition 1.9.
Namely, thanks to Theorem 2.23 the group Γ acts, with finite stabilizers, on a certain mani-
fold with a polyhedral decomposition. So it acts on the dual polyhedral complex M̂ , called
the modular complex. The groupoid Ĝ is identified with the fundamental groupoid of this
polyhedral complex, see Theorem 2.30.

1.2.9. The cluster ensemble. – We show (Proposition 2.2) that cluster transformations com-
mute with the map p – see (11). So the map p gives rise to a monomial morphism of positive
spaces

(17) p : A −→ X .

D 1.10. – The cluster ensemble related to seed i is the pair of positive spacesA|i|
and X|i|, with common coordinate groupoid G|i|, related by a (monomial) morphism of positive
spaces (17).
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The algebra of regular functions on the A-space is the same thing as the algebra of uni-
versal Laurent polynomials L(A). The Laurent phenomenon theorem [13] implies that the
cluster algebra of [12] is a subalgebra of L(A). The algebra L(A) is bigger than the cluster
algebra in most cases. It coincides with the upper cluster algebra introduced in [1].

Alternatively, one can describe the above families of birational isomorphisms of seed tori
by introducing cluster X - and A-schemes. By the very definition, a cluster X -scheme is the
schemeX ∗ related to the positive spaceX , and similarly the clusterA-scheme. Below we skip
the superscript ∗ in the notation for cluster schemes.

Cluster transformations respect both the Poisson structures and the forms Ω. Thus X is
a Poisson space, and there is a 2-form on the spaceA. (Precisely, X is understood as a func-
tor from the coordinate groupoid to the appropriate category of Poisson tori.) In particular
the manifold X (R>0) has a Γ-invariant Poisson structure. We show in Sections 3 and 6 that
the Poisson structure on the space X and the 2-form on the space A are shadows of more
sophisticated structures, namely a non-commutative q-deformation of theX -space, and mo-
tivic avatars of the form Ω.

1.2.10. The chiral and Langlands duality for seeds. – We define the Langlands dual seed by

i∨ := (I, I0, ε
∨
ij , d

∨
i ), ε∨ij := −εji, d∨i := d−1

i D, D := l.c.m.{di} (4).

This procedure is evidently involutive. Here is an alternative description.

(i) We define the transposed seed it := (I, I0, ε
t
ij , d

t
i), where εtij := εji and dti := d−1

i D.

(ii) We define the chiral dual seed io := (I, I0, ε
o
ij , d

o
i ), where εoij := −εij , and doi := di.

Definitions (i)-(ii) are consistent with mutations. Combining them, we get the Langlands
duality on seeds. On the language of lattices. the Langlands duality amounts to replacing
the bilinear form [a, b] to the one −[b, a], and changing the multipliers.

Here is a natural realization of the Langlands dual seed. Let Λ∨ be the lattice dual to the

lattice Λ◦. So, given a seed i =
(

Λ, [∗, ∗]Λ, {ei}, di
)

, there is an isomorphicm of lattices

(18) δi : Λ −→ Λ∨, ei 7−→ e∨i := diei.

Let us introduce a bilinear form on Λ∨ by setting

[e∨i , e
∨
j ]Λ∨ := −[ej , ei]Λ.

L 1.11. – The map δi provides an isomorphism of the Langlands dual seed i∨ with
the seed (

Λ∨, [∗, ∗]Λ∨ , {e∨i }, d∨i
)
.

This isomorphism is compatible with mutations, i.e. the following diagram is commutative:

{ei}
δi−→ {e∨i }

µk ↓ ↓ µ∨k
{e′i}

δi′−→ {(e′i)∨}

(4) Here D is the least common multiple of the set of positive integers di.
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Proof. – The case i = k is obvious. If i 6= k, we have µk(diei) = (diei) + di[εik]+d
−1
k (dkek).

So the lemma follows from the formula

(19) diεikd
−1
k = −εki.

1.3. An example: the cluster X -variety structure of the moduli spaceM0,n+3

The moduli space M0,n+3 parametrises configurations of n+ 3 distinct points
(x1, . . . , xn+3) on P1 considered modulo the action of PGL2.

E. – The cross-ratio of four points on P1, normalized by r+(∞,−1, 0, z) = z,
provides an isomorphism

r+ :M0,4
∼−→ P1 − {0,−1,∞}, r+(x1, x2, x3, x4) =

(x1 − x2)(x3 − x4)

(x2 − x3)(x1 − x4)
.

The moduli spaceM0,n+3 has a cluster X -variety atlas [6], which we recall now. It is de-
termined by a cyclic order of the points (x1, . . . , xn+3). So although the symmetric group
Sn+3 acts by automorphisms of M0,n+3, only its cyclic subgroup Z/(n + 3)Z will act by
automorphisms of the cluster structure.

Let Pn+3 be a convex polygon with vertices p1, . . . , pn+3. We assign the points xi to the
vertices pi, so that the order of points xi is compatible with the clockwise cyclic order of the
vertices. The cluster coordinate systems are parametrized by the set Tn+3 of complete trian-
gulations of the polygon Pn+3. Given such a triangulation T , the coordinates are assigned
to the diagonals of T . The coordinate XT

E corresponding to a triangulation T and its diag-
onal E is defined as follows. There is a unique rectangle formed by the sides and diagonals
of the triangulation, with the diagonal given byE. Its vertices provide a cyclic configuration
of four points on P1. We order them starting from a vertex of the E, getting a configuration
of four points (x1, x2, x3, x4) on P1. Then we set

XT
E := r+(x1, x2, x3, x4).

There are exactly two ways to order the points as above, which differ by a cyclic shift by two.

x1x1 x4x4

x6x6 x5x5

x2x2 x3x3

E

F 2. The two triangulations of the hexagon are related by the flip at the edge E.

Since the cyclic shift by one changes the cross-ratio to its inverse, the rational functionXT
E is

well defined. For example the diagonal E on Fig. 2 provides the function r+(x2, x4, x6, x1).
We define the cluster seed assigned to a triangulation T as follows. The lattice Λ is the

free abelian group generated by the diagonals of the triangulation, with a basis given by the
diagonals. The bilinear form is given by the adjacency matrix. Namely, two diagonalsE and
F of the triangulation are called adjacent if they share a vertex, and there are no diagonals
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of the triangulation between them. We set εEF = 0 if E and F are not adjacent. If they are,
εEF = 1 ifE is before F according to the clockwise orientation of the diagonals at the vertex
v shared by E and F , and εEF = −1 otherwise.

E. – Let us consider a triangulation of Pn+3 which has the following property:
every triangle of the triangulation contains at least one side of the polygon. Then it provides
a seed of type An. For example, a zig-zag triangulation, see Fig. 3, has this property.

F 3. A zig-zag triangulation of the 11-gon.

One shows that a mutation at a diagonal E corresponds to the flip of the diagonal, see
Fig. 2. This means that formula (12) describes the adjacency matrix of the flipped triangula-
tion. This way we get a cluster X -variety atlas. One easily sees that the zig-zag triangulation
provides a quiver of type An.

The cyclic order of the points (x1, . . . , xn+3) provides a connected componentM0
0,n+3(R)

inM0,n+3(R), parametrising configurations of points on P1(R) whose cyclic order is com-
patible with an orientation of P1(R). The space of positive points of the cluster X -variety
defined above coincides withM0

0,n+3(R).

R.. – We show in [10] that the Knudsen-Deligne-Mumford moduli spaceM0,n+3

can be recovered in a natural way as a cluster compactification of the cluster X -variety of
type An.

1.4. Cluster ensemble structures

Below we outline the structures related to a cluster ensemble.
A cluster ensemble gives rise to the following data:
i) A pair of real manifoldsA(R>0) and X (R>0), provided by the positive structures onA

and X , and a map p : A(R>0) → X (R>0). For a given seed i, the functions log |Ai| (resp.
log |Xi|) provide diffeomorphisms

αi : A(R>0)
∼−→ RI ; βi : X (R>0)

∼−→ RI .

Similarly there are sets of points ofA and X with values in the tropical semifields Zt, Qt, Rt.
ii) A modular group Γ acts by automorphisms of the whole structure.
iii) A Γ–invariant Poisson structure {∗, ∗} on X . In any X–coordinate system {Xi} it is

the quadratic Poisson structure given by (9).
iv) A Γ–invariant 2–form Ω onA, which in anyA–coordinate system {Ai} is given by (10).

It can be viewed as a presymplectic structure on A.
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v) A pair of split algebraic tori of the same dimension, HX and HA. The torus HA acts
freely onA. The orbits are the fibers of the map p, and the leaves of the null foliation for the
2-form Ω. Thus U := p(A) is a positive symplectic space. Dually, there is a canonical pro-
jection θ : X → HX . Its fibers are the symplectic leaves of the Poisson structure. Moreover
U = θ−1(e), where e is the unit of HX . So the natural embedding i : U ↪→ X is a Poisson
map.

vi) A quantum space Xq. It is a non-commutative q-deformation of the positive space X ,
equipped with an involutive antiautomorphism ∗, understood as a functor

ψq : Ĝ −→ QPos∗

where QPos∗ is the category of quantum tori with involutive antiautomorphism ∗. Precisely,
the category QPos∗ is the opposite category to the category whose objects are quantum tori
algebras, and morphisms are positive rational ∗-maps. (5) For a seed i, the corresponding
quantum torus algebra ψq(i) is the algebra Ti generated by the elements Xi, i ∈ I, subject
to the relations

(20) q−ε̂ijXiXj = q−ε̂jiXjXi, ∗Xi = Xi, ∗q = q−1.

We denote by Ti its non-commutative field of fractions. Given a mutation i → i′, the bira-
tional map ψi,i′

q : Ti′ → Ti is a q-deformation of the mutation map (13) from the definition
of the positive space X . It is given by the conjugation by the quantum dilogarithm.

There is a canonical projection θq : Xq −→ HX . The inverse images of the characters of
HX are “quantum Casimirs”: they are in the center of Xq and generate it for generic q.

The quantum space Xq at roots of unity. Now suppose that qDN = 1, where D is the least
common multiple of di’s. Then, under certain assumption on the exchange function, see The-
orem 3.11, there is a quantum Frobenius map of quantum spaces

FN : Xq −→ X ,

which in any cluster coordinate system acts on the cluster coordinates Yi on X as
F∗NYi = XN

i . HereXi the coordinates onXq. Notice that F∗N is a ring homomorphism since
qN = 1. So there is a diagram:

Xq

FN
��

θq // HX

X
The center of the algebra of regular functions L(Xq) is generated by the inverse images of the
functions on X and HX .

vii) Motivic data. (6) There are two levels of understanding:
a) K2–avatar of Ω. It is given by a Γ–invariant class W ∈ K2(A)Γ.
b) Motivic dilogarithm class. For any seed i the class W can be lifted to an element

Wi =
∑
i,j

ε̃ijAi ∧Aj ∈
∧2

Q(A)∗.

(5) Quantum torus algebra satisfies Ore’s condition, so its non-commutative fraction field and hence rational func-
tions as its elements are defined. The reader may skip positivity from the above definition.
(6) The reader is advised to look at Section 6.2 for the background related to the motivic data.
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It has the zero tame symbol at every divisor. It isHA-invariant, and thus is a lift of an element
of Λ2Q(U)∗ by the map p. However elements Wi are not equivariant under the action of the
cluster modular groupoid, and in particular are not Γ-invariant. Their behavior under the
action of the cluster modular groupoid is described by a class, called motivic dilogarithm class
of cluster ensemble:

W ∈ H2
Γ(U ,Q(2)M)

in the weight two Γ–equivariant motivic cohomology of the scheme U . We define the weight
two motivic cohomology via the dilogarithm complex, also known as the Bloch-Suslin com-
plex.

The simplest way to see the dilogarithm in our story is the following. Mutations act by
Poisson automorphisms ofX (R>0). The generating function describing a mutation i→ i′ at
a vertex k is Roger’s version of the dilogarithm, applied to the coordinate functionXk = exk .

In [8], which is the second part of this paper, we introduce one more ingredient of the data
which, unlike everything else above, is of analytic nature:

viii) ∗-representations. a) A series of ∗-representations by unbounded operators in Hilbert
spaces of the modular double

(21) Xq,|i| ×Xq∨,|i∨|, q = eiπh, q∨ = eiπ/h, h ∈ R≥0,

where i∨ is the Langlands dual seed. It is constructed explicitly using the quantum diloga-
rithm.

b) The modular double of the quantum space Xq,|i| × Xq,|io|, where io defines the chiral
dual seed, has canonical unitary projective representation in the Hilbert space L2(A(R>0)).

ix) Finally, in [9], which continues this paper, we define the third ingredient of the cluster
ensemble, the symplectic double. It is the quasiclassical counterpart of the canonical repre-
sentation from the part b) of viii). We define its non-commutative q-deformation. We con-
struct a series of infinite dimensional unitary projective representations of the special cluster
modular groupoid, parametrised by unitary characters of the torusHX (R>0). We show that
they intertwine the ∗-representations of (21) in certain Schwartz type spaces, and using this
prove all claims from viii).

The described cluster quantization is a rather general quantization scheme, which we hope
has many applications.

Remarkably the quantization is governed by the motivic avatar of the Weil-Petersson form
on the A-space. This and the part b) of vii) show that although the X -space seems to be the
primary part of a cluster ensemble – in our basic example it gives the Teichmüller space, while
the A-space gives only its decorated unipotent part – one has to study the X and A spaces
in a package.

1.5. Our basic example

Let G be a split semi-simple simply-connected algebraic group over Q. Denote by G′ the
quotient of G modulo the center. Let S be a hyperbolic surface with non-empty bound-
ary and m distinguished points on the boundary. We defined in [6] a pair of moduli spaces
(XG′,S ,AG,S), and proved that for G = SLm it gives rise to a cluster ensemble, leaving the
case of generalG to the sequel of that paper. We proved that, regardless of the cluster ensem-
ble structure, this pair of moduli spaces for general G has all the described above classical
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structures. Here is a more detailed account. The references are made to chapters of [6]. The
example discussed in Section 1.3 is the special case when S is a disc with n+3 marked points
on the boundary, and G = PGL2.

The pair of positive spaces (X ,A) is provided by the pair of positive stacks XG′,S and
AG,S .

i) The corresponding pair of positive real spaces is the higher Teichmüller space
XG′,S(R>0) and its decorated versionAG,S(R>0). The At-points ofASL2,S give Thurston’s
laminations (Chapter 12). The space of positive real points of XPGL2,S is a version of
the classical Teichmüller space on S, and the one of ASL2,S is Penner’s [24] decorated
Teichmüller space (Chapter 11).

ii) There is a modular group ΓG,S provided by the cluster ensemble structure of the pair
(XG′,S ,AG,S). The positive spaces XG′,S and AG,S are ΓG,S-equivariant positive spaces.
The group ΓG,S contains as a subgroup the modular group ΓS of the surface S. IfG = SL2,
these two groups coincide. Thus the cluster modular group is a generalization of the classical
modular group. Otherwise ΓG,S is bigger than ΓS . For example, the cluster modular group
ΓG,S where G is of type G2 and S is a disc with three points on the boundary was calculated
in [5]: it is (an infinite quotient of) the braid group of typeG2, while its classical counterpart
is Z/3Z.

The quotientM := X (R>0)/Γ is an analog of the moduli space of complex structures on
a surface. We conjecture that the spaceMG′,S is related to theW -algebra for the groupG just
the same way the classical moduli space (when G = SL2) is related to the Virasoro algebra.
We believe thatMG′,S is the moduli space of certain objects,W -structures, but cannot define
them.

iii) There is a canonical projection from the moduli space XG′,S to the moduli space of
G′-local systems on S. The Poisson structure on XG′,S is the inverse image of the standard
Poisson structure on the latter by this map.

iv) The form Ω on the space AG,S was defined in Chapter 15. For G = SL2 its restric-
tion to the decorated Teichmüller space ASL2,S(R>0) is the Weil-Petersson form studied by
Penner [24].

v) The tori HA and HX . Let H be the Cartan group of G, and H ′ the Cartan group of
G′. The canonical projection θ : X −→ HX and the action of the torus HA on the A-space
generalize similar structures defined in Chapter 2 for a hyperbolic surface S: the canonical
projection

XG′,S −→ H ′{punctures of S}

and the action of H{punctures of S} on the moduli space AG,S .
vi) The results of this paper plus the cluster ensemble structure of the pair

(XPGLm,S ,ASLm,S) (Chapter 10) provide a quantum space X qPGLm,S . For m = 2 it is
equivalent to the one in [11].

vii) The motivic data for the pair (XG′,S ,AG,S) was defined in Chapter 15. It was previ-
ously missing even for the classical Teichmüller space. In the case G = SLm an explicit co-
cycle representing the class W is obtained from the explicit cocycle representing the second
motivic Chern class of the simplicial classifying space BSLm defined in [18]. The investiga-
tion of this cocycle for W led us to discovery of the whole picture.
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viii) Replacing the Dynkin diagram of the group G by its Langlands dual we get the
Langlands dual cluster ensemble. Changing the orientation on S we get the chiral dual
cluster ensemble.

The classical Teichmüller space was quantized, independently, in [22] and in [11]: the Pois-
son manifold XPGL2,S(R>0) was quantized in [11], and its symplectic leaf UPGL2,S(R>0) in
[22].

The principal embedding SL2 ↪→ G, defined up to a conjugation, leads to natural embed-
dings

XPGL2,S ↪→ XG,S , ASL2,S ↪→ AG,S
and their counterparts for the Teichmüller, lamination and moduli spaces. However since
the cluster modular group ΓG,S is bigger than the modular group ΓS , it is hard to expect
natural ΓG,S-equivariant projections like XG,S −→ XPGL2,S . We do not know whether
W -structures on S can be defined as a complex structure plus some extra data on S.

The elements p∗(Xi) of the cluster algebra were considered by Gekhtman, Shapiro and
Vainshtein [16] who studied various Poisson structures on a cluster algebra. The form Ω and
the connection between Penner’s decorated Teichmüller spaces to cluster algebras were inde-
pendently discovered in [17]. The relation of the form Ω to the Poisson structures is discussed
there.

After the first version of this paper appeared in the ArXiv (math/0311245), Berenstein
and Zelevinsky released a paper [2], where they defined and studied q-deformations of cluster
algebras. In general there is a family of such q-deformations, matching the Poisson structures
on cluster algebras defined in [16]. The cluster modular group does not preserve individual
q-deformations. However if detεij 6= 0, the q-deformation of cluster algebra is unique, and
thus Γ-invariant.

1.6. The structure of the paper

Cluster ensembles are studied in Section 2. We discuss the cluster nature of the Teich-
müller theory on a punctured torus, as well as the cluster structure of the pair of universal
Teichmüller spaces. In the latter case the set I is the set of edges of the Farey triangulation
of the hyperbolic plane, and the modular group is the Thompson group.

In Section 3 we define the non-commutative X -space and establish its properties.
In Section 4 we present our duality conjectures.
In Section 5 we furnish some evidence for the duality conjectures in the finite type case: We

define, in the finite type case, a canonical pairing between the tropical points of dual cluster
varieties and one of the two canonical maps. Our definitions do not depend on the Classi-
fication Theorem, and do not use root systems etc. As a byproduct, we show that the space
of real tropical points of a finite type cluster X -variety has a canonical decomposition into
cones. It is dual to the generalised associahedra defined in [15].

In Section 6 we introduce motivic structures related to a cluster ensemble. They are de-
fined using the dilogarithmic motivic complex, and play a key role in our understanding of
cluster ensembles.

In [8] we started a program of quantization of cluster ensembles using the quantum dilog-
arithm intertwiners. It is a quantum version of the motivic data from Section 6. It was com-
pleted in [9].
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2. Cluster ensembles and their properties

2.1. Cluster ensembles revisited

2.1.1. Cluster transformations of cluster seed tori. – A seed mutation µk : i → i′ provides
birational isomorphisms

(22) µxk : Xi −→ Xi′ and µak : Ai −→ Ai′

acting on cluster coordinates by formulas (13) and (14), respectively. Seed isomorphisms pro-
vide isomorphism of tori, see (15). So a seed cluster transformation c : i → i′ gives rise to
birational isomorphisms

(23) ca : Ai −→ Ai′ , cx : Xi −→ Xi′ .

Recall the coordinate groupoid G. The following lemma results from the very definition.

L 2.1. – There are well defined functors

ψA : G −→ Pos, ψA(i) := Ai, ψA(µk) := µak,

ψX : G −→ Pos, ψX (i) := Xi, ψX (µk) := µxk.

LetA andX be the positive spaces defined by the functors from Lemma 2.1. These spaces
are related as follows. Given a seed i, the map p looks in coordinates as follows:

(24) pi : Ai −→ Xi, p∗iXi :=
∏
j∈I

A
εij
j .

P 2.2. – The maps of the seed tori (24) give rise to a map of positive spaces
p : A −→ X .

We will give a proof after a discussion of decomposition of mutations.
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2.1.2. Decomposition of mutations. – The seed tori Ai and Ai′ (respectively Xi and Xi′ ) are
canonically identified with the torus AΛ (respectively XΛ). Therefore there are tautological
isomorphisms

µ′k : Ai
∼−→ Ai′ , µ′k : Xi

∼−→ Xi′ .

These isomorphisms, however, do not respect the cluster coordinates on these tori. Therefore
there are two ways to write the mutation transformations:

(i) Using the cluster coordinates assigned to the seeds i and i′, or
(ii) Using the cluster coordinates assigned to the seeds i only.

Equivalently, in the approach (ii) we present mutation birational isomorphisms (22) as com-
positions

µak = µ′k ◦ µ
]
k, µ]k : Ai −→ Ai, µ′k : Ai

∼−→ A′i,
µxk = µ′k ◦ µ

]
k, µ]k : Xi −→ Xi, µ′k : Xi

∼−→ X ′i ,
and then look at the birational isomorphisms µ]k only.

We usually use the approach (i). In particular formulas (13) and (14) were written this
way. However the approach (ii) leads to simpler formulas, which are easier to deal with, espe-
cially for theX -space. What is more important, the conceptual meaning of the map µ]k in the
X -case becomes crystal clear when we go to the q-deformed spaces, see Section 4.

Below we work out these formulas, i.e. compute mutation birational automorphisms µ]k
in the cluster coordinates assigned to the seed i.

It is handy to employ the following notation:

A+
k :=

∏
i|εki>0

Aεkii , A−k :=
∏

i|εki<0

A−εkii .

Then

(25)
A+
k

A−k
=
∏
j

A
εkj
j = p∗Xk.

P 2.3. – Given a seed i, the birational automorphism µ]k of the seed A-torus
(respectively X -torus) acts on the cluster coordinates {Ai} (respectively {Xi}) related to the
seed i as follows:

Ai 7−→ A]i := Ai(1 + p∗Xk)−δik =

{
Ai if i 6= k,

Ak(1 + A+
k /A

−
k )−1 if i = k,

(26)

Xi 7−→ X]
i := Xi(1 +Xk)−εik .(27)

Proof. – Let {A′i} be the cluster coordinates in the function field of AΛ assigned to the
mutated seed i′. They are related to the cluster coordinates {A′i} assigned to the seed i as
follows:

(28) A′i 7−→

{
Ai if i 6= k,

A−k /Ak if i = k.

These formulas describe the action of the tautological mutation isomorphism µ′k on the clus-
ter coordinates. They reflect the action of the seed mutation on the quasidual basis {fi}, see
(8).
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Then the transformation µ′k ◦ µ
]
k acts on the coordinates A′i as follows:

(µ]k)∗ ◦ (µ′k)∗ : A′k 7−→ A−k /Ak = A−k (1 +
A+
k

A−k
)A−1

k =
A+
k + A−k
Ak

.

This coincides with the action of the mutation µk on the coordinate A′k. This proves the
A-part of the proposition.

Similarly, the tautological mutation isomorphism µ′k acts on the coordinates by

(29) X ′i 7−→

{
X−1
k if i = k,

Xi(Xk)[εik]+ if i 6= k.

This reflects the action of the seed mutation on the basis {ei}.
Therefore the transformation µ′k ◦ µ

]
k acts on the coordinates X ′i as follows:

X ′k 7−→ X−1
k 7−→ X−1

k ,

and, if i 6= k,

X ′i 7−→ Xi(Xk)[εik]+ 7−→ Xi(1 +Xk)−εik(Xk)[εik]+ = Xi(1 +X
−sgn(εik)
k )−εik .

This coincides with the action of the mutation µk on the coordinate X ′i. The proposition is
proved.

2.1.3. Proof of Proposition 2.2. – It is equivalent to the following statement (7): For each
mutation µk of the seed i there is a commutative diagram

(30)

AΛ

µ]
k−→ AΛ

p ↓ ↓ p

XΛ

µ]
k−→ XΛ.

Let us prove this statement. Going up and to the left we get

Xi 7−→
∏
j∈I

A
εij
j 7−→

∏
j∈I

A
εij
j · (A

]
k/Ak)εik .

Going to the left and up we get the same:

Xi 7−→ Xi(1 +Xk)−εik 7−→
∏
j∈I

A
εij
j (1 + p∗Xk)−εik .

D 2.4. – The space U is the image of the space A under the map p.

We leave to the reader to check that the space U is indeed a positive space.

C 2.5. – Assume that det εij 6= 0. Let c : i → i be a seed cluster transforma-
tion. It gives rise to cluster transformations ca and cx of the A and X spaces. Then ca = Id

implies cx = Id.

Proof. – Assume that det εij 6= 0. Then the map of algebras p∗ : Z[Xi] −→ Z[Ai] is an
injection, and commutes with the cluster transformations thanks to Proposition 2.2. This
implies the claim.

(7) As pointed out by a referee, relation between p∗Xi and p∗X′i is equivalent to Lemma 1.2 in [16].
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2.1.4. A Poisson structure on the X -space

L 2.6. – Cluster transformations preserve the Poisson structure on the seed X -tori.
Therefore the space X has a Poisson structure.

Proof. – This can easily be checked directly, and also follows from a similar but stronger
statement about the q-deformed cluster X -varieties proved, independently of the lemma, in
Lemma 3.3.

A Poisson structure on the real tropicalX -space. Given a seed, we define a Poisson bracket
{∗, ∗} on the space X (Rt) by {xi, xj} := ε̂ij . Since mutations are given by piecewise linear
transformations, it makes sense to ask whether it is invariant under mutations – the invari-
ance of the Poisson structure should be understood on the domain of differentiability. It is
easy to check that this Poisson bracket does not depend on the choice of the seed.

2.2. The X -space is fibered over the torus HX

Consider the left kernel of the form (5):

(31) KerL[∗, ∗] := {l ∈ Λ | [l, v] = 0 for every v ∈ Λ} .

Given a seed i, there is an isomorphism

KerL[∗, ∗] =

ß
{αi} ∈ ZI |

∑
i∈I

αiεij = 0 for every j ∈ I
™
.

Denote by HX the split torus with the group of characters KerL[∗, ∗]. The tautological in-
clusion KerL[∗, ∗] ↪→ Λ provides a surjective homomorphism

θ : XΛ → HX .

Denote by χα the character of the torus HX corresponding to α ∈ KerL[∗, ∗]. In the cluster
coordinates assigned to a seed i we have θ∗χα =

∏
i∈I X

αi
i .

L 2.7. – The following diagram is commutative:

XΛ
µxk−→ XΛ

θ ↓ ↓ θ
HX

∼−→ HX .

Proof. – Follows from the quantum version, see Lemma 3.10.

Let us interpret the torus HX as a tautological positive space, i.e. as a functor

(32) θ : G −→ the category of split algebraic tori,

sending objects to the torus HX , and morphisms to the identity map. Then Lemma 2.7 im-
plies

C 2.8. – There is a unique map of positive spaces θ : X −→ HX such that for
any seed

θ∗(χα) :=
∏
i∈I

Xαi
i .

4 e SÉRIE – TOME 42 – 2009 – No 6



CLUSTER ENSEMBLES, QUANTIZATION AND THE DILOGARITHM 887

Let e be the unit of HX . Thanks to Lemma 2.7 the fibers θ−1(e) of the maps
θ : XΛ −→ HX are glued into a positive space. It is the space U from Definition 2.4.

Similarly, for a general h, the fibers θ−1(h) can be glued into an object generalizing posi-
tive space. We are not going to develop this point of view, observing only that the R>0-points
of the fibers make sense as manifolds.

P 2.9. – a) The fibers of the map θ are the symplectic leaves of the Poisson
space X .

b) In particular the fibers of the map θ : X (R>0) −→ HX (R>0) are the symplectic leaves
of the Poisson manifold X (R>0).

R. – Here in a) by the fibers we mean the collection of varieties θ−1(h) ⊂ Xi and
birational isomorphisms between them provided by Lemma 2.7. The claim is that they are
symplectic leaves in the tori Xi, and the gluing maps respect the symplectic structure.

Proof. – Follows immediately from Lemma 1.5.

2.3. The torus HA acts on the A-space

Consider the right kernel of the form [∗, ∗]:

(33) KerR[∗, ∗] := {l ∈ Λ | [v, l] = 0 for any v ∈ Λ}.

Given a seed i, there is an isomorphism

KerR[∗, ∗] =

ß
{βj} ∈ ZI ∼= Λ |

∑
j∈I

εijβj = 0 for any i ∈ I
™
.

Recall the map δi, see (18). Thanks to Lemma 1.11, the lattice

(34) KA := δi(KerR[∗, ∗]) ⊂ Λ∨

does not depend on the choice of i. It is, of course, isomorphic to the lattice KerR[∗, ∗].
LetHA be the torus with the group of cocharacters (34). Observe that the lattice Λ∨ is the

group of cocharacters of the torus AΛ. Thus the homomorphism

KA × Λ∨ −→ Λ∨

given by action of the lattice KA on the lattice Λ∨ gives rise to a homomorphism of tori

(35) HA ×AΛ → AΛ, χβ(t)× (a1, . . . , an) 7−→ (tβ1a1, . . . , t
βnan),

where χβ : Gm → HA is the cocharacter assigned to β.

L 2.10. – a) The maps (35) glue into an action of the torus HA on the A-space.

b) The projection p : A −→ X is the factorization by the action of the torus HA. Moreover,
there is an “exact sequence”:

A p−→ X θ−→ HX −→ 1, Im p = θ−1(1).
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Proof. – a) Taking into account the decomposition of the mutations, the claim amounts
to the commutativity of the following diagram:

HA ×AΛ −→ AΛ

Id ↓ µ]k ↓ µ]k
HA ×AΛ −→ AΛ.

The coordinateAk under the composition of the right and top arrows transforms as follows:

Ai 7−→ Ai(1 + p∗Xk)−δik 7−→ tβiAi(1 + p∗Xk)−δik .

The other composition gives the same. Indeed, since
∑
j εkjβj = 0, the transformation

Aj 7−→ tβjAj does not change expression (25). So the two ways to compute the transfor-
mation of the coordinate Ak in the diagram lead to the same result.

b) Clear. The lemma is proved.

L 2.11. – There is a canonical isomorphism HA ⊗Q = HX ⊗Q.

Proof. – This just means that (KerR[∗, ∗]⊗Q)∨ = KerL[∗, ∗]⊗Q.

R. – Observe that KerR[∗, ∗] = KerL[∗, ∗]t. There is a canonical isomorphism

(36) X∗(HA) = X∗(HX∨).

Indeed, both abelian groups are identified with KerR[∗, ∗]. It plays an essential role in Sec-
tion 4.

L 2.12. – There are canonical group homomorphisms

Γ −→ Aut (KerL[∗, ∗]) , Γ −→ Aut (KerR[∗, ∗]) .

Proof. – Clear from the very definition.

2.4. Cluster modular groups revisited

The simplicial complex S [12]. – Let i be a seed, n := |I|, m := |I− I0|. Let S be an (n− 1)-
dimensional simplex, equipped with a bijection (decoration)

(37) {Codimension one faces of S} ∼−→ I.

We call it a I-decorated, or simply decorated simplex.

Take a decorated simplex, and glue to it m other decorated simplices as follows. To each
codimension one face of the initial simplex decorated by an element k ∈ I − I0 we glue a
new decorated simplex along its codimension one face decorated by the same k. Then to
each of the remaining codimension one faces decorated by the elements of I − I0 we glue
new decorated simplices, and so on, repeating this construction infinitely many times. We
get a simplicial complex S. Let S be the set of all its simplices.

We connect two elements of S by an edge if the corresponding simplices share a common
codimension one face. We get an m-valent tree with the set of vertices S. Its edges are deco-
rated by the elements of the set I − I0. We denote it by Tr.

4 e SÉRIE – TOME 42 – 2009 – No 6



CLUSTER ENSEMBLES, QUANTIZATION AND THE DILOGARITHM 889

L 2.13. – There are canonical bijections:

{Seeds equivalent to a seed i} ↔ {The set S of simplices of the simplicial complex S},
{Compositions of seed mutations} ↔ {Paths on the tree Tr}.

Proof. – The seed i is assigned to the original simplex S. Given any other simplex S′ of
the simplicial complex S, there is a unique path on the tree Tr connecting S with S′. It gives
rise to a sequence of mutations parametrised by the edges of the path, so that the edge deco-
rated by k gives rise to the mutation in the direction k. Mutating the seed i by this sequence
of mutations, we get the seed assigned to the simplex S′. The lemma follows.

R. – Cluster A-coordinates are assigned to vertices of the simplicial com-
plex S. Cluster X -coordinates are assigned to cooriented faces of S. Changing coorien-
tation amounts to inversion of the corresponding cluster X -coordinate. Mutations are
parametrized by codimension one faces of S.

2.4.1. Another look at the cluster modular groups. – Let F(S) be the set of all pairs (S, F )

where S is a simplex of S, and F is a codimension one face of S. Pairs of faces belonging to
the same simplex are parametrized by the fibered product

(38) F(S)×S F(S).

The collection of exchange functions εij can be viewed as a single function E on the set (38).
Let Aut(S) be the automorphism group of the simplicial complex S. It contains the sub-

group Aut0(S) respecting the decorations (37). The group Aut(S) is a semidirect product:

0 −→ Aut0(S) −→ Aut(S) −→ Per −→ 0.

Here Per is the group of automorphisms of the pair (I, I0). Given i ∈ S, the group Per is
realized as a subgroup Aut(S) permuting the faces of Si.

The group Aut(S) acts on the set (38), and hence on the set of exchange functions E .

D 2.14. – Let E be the exchange function corresponding to a seed i.
The group D is the subgroup of Aut(S) preserving E:

(39) D := {γ ∈ Aut(S) | γ∗(E) = E};

The group ∆ is the subgroup of D preserving the cluster A- and X -coordinates:

(40) ∆ := {γ ∈ D | γ∗Aj = Aj , γ∗Xj = Xj};

The cluster complex C is the quotient of S by the action of the group ∆:

C := S/∆.

Clearly ∆ is a normal subgroup of D.

L 2.15. – The quotient group Γ := D/∆ is the cluster modular group.

Proof. – For any two simplices Si and Si′ of SI,I0 there exists a unique element of the
group Aut0(SI,I0) transforming Si to Si′ . So given an element d ∈ D, there is a cluster trans-
formation cd : i→ i′. Then by (39) there is a seed isomorphism σd : i′ → i. Thanks to (40)
the cluster transformation σd ◦ cd : i→ i is trivial.
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Variants. – In Definition 2.14 and Lemma 2.15 we looked how theA- andX -coordinates be-
have under cluster transformations. There are similar definitions using eitherA-coordinates,
orX -coordinates. This way we get the groups ∆?, Γ?, and the simplicial complexesC?, where
? stands, respectively, forA andX . The cluster complexCA was defined in [FZII]. Corollary
2.5 immediately implies

L 2.16. – Assume that detεij 6= 0. Then ∆A = ∆ ⊂ ∆X , CA = C, and ΓA = Γ.

2.5. Example: Cluster transformations for X -varieties of types A1 ×A1, A2, B2, G2.

The results of Section 2.5 play a crucial role in Section 5.2. We start by an elaboration
of the cluster transformations for cluster X -variety of type B2. Its main goal is to tell the
reader how we picture mutations, quivers etc. The obtained formulas, however, do not seem
very illuminating.

We show that the situation changes dramatically when we go to the tropicalised cluster
transformations. Notice that they contain just the same information as the original cluster
transformations. The advantage of the tropicalised formulas stems from the fact that they are
piecewise linear transformations, and thus can be perceived geometrically. We demonstrate
this idea by working out tropicalisations of cluster transformations for every finite type clus-
terX -variety of rank two, uncovering an interesting geometry standing behind. We calculate
cluster modular groups in these cases.

2.5.1. Quivers and cluster transformations in the B2 case. – We picture a seed by a quiver
with two vertices. The clusterX -coordinates assigned to a seed are the functions written near
the corresponding vertices. Every two neighboring seeds are related by a horizontal arrow,
associated with one of the vertices of the left quiver. It shows a mutation in the direction of
that vertex. The exchange function ε is determined as follows. Denote by b and t the bottom
and top vertices. Then for the very left quiver εbt = −2, εtb = 1. For the next one, εbt = 2,
εtb = −1, and so on. This sequence of mutations has period 6. Similar calculations can be
done for the seeds of types A1 ×A1, A2, G2.

x → x−1 x−1(1 + y + xy)2 → x(1 + y + xy)−2

2 2 2 2

→ y y(1 + x)→ y−1(1 + x)−1 x−1y−1(1 + 2y + y2 + xy2)→

x−1(1 + y−1)2 → x(1 + y−1)−2 x →
2 2 2

→ xy(1 + 2y + y2 + xy2)−1 y−1 → y.
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A2:

0

1

23

4 B2:

13

5

1

3

5 0

2

4

0

24

G2:

1

3

5

7

1

35

7 0

24

6

0

2

4

6

F 4. Orbits of mutations.

2.5.2. Geometry of the tropicalised cluster transformations in the finite type rank two case. –
Take a finite type rank two seed i, with I = {1, 2}.

Case A2. In this case all seeds are isomorphic. Consider a cluster transformation

µ := σ1,2 ◦ µ1 : i −→ σ1,2(i) ∼ i.

Let P be the tropicalisation of the cluster X -torus corresponding to the seed i. It is a plane
with coordinates (x, y). The cluster transformation µ induces a map

µt : P −→ P, x 7−→ y + max(0, x), y 7−→ −x.

The plane P is decomposed into 5 sectors as shown on Fig. 4. Three of them are coordi-
nate quadrants. The other two are obtained by subdividing the remaining quadrant into
two sectors. We order the sectors clockwise cyclically, starting from the positive quadrant
{(x, y) | x, y ≥ 0}.

L 2.17. – The map µt moves the i-th sector to the (i + 1)-st. Its restriction to any
sector is linear. The sectors are the largest domains in P on which any power of the map µt is
linear.

Proof. – The vectors (0, 1), (1, 0), (1,−1), (0,−1), (−1, 0) are the primitive integral vec-
tors generating the boundary arrows of the domains. The map µt moves them cyclically
clockwise. The lemma follows easily from this.

C 2.18. – One has µ5 = Id. The element µ generates the modular group of the
cluster X -variety of type A2, and identifies it with Z/5Z.

Cases A1 ×A1. This is the simplest case. We have

µt : P −→ P, x 7−→ y, y 7−→ −x.

There are four sectors in this case, given by the coordinate quadrangles.
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L 2.19. – The map µt moves the i-th sector to the (i + 1)-st. Its restriction to any
sector is linear. The sectors are the largest domains in P on which any power of the map µt is
linear.

One has µ4 = Id. The element µ generates the modular group of the cluster X -variety of
type A1 ×A1, and identifies it with Z/4Z.

Cases B2 and G2. In these cases there are two non-isomorphic seeds, denoted i− and i+.
Consider cluster transformations

µ− := σ1,2 ◦ µ1 : i− −→ σ1,2(i+), µ+ := σ1,2 ◦ µ1 : i+ −→ σ1,2(i−).

There are two tropical planes P− and P+ with coordinates (x, y), which are tropicalisations
of the cluster X -tori corresponding to the seeds i− and i+. The cluster transformations µ±
induce the maps

µt− : P− −→ P+, x 7−→ y + max(0, x), y 7−→ −x,
µt+ : P+ −→ P−, x 7−→ y + c max(0, x), y 7−→ −x.

Here c = 2, 3 for the Dynkin diagrams B2, G2 respectively. The maps µt± have the following
geometric description. Each of the planes P± is decomposed into a union of h + 2 sectors.
These sectors include all coordinate quadrants but the bottom right one. The remaining sec-
tors subdivide that quadrant as shown on Fig. 4. The boundaries of these sectors are arrows
whose directing vectors are:

B2 : P− : (1,−1), (1,−2); P+ : (2,−1), (1,−1).

G2 : P− : (1,−1), (2,−3)(1,−2), (1,−3); P+ : (3,−1), (2,−1), (3,−2), (1,−1).

The remaining four directing vectors are (0, 1), (1, 0), (0,−1), (−1, 0) in both cases. Let us
order the sectors clockwise cyclically, starting from the positive coordinate quadrant.

L 2.20. – The map µt− moves the i-th sector on P− to the (i + 1)-st sector on P+.
The map µt+ moves the i-th sector on P+ to the (i + 1)-st sector on P−. They are linear maps
on the sectors. The sectors are the largest domains in P± on which any composition of the map
µt± is linear.

Proof. – In the B2 case we get two sequences of vectors, shown by black and grey on
Fig. 4:

(41) (0, 1)
µ−−→ (1, 0)

µ+−→ (1,−1)
µ−−→ (1,−1)

µ+−→ (0,−1)
µ−−→ (−1, 0)

µ+−→ (0, 1).

(42) (1, 0)
µ−−→ (2,−1)

µ+−→ (1,−2)
µ−−→ (0,−1)

µ+−→ (−1, 0)
µ−−→ (0, 1)

µ+−→ (1, 0).

In the G2 case we also get two sequences of vectors, shown by black and grey on Fig. 4:

(0, 1)
µ−−→ (1, 0)

µ+−→ (1,−1)
µ−−→ (2,−1)

µ+−→ (1,−2)
µ−−→ (1,−1)

µ+−→ (0,−1)
µ−−→ (−1, 0)

µ+−→ (0, 1).

(1, 0)
µ−−→ (3,−1)

µ+−→ (2,−3)
µ−−→ (3,−2)

µ+−→ (1,−3)
µ−−→ (0,−1)

µ+−→ (−1, 0)
µ−−→ (0, 1)

µ+−→ (1, 0).

One checks that the cluster transformations µ± are linear on each of the sectors.
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C 2.21. – One has (µ+µ−)3 = Id in the case B2, and (µ+µ−)4 = Id in the
case G2.

The modular group of the cluster X -variety of type B2 is Z/3Z. Its generator is µ+µ−.
The modular group of the cluster X -variety of type G2 is Z/4Z. Its generator is µ+µ−.

2.5.3. Proof of Proposition 1.8. – Since detεij 6= 0, theA-coordinates in the rank two cases
have the same period. This settles the proposition for the rank two case. The claim in general
for theA-coordinates as well as the exchange functions εij was proved in [12]. The claim for
theX -coordinates can be reduced to it via the following trick. One can find a set I ′ containing
I and a skew-symmetrisable exchange function ε′ij on I ′ × I ′ extending εij on I × I such
that detε′ij 6= 0. Then the claim follows from Corollary 2.5, since the composition of the
A-mutations assigned to the standard (h+ 2)-gon is trivial for any seed.

2.6. Modular complexes, modular orbifolds and special modular groups

A simplex of the simplicial complex C? is of finite type if the set of all simplices of C?

containing it is finite. Here “?” stands for A, X , or no label at all.

D 2.22. – The reduced cluster complex C∗? is the union of finite type simplices
of C?.

The reduced cluster complex is not a simplicial complex: certain faces of its simplices may
not belong to it. But it has a topological realization.

T 2.23. – Topological realizations of the reduced cluster complexes C∗ and C∗A
are homeomorphic to manifolds.

Proof. – We give a proof for the cluster complex C∗ – the case of C∗A similar, and a bit
simpler.

A simplicial complex is of finite type if it has a finite number of simplices. According to the
Classification Theorem [14] cluster algebras of finite type, i.e. the ones with the cluster com-
plexes of finite type, are classified by the Dynkin diagrams of type A,B, . . . , G2. The cluster
complex of type An is a Stasheff polytope. The cluster complexes corresponding to other fi-
nite type cluster algebras are the generalized associahedra, or generalized Stasheff polytopes
[15].

We need the following crucial lemma.

L 2.24. – Let S′i be a simplex of finite type in the cluster complex C. Then the set of
all simplices containingS′i is naturally identified with the set of all faces of a generalized Stasheff

polytope, so that the codimension i simplices correspond to the i-dimensional faces.

Proof. – Let Ii be the set of vertices of a top dimensional simplexSi of the simplicial com-
plex C. The exchange function ε is a function on Ii × Ii. Let S′i be a finite type simplex
contained in the simplex Si. Let I ′i ⊂ Ii be the subset of the vertices of S′i . The set of top di-
mensional simplices of C containing S′i is obtained from the simplex Si as follows. Consider
the seed defined by the function ε′ with the frozen variables parametrized by the subset I ′i .
Recall that this means that we do mutations only at the vertices of Ii−I ′i . Since the simplexS′i
is finite type, it gives rise to a finite type cluster algebra. Indeed, since by the very definition
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∆ is a subgroup of ∆A, the simplicial complex C has more simplices than CA. So if C is of
finite type, CA is also of finite type. Therefore the matrix εij is non-degenerate by the Clas-
sification Theorem. So by Corollary 2.5 in our case, CA = C. The corresponding cluster
complex is the generalized Stasheff polytope corresponding to the Cartan matrix assigned
to the exchange function ε′ on the set (Ii − I ′i)2. It is a convex polytope [4]. This proves the
lemma.

Let us deduce the theorem from this lemma. Consider a convex polyhedron P . Take the
dual decomposition of its boundary, and connect each of the obtained polyhedrons with a
point inside of P by straight lines. We get a conical decomposition of P . Let us apply this
construction to the generalized Stasheff polytope. Then the product of the interior part of the
simplex S′i and the defined above conical decomposition of the generalized Stasheff polytope
corresponding to the exchange function ε′ on (Ii − I ′i)2 gives the link of the interior part of
the simplex S′i . In particular a neighborhood of any interior point of S′i is topologically a
ball. The theorem is proved.

C 2.25. – The simplicial complexCX is of finite type if and only ifC is of finite
type.

Proposition 1.8 implies that Conjecture 2.25 is valid if |I − I0| = 2.
The cluster modular complex. Suppose that we have a decomposition of a manifold on

simplices, although some faces of certain simplices may not belong to the manifold. Then
the dual polyhedral decomposition of the manifold is a polyhedral complex. Its topological
realization is homotopy equivalent to the manifold.

Thanks to Theorem 2.23 the reduced cluster complexC∗ is homeomorphic to a manifold.
Therefore the dual polyhedral complex forC∗ is a polyhedral complex whose topological re-
alization is homotopy equivalent to a manifold. This motivates the following two definitions.

D 2.26. – The cluster modular complex M̂ is the dual polyhedral complex for
the reduced cluster complex C∗.

The modular orbifold. The cluster modular group Γ acts on C∗, and hence on M̂ . The
stabilizers of points are finite groups.

D 2.27. – The cluster modular orbifold M is the orbifold M̂/Γ.

The fundamental groupoid of a polyhedral complex P is a groupoid whose objects are
vertices of P , and morphisms are homotopy classes of paths between the vertices.

T 2.28. – The special modular groupoid Ĝ is the fundamental groupoid of the clus-
ter modular orbifold M . The special modular group Γ̂ is the fundamental group of the orb-
ifold M , centered at a vertex of M

Proof. – The morphisms in the fundamental groupoid of a polyhedral complex P can
be described by generators and relations as follows. The generators are given by the edges
of P . The relations correspond to the two dimensional cells of P . So to prove the theorem,
we describe the 2-skeleton of the polyhedral complex M̂ . We start from a reformulation of
Lemma 2.24:
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C 2.29. – Any cell of the polyhedral complex M̂ is isomorphic to the generalized
Stasheff polytope corresponding to a Dynkin diagram from the Cartan-Killing classification.

This implies the following description of the 2-skeleton of the polyhedral complex M̂ . The
1-skeleton of M̂ is the quotient Tr/∆. Let us describe the 2-cells of M̂ . As was discussed in
Section 2.5, if εij is one of the following matrices

(43)

(
0 0

0 0

)
, ±

(
0 1

−1 0

)
, ±

(
0 1

−2 0

)
, ±

(
0 1

−3 0

)

then performing mutations at the vertices i, j, i, j, i, . . . we get an (h + 2)-gon, where h is
the Coxeter number of the Dynkin diagram of type A1 × A1, A2, B2, G2 respectively, i.e.
h = 2, 3, 4, 6. These (h+ 2)-gons are called the standard (h+ 2)-gons in M̂ . We get

C 2.30. – Any 2-cell of the polyhedral complex M̂ is a standard (h + 2)-gon,
h = 2, 3, 4, 6.

Therefore the edges and 2-cells of the polyhedral complex M̂ match the generators and the
relations of the special modular groupoid from Definition 1.9. The theorem is proved.

R. – The vertices of the modular orbifold are parametrized by the functions on
the set I × I up to permutation equivalence obtained by mutations of an initial exchange
function εij . So the number of cells is infinite if and only if the absolute value of the cluster
function E is unbounded.

H 2.31. – The reduced cluster complex C∗ (or, equivalently, the modular com-
plex M̂) is simply connected.

Hypothesis 2.31 is equivalent to the one that the canonical epimorphism Γ̂ → Γ is an
isomorphism. So in the cases when it is satisfied we have a transparent description of the
modular group Γ: all relations come from the standard (h+ 2)-gons.

A cluster ensemble is of finite type if the cluster complex C is of finite type. Lemma 2.16
implies that the classification of finite type cluster ensembles is the same as the one for cluster
algebras. Hypothesis 2.31 is valid for cluster ensembles of finite type if and only if |I| > 2.
Indeed, in the finite type case the cluster complexC is the boundary of a generalized Stasheff

polytope, which is a convex polytope [4]. So the topological realization of C is homeomor-
phic to a sphere.

R. – Just the same way as we prove Theorem 2.23, Conjecture 2.25 implies that
the topological realization of the reduced cluster complex C∗X is homeomorphic to a mani-
fold.
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2.7. Cluster nature of the classical Teichmüller space

2.7.1. Cluster data for the Teichmüller space of an oriented hyperbolic surface S with punc-
tures. – It was defined in Chapter 11 of [6]. Consider a trivalent tree T embedded into S,
homotopy equivalent to S. Let Λ be the lattice generated by the edges of T . It has a basis
given by the edges. The skew-symmetric matrix εEF , where E and F run through the set of
edges of the tree T , is defined as follows. Each edge E of T determines two flags, defined as
pairs (v,E) where v is a vertex of an edge E. Given two flags (v,E) and (v, F ) sharing the
same vertex, we define δv,E,F ∈ {−1, 1} as follows: δv,E,F = +1 (respectively δv,E,F = −1)
if the edge F goes right after (respectively right before) the edge E according to the orienta-
tion of the surface, see Fig. 5. For each pair (E,F ) of the edges of T , consider the set v(E,F )

of their common vertices. It has at most two elements. We set

(44) εEF :=
∑

v∈v(E,F )

δv,E,F ∈ {±2,±1, 0}.

E EFF

v v

δv,E,F = +1 δv,E,F = −1

F 5. The function δE,F .

We defined in Chapter 3 of [6] a polyhedral complex GS , called the modular complex. Its
vertices are parametrized by the isotopy classes of trivalent graphs on S which are homo-
topy equivalent to S. Its dimension k faces correspond to the isotopy classes of graphs G
on S, homotopy equivalent to S, such that valency val(v) of each vertex v of G is ≥ 3, and
k =

∑
v(val(v)− 3).

The modular complex GS can be identified with the cluster modular complex for the ex-
change function (44). Since GS is known to be contractible, Hypothesis 2.31 is valid in this
case. This suggests that Hypothesis 2.31 may be valid in a large class of examples. The faces
of the modular complex GS are the Stasheff polytopes or their products: this illustrates The-
orem 2.23. Since GS is contractible, the two versions T and T̂ of the cluster modular group
are isomorphic, and identified with the modular group of S.

2.7.2. Cluster data for the Teichmüller space of the punctured torus S. – There is a unique
up to isomorphism trivalent ribbon graph corresponding to a punctured torus. It is shown
on Fig. 6 embedded in the punctured torus: the puncture is at the identified vertices of the
square. Let us number its edges by {1, 2, 3}. The general recipe in the case of the punctured
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torus leads to an exchange function εij given by the skew-symmetric matrix

(45) εij =

Ü
0 2 −2

−2 0 2

2 −2 0

ê
.

Its quiver is shown on the left of Fig. 1. Mutations change the sign of the function
εij : ε′ij = −εij .

3
2

2

1

1

F 6. The trivalent ribbon graph corresponding to a punctured torus.

It is well known that in this case the modular group is PSL2(Z). Consider the classical
modular triangulation of the upper half plane, obtained by reflections of the geodesic triangle
with vertices at 0, 1,∞. If we mark the vertices of one of the triangles by elements of the set
{1, 2, 3} then there is a unique way to mark the vertices of the modular triangulation by the
elements of the same set so that the vertices of each triangle get distinct marks, see Fig. 7.
The set of vertices of the modular triangulation is the set of the cusps, identified with P 1(Q).
The set of the edges of the modular triangulation inherits a decoration by the elements of the
set {1, 2, 3} such that a vertex of each of the modular triangles and the side opposite to this
vertex are labeled by the same element.

The modular triangulation is the simplicial complex S. The dual graph of this triangula-
tion without the vertices is a trivalent tree. Its edges inherit labels by the elements of the set
{1, 2, 3}. So it is an {1, 2, 3}-decorated tree. It is the polyhedral complex GS for the punc-
tured torus S: an embedded graph as on Fig. 6 corresponds to a vertex of this tree. A flip at
an edge of this graph corresponds to the flip at the corresponding edge of the tree.

1

3

2 1

2

3

1 2

1

3

2 1

F 7. The modular triangulation of the upper half plane, and the dual tree.
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L 2.32. – For the cluster ensemble related to the Teichmüller space on the punctured
torus there are canonical isomorphisms

Aut(S) = PGL2(Z), D = PSL2(Z), ∆ = {e}, Γ = PSL2(Z), C − C∗ = P 1(Q).

Proof. – Recall that PGL2(R) acts on C − R. This action commutes with the com-
plex conjugation c : z → z acting on C − R. Thus PGL2(R) acts on the quotient
(C− R)/c, which is identified with the upper half plane. The subgroup PGL2(Z) preserves
the modular picture. The canonical homomorphism p : Aut(S)→ Perm(I) is the projec-
tion PGL2(Z)→ S3 provided by the action on the set {1, 2, 3}. The subgroup PSL2(Z)

of PGL2(Z) preserves the function εij . So it is the cluster subgroup D. The cluster sub-
group ∆ is trivial in this case. This agrees with the fact that the matrix εij has no principal
2 × 2 submatrix from the list (43), and thus the dual polyhedral complex is reduced to
a tree. So the modular group is PSL2(Z). The modular triangulation of the upper half
plane coincides with the topological realization of the reduced cluster complex C∗. One has
C − C∗ = P 1(Q). The lemma is proved.

Below we explain the cluster nature of the universal Teichmüller space, from which the
case of a hyperbolic surface S can be obtained by taking the π1(S)-invariants.

2.8. Cluster nature of universal Teichmüller spaces and the Thompson group

D 2.33. – The universal Teichmüller space X+ is the space of PGL2(R)-orbits
on the set of maps

(46) β : P1(Q) −→ P1(R)

respecting the natural cyclic order of both sets.

A generalization to an arbitrary split simple Lie group with trivial center G is in [6]. The
name and relationship with Teichmüller spaces T +

S for surfacesS with punctures is explained
below.

Let S1(R) be the set of all rays in R2−{0, 0}. There is a 2 : 1 cover S1(R)→ P1(R). Let s
be the antipodal involution. It is the unique non-trivial automorphism of this covering. Let
S1(Q) be the set of its rational points, given by the rays with rational slopes.

D 2.34. – Consider the set of all maps

(47) α : S1(Q) −→ R2 − {0, 0} satisfying the condition α(s(p)) = −α(p)

such that composing α with the projection R2 − {0, 0} −→ S1(R) we get a map
α : S1(Q) −→ S1(R) respecting the natural cyclic order of both sets. The universal decorated
Teichmüller space A+ is the quotient of this set by the natural action of the group SL2(R)

on it.

The Thompson group T. It is the group of all piecewise PSL2(Z) automorphisms of
P1(Q): for every g ∈ T, there exists a decomposition of P1(Q) into the union of a finite
number of segments, which may overlap only at the ends, such that the restriction of g to
each segment is given by an element of PSL2(Z).
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Consider the Farey triangulation T of the hyperbolic planeH shown on Fig. 7 and 8. Let
T be the dual trivalent tree. We have canonical identifications

(48) P1(Q) = Q ∪∞ = {vertices of the Farey triangulation}.

Let

IF := {edges of the Farey triangulation}.

F 8. The Farey ideal triangulation of the hyperbolic disc.

It is identified with the edges of the dual tree T . Therefore applying (44) to the latter, we get
a skew-symmetric function εij : IF × IF → {0,±1}. Observe that although IF is an infinite
set, for any i ∈ IF the function IF → Z, j 7−→ εij has a finite support. It is easy to see that
in such situation all the constructions above work. So we get the corresponding seed and the
cluster ensemble, called Farey cluster ensemble.

T 2.35. – Let (XF ,AF ) be the Farey cluster ensemble. Then

i) XF (R>0) is identified with the universal Teichmüller space X+.

ii) AF (R>0) is identified with the universal decorated Teichmüller space A+.

iii) The modular group Γ of the Farey cluster ensemble is the Thompson group. It is isomor-
phic to the group Γ̂.

Proof. – The proof of the parts i) and ii) is very similar to the proofs in the finite genus
case given in Chapter 11 of [6]. Let us outline the proof of i). Let us identify once and for all
the sets P1(Q) in (48) and (46).

L 2.36. – There is a canonical isomorphism ϕ : X+ ∼−→ RI>0.

Proof. – It assigns to a map β a functionϕ(β) on I defined as follows. LetE be an edge of
the Farey triangulation. Denote by v1, v2, v3, v4 the vertices of the 4-gon obtained by taking
the union of the two triangles sharing E. We assume that the vertices follow an orientation
of the circle, and the vertex v1 does not belong to the edge E. Recall the cross-ratio r+ nor-
malized by r+(∞,−1, 0, x) = x. Then

ϕ(β)(E) := r+(β(v1), β(v2), β(v3), β(v4)).

To prove that every positive valued function on the set I is realized we glue one by one trian-
gles of the triangulation to the initial one in the hyperbolic disc so that the cross-ratio corre-
sponding to each edge E by the above formula is the value of the given function at E. The
lemma is proved.
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It remains to check that flips at the edges of the Farey triangulation are given by the same
formulas as the corresponding mutations in the cluster ensemble. This is a straightforward
check, left to the reader.

ii) Let us define a mapA+ → RI>0. Take an edgeE of the Farey triangulation. Let p1(E),
p2(E) be the endpoints of the edge E, considered as the points of P1(Q). The map (47) as-
signs to them vectors v1(E), v2(E), each well defined up to a sign. The coordinate corre-
sponding to the edgeE is the absolute value of the area of the parallelogram in R2 generated
by these vectors. One checks that the exchange relation follows from the Plücker relation.

iii) Here is another way to look at the Thompson group. The Farey triangulation has a
distinguished oriented edge, connecting 0 and ∞. The Thompson group contains the fol-
lowing elements, called flips at the edges: Given an edge E of the Farey triangulation T , we
do a flip at an edge E obtaining a new triangulation T ′ with a distinguished oriented edge.
This edge is the old one if E is not the distinguished oriented edge, and it is the flip of the
distinguished oriented edge otherwise. Observe that the ends of the trivalent trees dual to the
triangulations T and T ′ are identified, each of them with P 1(Q). On the other hand, there
exists a unique isomorphism of the plane trees T and T ′ which identifies their distinguished
oriented edges. It provides a map of the ends of these trees, and hence an automorphism of
P 1(Q), which is easily seen to be piece-wise linear. The Thompson group is generated by
flips at the edges ([21]). It remains to check that the relations in the Thompson group corre-
sponds to the standard pentagons in the cluster complex. Indeed, these pentagons are exactly
the pentagons of the Farey triangulation, it is well known [3] that they give rise to relations
in the Thompson group, and all relations are obtained this way.

Let us prove that Γ̂ = Γ. First, Γ̂ = Γ is true for the cluster ensemble related to a triangu-
lation of an n-gon. Indeed, in this case the cluster modular complex is nothing else than the
Stasheff polytope, which is simply connected if n > 4. This implies that the same is true for
the modular triangulation. The theorem is proved.

The universal decorated Teichmüller spaceA+ is isomorphic to the one defined by Penner
[24].

Relation with the Teichmüller spaces of surfaces. Given a torsion free subgroup
π ⊂ PSL2(Z), set Sπ := H/π. The Teichmüller space X+

Sπ
is embedded into X+ as the

subspace of π-invariants:

X+
Sπ

= (X+)π.

Let us define this isomorphism. The Teichmüller space X+
S of a surface with punctures S

has canonical coordinates corresponding to an ideal triangulation of S. We have a natural
triangulation on Sπ, the image of the Farey triangulation under the projection ππ : H → Sπ.
SoX+

Sπ
is identified with the R>0-valued functions on IF/π, i.e. with π-invariant R>0-valued

functions on IF .
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3. A non-commutative q-deformation of the X -space

3.1. Heisenberg groups and quantum tori

Let Λ be a lattice equipped with a skew-symmetric bilinear form (∗, ∗) : Λ× Λ→ Z. We
associate to this datum a Heisenberg groupHΛ. It is a central extension

0 −→ Z −→ HΛ −→ Λ −→ 0.

The composition law is given by the rule

{v1, n1} ◦ {v2, n2} = {v1 + v2, n1 + n2 + (v1, v2)}, vi ∈ Λ, ni ∈ Z.

D 3.1. – Let Λ be a lattice equipped with a skew-symmetric bilinear form
(∗, ∗) : Λ × Λ → Z. The corresponding quantum torus algebra TΛ is the group ring of the
Heisenberg groupHΛ.

Let q be the element of the group algebra corresponding to the central element
(0, 1) ∈ HΛ. Denote by Xv the element of the group algebra corresponding to the element
(v, 0) ∈ HΛ. Then

q−(v1,v2)Xv1Xv2 = Xv1+v2 .

In particular the left hand side is symmetric in v1, v2. There is an involutive antiautomor-
phism

∗ : TΛ −→ TΛ, ∗(Xv) = Xv, ∗(q) = q−1.

Choose a basis {ei} of the lattice Λ. Set Xi := Xei . Then the algebra TΛ is identified
with the algebra of non-commutative polynomials in {Xi} over the ring Z[q, q−1] subject to
the relations

(49) q−ε̂ijXiXj = q−ε̂jiXjXi, ε̂ij := (ei, ej).

Let us choose an order e1, . . . , en of the basis of Λ. Then given a vector v =
∑n
i=1 aiei of Λ,

one has

(50) Xv = q
−
∑

i<j
aiaj ε̂ij

n∏
i=1

Xai
i .

In particular the right hand side does not depend on the choice of the order.

The above construction gives rise to a functor from the category of lattices with skew-
symmetric forms to the category of non-commutative algebras with an involutive antiauto-
morphism ∗.

There is a version of this construction where q is a complex number with absolute value 1

and ∗ is a semilinear antiautomorphism preserving the generators Xi. There is a specializa-
tion homomorphism of ∗–algebras sending the formal variable q to its value.
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3.1.1. Center of the quantum torus algebra at roots of unity. – Let us start with an example.
Let Λ be a lattice spanned by elements e1, e2 with (e1, e2) = 1. Then the quantum torus
algebra TΛ is isomorphic to the algebra of non-commutative Laurent polynomials satisfying
the relation qX1X2 = q−1X2X1. Suppose now that q is an N -th root of unity. Due to the
q-binomial formula [23] we have

(X1 +X2)N = XN
1 +XN

2 .

Obviously XN
i are central elements. One easily proves that the center of the algebra TΛ is

the algebra of Laurent polynomials in XN
1 , X

N
2 .

One can reformulate this using the geometric language as follows. Let Y1, Y2 be the coor-
dinate functions on the two dimensional torus Gm×Gm. Then there is a natural homomor-
phism of algebras

F∗N : O(Gm ×Gm) ↪→ TΛ, Yi 7−→ XN
i .

Its image is the center of TΛ. We may think about this map as of the quantum Frobenius map

FN : Spec(TΛ) −→ Gm ×Gm.

Here is a generalization of this example. Let Λ0 be the kernel of the form (∗, ∗). Then TΛ0

is in the center of TΛ. For generic q the center coincides with TΛ0
. Geometrically, the center

is generated by the preimages of the characters under the Casimir map

θq : Spec(TΛ) −→ Spec(TΛ0) = Hom(Λ0,Gm).

In the qN = 1 case we have in addition to this the Frobenius map

FN : Spec(TΛ) −→ Hom(Λ,Gm).

The center in this case is generated by the preimages of the characters under these maps.

Below we show how to glue quantum tori, so that at roots of unity the quantum Frobenius
map will be preserved.

3.2. The quantum dilogarithm

Consider the following formal power series, a version of the inverse of the Pochhammer
symbol:
(51)

Ψq(x) :=
1

(−qx; q2)∞
=
∞∏
a=1

(1 + q2a−1x)−1 =
1

(1 + qx)(1 + q3x)(1 + q5x)(1 + q7x) . . .
.

It is a q-analog of the gamma function. It is characterized, up to a constant, by a difference
relation

(52) Ψq(q
2x) = (1 + qx)Ψq(x), or, equivalently, Ψq(q

−2x) = (1 + q−1x)−1Ψq(x).

It is also called the q-exponential. The name is justified by the power series expansion

Ψq(x) =
∞∑
n=0

q−
n(n−1)

2 xn

(q − q−1)(q2 − q−2) . . . (qn − q−n)
.
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It is easily checked by using the difference relation. There is a power series expansion of the
inverse of Ψq(x):

Ψq(x)−1 =
∞∑
n=0

qn
2

xn

(1− q2)(1− q4) . . . (1− q2n)
.

The difference relation immediately implies the following property of the q-exponential
power series:

(53) Ψq−1(x) = Ψq(x)−1.

Indeed, both parts of the equation satisfy the equivalent difference relations (52).

Formal power series (51) are also known by the name the quantum dilogarithm power se-
ries. To justify the name, recall a version of the classical dilogarithm function:

L2(x) :=

∫ x

0

log(1 + t)
dt

t
= −Li2(−x).

It has a q-deformation, called the q-dilogarithm power series, given by

L2(x; q) :=
∞∑
n=1

xn

n(qn − q−n)
.

One has the identity
log Ψq(x) = L2(x; q).

It is proved easily by using the difference relations (52) characterizing Ψq(x).

The precise relation with the classical dilogarithm is the following. If |q| < 1 the power
series Ψq(x)−1 converge, providing an analytic function in x ∈ C. If, in addition to this,
|x| < 1, the q-dilogarithm power series also converge. There are asymptotic expansions when
q → 1−:

(54) L2(x; q) ∼ L2(x)

log q2
, Ψq(x) ∼ exp

(L2(x)

log q2

)
.

3.3. The quantum space Xq
According to Definition 1.4, a seed i includes a lattice Λ with a skew-symmetric bilinear

form (∗, ∗), and thus determines a quantum torus ∗-algebra TΛ, denoted Ti. Using the basis
{ei} it is described by generators and relations, see (49). Denote by Ti the non-commutative
fraction field of Ti.

The quantum mutation map µqk is an isomorphism of skew fields

µqk : Ti′ −→ Ti.

The simplest way to define it employs the following fact: The algebras Ti for the seeds
i related by seed cluster transformations are canonically isomorphic, since each of them is
identified with the algebra TΛ,

D 3.2. – The mutation homomorphism µqk : Ti′ −→ Ti is the conjugation by
Ψqk(Xk), where Xk = Xek is a basis element for the seed i:

µqk := AdΨqk
(Xk), qk := q1/dk .
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In other words, the map µqk is defined as the unique map making the following diagram
commutative. Here the vertical maps are the canonical isomorphisms.

Ti′
µq
k−→ Ti

∼↓ ↓∼

TΛ

AdΨqk
(Xk)

−→ TΛ.

Although Ψqk(Xk) is not a rational function, we show in Lemma 3.4 that µqk is a rational
map.

L 3.3. – The map µqk is a homomorphism of ∗-algebras.

Proof. – The map µqk is given by the conjugation. So is a homomorphism of algebras. It
commutes with the involution ∗ thanks to (53). Indeed, since ∗Xi = Xi, we have

∗
(
Ψq(Xk)XiΨq(Xk)−1

)
= Ψq−1(Xk)−1XiΨq−1(Xk)

(53)
= Ψq(Xk)XiΨq(Xk)−1.

3.3.1. Decomposition of quantum mutations. – Although the algebras Ti′ and Ti are canon-
ically isomorphic, they are equipped with different sets of the generators – the cluster coor-
dinates – {Xe′

i
} and {Xei}. Let us write the mutation map in the cluster coordinates. Then

we have
µqk = µ]k ◦ µ

′
k, µ]k := AdΨqk

(Xk) : Ti −→ Ti,

where µ′k is a map which tells how the coordinates related to the basis {e′i} are related to the
ones related to the basis {ei}. It is given in the cluster coordinates as follows:

(55) µ′k : Ti′ −→ Ti, Xe′
i
7−→ Xe′

i
= Xei+[εik]+ek = q−ε̂ik[εik]+XeiX

[εik]+
ek

.

So although it is the identity map after the canonical identification of algebras Ti′ and Ti,
it looks as a non-trivial map when written in the cluster coordinates.

3.3.2. An explicit computation of the automorphism µ]k

L 3.4. – The automorphism µ]k is given on the generators by the formulas

(56) Xi 7−→ X]
i :=

Xi(1 + qkXk)(1 + q3
kXk) . . . (1 + q

2|εik|−1
k Xk) if εik ≤ 0,

Xi

Ä
(1 + q−1

k Xk)(1 + q−3
k Xk) . . . (1 + q

1−2|εik|
k Xk)

ä−1
if εik ≥ 0.

Proof. – For any formal power series ϕ(x) the relation q−ε̂kiXkXi = q−ε̂ikXiXk implies

(57) ϕ(Xk)Xi = Xiϕ(q−2ε̂ikXk).

The difference equation (52) implies that the formula (56) can be rewritten as

(58) X]
i = Xi ·Ψqk(q−2εik

k Xk)Ψqk(Xk)−1.

Using (57) and q−2εik
k = q−2ε̂ik , we get

Ψqk(Xk)XiΨqk(Xk)−1 = XiΨqk(q−2ε̂ikXk)Ψqk(Xk)−1 (58)
= X]

i .

The lemma is proved.
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Let a ≥ 0 be an integer and

Ga(q;X) := Ψq(q
2aX)Ψq(X)−1 =

{∏a
i=1(1 + q2i−1X) a > 0,

1 a = 0.

Let µk := i→ i′ be a mutation. The following lemma follows easily from Lemma 3.4.

L 3.5. – The quantum mutation homomorphism

µqk : Ti′ −→ Ti

is given in the cluster coordinates by the formula

µqk : X ′i 7−→

{
XiFik(q;Xk) if k 6= i

X−1
i if k = i,

Fik(q;X) =

{
G|εik|(qk;X) if εik ≤ 0

G|εik|(qk;X−1)−1 if εik ≥ 0.

In particular, it implies

C 3.6. – Setting q = 1 we recover the X -mutation formulae.

The Poisson structure on X . The quasiclassical limit of the non commutative space Xq is
described by a Poisson structure on the X -space. This Poisson structure in any cluster coor-
dinate system {Xi} is given by the formula {Xi, Xj} = 2ε̂ijXiXj . Lemma 3.3 implies that
it is independent of the choice of coordinate system.

L 3.7. – We have (µqk)2 = Id for quantum mutations.

Proof. – Suppose that εik = a > 0. Then, using (57) and difference equation (52), we
have

AdΨqk (X−1
k

)AdΨqk (Xk)Xi = XiGa(qk;X−1
k )Ga(q−1

k , Xk) = qa
2

k XiX
−a
k .

Being composed with (55), this gives the identity map. The other case is reduced to this one.
The lemma is proved.

P 3.8. – The collection of the quantum tori Ti and the quantum mutation
maps µqk provide a functor Ĝ −→ QPos∗.

The quantum space Xq is understood as this functor.

R. – We expect to have a functor G −→ QPos∗. The problem is that we do not
know the relations in the groupoid G explicitly.

Proof. – We have to check that the composition of maps corresponding to the boundary
of any standard (h + 2)-gon equals to the identity. It can be checked by a calculation. We
present its crucial step as Lemma 3.9 below. The proposition is proved.

R. – Another proof follows from Lemma 2.22 in [9] plus the trick used in the
proof of Proposition 1.8: one embeds the seed i in a bigger seed i′ with det ε′ij 6= 0, and
observes that cluster transformations (16) remain trivial on the classical level after extension
of the seed, so by Lemma 2.22 in [9] they are trivial on the quantum level.
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3.3.3. Examples of quantum relations. – Consider a sequence of mutations at the vertices
i, j, i, j, i, . . . . We picture it by a polygon, whose vertices match the mutations. The seeds are
the sides of the polygon, and the X -coordinates for a given seed i are assigned to the flags
(a vertex of the side, the side). The X -coordinates assigned to the flags sharing a vertex are
opposite to each other. Below we calculate the sequence of the X -coordinates assigned to
the flags oriented the same way, clockwise. They determine the set of all X -coordinates

The X -coordinates on the set of all clockwise oriented flags are obtained from the initial
X -coordinates x1, x2 by the following inductive procedure.

Classical case. – Let F be a field, x1, x2 ∈ F ∗ and b, c are non-negative integers. Consider
the recursion

(59) xm−1xm+1 =

{
(1 + xm)b m: even,

(1 + xm)c m: odd.

According to Chapters 2 and 6 of [FZ1], this sequence is periodic if and only if the Cartan

matrix

(
2 −b
−c 2

)
or its transpose is of finite type, i.e. b = c = 0 or 1 ≤ |bc| ≤ 3. Therefore,

up to a shift xi 7−→ xi+1, there are only four periodic sequences, corresponding to the root
systems A1×A1, A2, B2, G2. The period is h+ 2, where h is the Coxeter number of the root
system.

Quantum case. – Let (εij) =

(
0 −1

c 0

)
. So the commutation relations are q−2cXiXi+1 =

q2cXi+1Xi. We have:

(60) Xm−1Xm+1 =

{
(1 + qcXm) m: even

(1 + qXm) · (1 + q3Xm) · · · (1 + q2c−1Xm) m: odd

Let h be the Coxeter number for the Cartan matrix

(
2 −1

−c 2

)
of finite type, i.e.

c = 0, 1, 2, 3. So h = 2 for c = 0; h = 3 for c = 1; h = 4 for c = 2; and h = 6 for
c = 3.

L 3.9. – For any integer m one has Xm+h+2 = Xm.

Proof. – Compute the elements Xm:

Type A1 ×A1. Then b = c = 0, h = 2 and X3 = X−1
1 , X4 = X−1

2 .

Type A2. Then b = c = 1, h = 3 and

X3 = X−1
1 (1 + qX2), X4 = (X1X2)−1

(
X1 + q(1 + qX2)

)
, X5 = X−1

2 (1 + q−1X1), X6 = X1.

Type B2. Then b = 1, c = 2, h = 4 and

X1X3 = 1 + q2X2, X2
1X2X4 =

(
X1 + q(1 + q6X2)

)(
X1 + q3(1 + q2X2)

)
,

X1X2X5 = q2
(

(1 + q−1X1)(1 + q−3X1) + q2X2

)
, X2X6 = (1 + q−1X1)(1 + q−3X1), X7 = X1.
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Type G2. Then b = 1, c = 3, h = 6 and

X1X3 = 1 + q3X2, X3
1X2X4 =

(
X1 + q(1 + q15X2)

)(
X1 + q3(1 + q9X2)

)(
X1 + q5(1 + q3X2)

)
,

X2
1X2X5 = (1 + q−1X1)3 + (q3X2)2 + (1 + q6)q3X2 + 3q−1X1q

3X2, . . . ,

X2X8 = (1 + q−1X1)(1 + q−3X1)(1 + q−5X1), X9 = X1.

R. – This way we get just the half of all X -coordinates. They are related to the
ones in the example as follows: we get only the X -coordinates assigned to the mutating ver-
tices before the mutations; the initial coordinates are x1 := y−1, x2 := x.

3.4. The quantum Frobenius map

3.4.1. Center of the quantum space when q is not a root of unity. – Let α ∈ KerL[∗, ∗]. Then
the element Xα is in the center of the quantum torus Tqi . The torus HX can be treated as
a commutative quantum positive space, see (32). Recall the character χα of the torus HX
corresponding to α.

L 3.10. – There exists a unique map of quantum positive spaces θq : Xq → HX such
that for any seed we have θ∗qχα = Xα, where α ∈ KerL[∗, ∗].

Proof. – Since the element Xα of the quantum torus TΛ corresponding to a vector
α ∈ KerL[∗, ∗] lies in the center, conjugation by Ψq(Xk) acts on them as the identity. The
lemma follows.

3.4.2. Center of the quantum space when q is a root of unity. – When q is a root of unity, the
quantum space has a much larger center, which we are going to describe now. Let ε̂ij ∈ Z.
For a seed i, denote by {Yi} (respectively {Xi}) the corresponding cluster coordinates on X
(respectively on Xq). If qN = 1 then XN

i are in the center of the quantum torus algebra Ti.

T 3.11. – Let q = ζN be a primitive N -th root of unity. Let us assume that qdk

is a primitive N -th root of unity, and for every seed i the corresponding function εij satisfies
(2εij , N) = 1. Then there exists a map of positive spaces, called the quantum Frobenius map,

FN : Xq −→ X such that F∗N (Yi) := XN
i

in any cluster coordinate system.

Proof. – To check that the quantum Frobenius map commutes with a mutation
µk : i → i′, it is sufficient to check that it commutes with the conjugation by Ψq(Xk).
Here we consider the generic q, and only after the conjugation specializes q to a root of
unity.

Let us assume that εik = −a ≤ 0. Then we have to show that, specializing qk = 1 in

Ψqk(q2aN
k Xk)Ψq(Xk)−1,

we get (1 +XN
k )a. The statement is equivalent to the identity

(61)
N−1∏
b=0

Ga(qk; q2ba
k Xk) = (1 +XN

k )a.
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Notice that qk is a primitiveN -th root of unity and, since (2a,N) = 1, the set {−2ab}, when
b ∈ {1, . . . , N − 1}, consists of all residues modulo N except zero. Thus each factor of the
product

Ga(qk;Xk) =
a∏
i=1

(1 + q2i−1
k Xk)

contributes (1 +XN
k ) thanks to the formula

∏N−1
c=0 (1 + q2i−1+c

k Z) = 1 + ZN .

The argument in the case εik = a > 0 is similar. In fact it can be reduced to the previous
case using (µqk)2 = Id and ε′ik = −εik. The theorem is proved.

E. – a) Let Ŝ be a marked hyperbolic surface. Then the pair of moduli spaces
(X

PGL2,Ŝ
,A

SL2,Ŝ
) has a cluster ensemble structure with εij ∈ {0,±1,±2} ([6], Chapter 10;

[7]). Thus it satisfies the assumptions of the theorem for any odd N .

b) A cluster ensemble of finite type satisfies the assumptions of the theorem for any odd
N in all cases except G2, where the condition is (N, 6) = 1.

R. – Sometimes it makes sense to restrict the functor defining the space Xq to a
subgroupoid Ĝ′ of Ĝ, restricting therefore the set of values of the exchange function. For
example for the pair of moduli spaces (XPGLm,S ,ASLm,S) one may consider only those mu-
tations which were introduced in Chapter 10 of [6] to decompose flips. Then the restricted
cluster function takes values in {0,±1,±2}, dk = 1, and the fundamental group of the re-
stricted groupoid Ĝ′ contains the classical modular group of S. So the quantum Frobenius
map in this case commutes with the action of the classical modular group. If the modular
group Γ is finitely generated, we can always restrict to a subgroupoid Ĝ′ of Ĝ which has the
same fundamental group and a bounded set of values |εij |.

4. Duality and canonical pairings: conjectures

Below we denote by A and A∨ the positive spaces A|i| and A|i∨|, and similarly for the
X -spaces.

In this section we show how to extend to cluster ensembles the philosophy of duality be-
tween the X and A positive spaces developed in [6] in the context of the two moduli spaces
related to a split semisimple group G and a surface S. We suggest that there exist several
types of closely related canonical pairings/maps between the positive spaces X and A∨. An
example provided by the cluster ensemble related to the classical Teichmüller theory was elab-
orated in Chapter 12 of [6]. It was extended to the pair of Teichmüller spaces related to a
surface S with m > 0 distinguished points on the boundary in [7]. In particular, when S
is a disc with m marked points on the boundary, we cover the case of the cluster ensemble
of finite type Am. The canonical map IX for cluster ensembles of an arbitrary finite type is
defined in Section 4.6. Other examples can be obtained using the work [25] on the rank two
finite and affine cluster algebras.

Our main conjectures are Conjecture 4.1 and its quantum version, Conjecture 4.8.

Conjecture 4.3 is a variation on the theme of Conjecture 4.1. We show that, under some
assumptions, the latter can be deduced from the former.
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4.0.3. Background. – Let L be a set. Denote by Z+{L} the abelian semigroup generated
by L. Its elements are expressions

∑
i ni{li} where ni ≥ 0, the sum is finite, and {li} is the

generator corresponding to li ∈ L. Similarly Z{L} is the abelian group generated by L.

Let X be a positive space. Observe that the ring of regular functions on a split torus H is
the ring of Laurent polynomials in characters ofH. Recall (Chapter 1.1 and [6], Section 4.3)
that a universally Laurent polynomial on X is a regular function on one of the coordinate
tori Hα defining X whose restriction to any other coordinate torus Hβ is a regular function
there. L(X ) denotes the ring of all universally Laurent polynomials, and L+(X ) the semiring
of universally positive Laurent polynomials obtained by imposing the positivity condition on
coefficients of universally Laurent polynomials. Let E(X ) be the set of extremal elements,
that is universally positive Laurent polynomials which cannot be decomposed into a sum of
two non zero universally positive Laurent polynomials with positive coefficients.

We use the notation X+ := X (R>0). Recall that for a given seed i, there are canonical
coordinates {Xi} and {Ai} on theX andA spaces. By the very definition, their restrictions to
X+ andA+ are positive, so we have the corresponding logarithmic coordinates xi := logXi

and ai := logAi. The coordinates on the tropicalizationsX (At) andA(At) are also denoted
by xi and ai.

A convex function on a lattice L is a function F (l) such that F (l1 + l2) ≤ F (l1) + F (l2).
LetX be a positive space. A convex function onX (At) orX (Q) is a function which is convex
in each of the coordinate systems from the defining atlas of X .

4.1. Canonical maps in the classical setting

We consider a partial order on monomials Xa =
∏
Xai
i such that Xa ≥ Xb if ai ≥ bi

for all i ∈ I. We say that Xa is the highest term of a Laurent polynomial F if Xa is bigger
(i.e. ≥) than any other monomial in F . Recall the map p : A → X .

C 4.1. – There exist Γ-equivariant isomorphisms of sets

(62) A(Zt) = E(X∨), X (Zt) = E(A∨).

These isomorphisms give rise to Γ-equivariant isomorphisms

(63) IA : Z+{A(Zt)} ∼−→ L+(X∨), IX : Z+{X (Zt)} ∼−→ L+(A∨).

These maps have the following properties:

1. Let (a1, . . . , an) be the coordinates of l ∈ A(Zt). Then the highest term of IA(l) is∏
iX

ai
i .

2. If in a certain cluster coordinate system the coordinates (x1, . . . , xn) of an element
l ∈ X (Zt) are non negative numbers, then

IX (l) =
∏
i∈I

Axii .

3. Let l ∈ A(Zt) and m be a point of A∨. Then

IA(l)(p(m)) = IX (p(l))(m),

where IA(l)(p(m)) means the value of the function IA(l) on p(m)
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4. Extending the coefficients from Z+ to Z, we arrive at isomorphisms

(64) IA : Z{A(Zt)} ∼−→ L(X∨), IX : Z{X (Zt)} ∼−→ L(A∨),

The isomorphisms (62) imply that one should have

(65) I∗(l1)I∗(l2) =
∑
l

c∗(l1, l2; l)I∗(l),

where the coefficients c∗(l1, l2; l) are positive integers and the sum is finite. Here ∗ stands for
either A or X . It follows from part 1 of Conjecture 4.1 and (65) that c∗(l1, l2; l1 + l2) = 1.

In addition, the canonical maps are expected to satisfy the following additional properties.
i) Convexity conjecture. The structural constants c∗(l1, l2; l) can be viewed as maps

cA : A(Zt)3 −→ Z, cX : X (Zt)3 −→ Z.

C 4.2. – In any cluster coordinate system, the supports of the functions cA and
cX are convex polytopes.

ii) Frobenius Conjecture. We conjecture that in every cluster coordinate system {Xi}, for
every prime p one should have the congruence

(66) IA(p · l)(Xi) = IA(l)(Xp
i ) modulo p.

E. – Take an element δi
i ∈ X (Zt) whose coordinates (x1, . . . , xn) in the coordi-

nate system related to a seed i are xj = 0 for j 6= i, xi = 1. Setting IX (δi
i) := Ai

i we get a
universally Laurent polynomial by the Laurent phenomenon theorem of [13]. Its positivity
was conjectured in loc. cit. Therefore the cluster algebra sits inside of the algebra of univer-
sally Laurent polynomials L(A). However the latter can be strictly bigger than the former.

The set of points of a positive space X with values in a semifield is determined by a sin-
gle positive coordinate system on X . Contrary to this, the semiring of universally positive
Laurent polynomials depends on the whole collection of positive coordinate systems on X .
So the source of the canonical map is determined by a single coordinate system of a positive
atlas on the source space, while its image depends on the choice of a positive atlas on the tar-
get space. This shows, for instance, that the set of positive coordinate systems on the target
space cannot be “too big” or “too small”.

C 4.3. – There exist canonical Γ-equivariant pairings between the real tropical
and real positive spaces

(67) IA : A(Rt)×X∨(R>0) −→ R, IX : X (Rt)×A∨(R>0) −→ R,

as well as a canonical Γ-equivariant intersection pairing between the real tropical spaces

(68) I : A(Rt)×X∨(Rt)→ R.

We expect the following properties of these pairings:

1. All the pairings are convex functions in each of the two variables, and in each of the cluster
coordinate systems.

2. All the pairings are homogeneous with respect to the tropical variable(s): for any α > 0

one has I∗(αl,m) = αI∗(l,m), and the same holds for I.
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3. Let l ∈ A(Rt) and m be a point of A∨(R). Then

IA(l, p(m)) = IX (p(l),m).

Similarly, I(l, p(m)) = I(p(l),m).
4. If the coordinates (x1, . . . , xn) of a point l ∈ X (Rt) are positive numbers, and a point
m ∈ A+ has the logarithmic coordinates (a1, . . . , an), then

IX (l,m) =
∑
i∈I

xiai,

and the same holds for I.
5. Letm be a point of eitherX∨(R>0) orA∨(R>0) with logarithmic coordinatesu1, . . . , un.

Let C ∈ R. Denote by C ·m the point with coordinates Cu1, . . . , Cun. Let mL be the
point of either A(Rt) or X (Rt) with the coordinates u1, . . . , un. Then, for both ∗ = A
and ∗ = X ,

(69) lim
C→∞

I∗(l, C ·m)/C = I(l,mL).

6. The intersection pairing (68) restricts to a pairing

(70) I : A(Qt)×X∨(Qt)→ Q.

R. – The convexity property implies that the intersection pairing is continuous.
So an intersection pairing (70) satisfying the convexity property 1 determines the pairing (68).
Similarly convex pairings

(71) IA : A(Qt)×X∨(R>0) −→ R, IX : X (Qt)×A∨(R>0) −→ R

can be uniquely extended to continuous pairings (67).

4.2. Conjecture 4.1 essentially implies Conjecture 4.3

Conjecture 4.1 is an algebraic cousin of Conjecture 4.3. Roughly speaking, it is obtained
by replacing in the pairings (67) the tropical semifield Rt by its integral version Zt, and the
real manifoldsX∨(R>0) andA∨(R>0) by the corresponding cluster varietiesX∨ andA∨. It
is handy to think about these algebraic pairings as of maps from the sets of integral tropical
points to positive regular functions on the corresponding scheme. Observe that the positive
structure of the corresponding schemes has been used to define the positive regular functions
on them.

One can interpret the map I∗ as a pairing I∗(∗, ∗) between laminations and points of the
corresponding space: I∗(l, z) := I∗(l)(z). We are going to show how the canonical pairings
I(∗, ∗) and I∗(∗, ∗) emerge from the one I∗(∗, ∗) in the tropical and scaling limits.

The tropical limit and the intersection pairing I(∗, ∗). LetF (Xi) be a positive integral Lau-
rent polynomial. Let F t(xi), where xi belong to a semifield, be the corresponding tropical
polynomial.

E. – If F (X1, X2) = X2
1 + 3X1X2, then F t(x1, x2) = max{2x1, x1 + x2}.

Observe that one has

(72) lim
C→∞

log(eCx1 + · · ·+ eCxn)

C
= max{x1, . . . , xn}.
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Therefore the Laurent polynomial F and its tropicalization F t are related as follows:

(73) lim
C→∞

logF (eCx1 , . . . , eCxn)

C
= F t(x1, . . . , xn), xi ∈ R.

D 4.4. – Let us assume that we have the canonical maps I∗ from Conjecture 4.1.
Then, for an integral tropical point l of the ∗-space, where ∗ stands for eitherA or X , the func-
tion I∗(l, •) is the tropicalization of the positive integral Laurent polynomial I∗(l):

(74) I∗(l, •) := It∗(l)(•).

Therefore (73) implies that

I∗(l,m) = lim
C→∞

log I∗(l)(eC·m)

C
.

The scaling limit. Observe that the restriction of IA(l) to X∨(R>0), as well as IX (l)

to A∨(R>0), are positive valued functions, so the logarithm log I∗(l) makes sense. Recall
that the group Q∗+ acts by automorphisms of the semiring Qt, and hence acts on the set of
Qt-points of a positive space X . Namely, if l ∈ X (Qt) and C ∈ Q∗+, we denote by C · l the
element obtained by multiplying all coordinates of l by C, in any of the coordinate systems.
Let us define pairings

(75) IA : A(Qt)×X∨(R>0) −→ R, IX : X (Qt)×A∨(R>0) −→ R

by taking the scaling limit, where, as usual, ∗ stands for either X or A.

(76) I∗(l, u) := lim
C→∞

log I∗(C · l)(u)

C
.

C 4.5. – The scaling limit (76) exists for both ∗ = A and ∗ = X .

T 4.6. – Let us assume Conjectures 4.1 and 4.5. Then the pairings I∗(l, u) and
I(l,m) satisfy all conditions of Conjecture 4.3.

Proof. – Definition 4.4 and (76) provide the pairings for integral tropical laminations l.
First of all we have to extend them to rational and real tropical points.

L 4.7. – Under the assumptions of Theorem 4.6, I∗(l, u) enjoys the following
properties:

i) It is homogeneous in l.

ii) It is convex in the l-variable, and it is convex in the u-variable.

Proof. – The property i) is clear. To check ii) for the Teichmüller, u-variable, observe that

I∗(l, ex) · I∗(l, ey) ≥ I∗(l, ex+y).

Indeed, (
∑
aIe

xI )(
∑
aIe

yI ) ≥ (
∑
aIe

xI+yI ) since aI are positive integers. So taking the
logarithm we get a convex function, and a limit of convex functions is convex. Similarly the
property ii) for the tropical, l-variable, follows from I∗(l1)I∗(l2) ≥ I∗(l1 + l2), which is an
immediate corollary of c∗(l1, l2; l1 + l2) = 1 and the property (65) in Conjecture 4.1. The
lemma is proved.
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Using homogeneity in l we extend the pairings to rational tropical points l. Then convex-
ity of the pairings (75) implies that they are continuous in the natural topology on the set of
rational tropical points, and thus can be uniquely extended to real pairings (67). So we get
the pairings I∗ and I defined for any real tropical point l of the corresponding space, which
satisfy Properties 1 and 2. Property 6 is evidently valid. Properties 3 and 4 follow immedi-
ately from Properties 3 and 2 in Conjecture 4.1. Finally, Property 5 follows from the very
definition:

lim
C1,C2→∞

log I∗(C1 · l)(C2 · u)

C1C2
= lim
C1→∞

i∗(C1 · l)(uL)

C1

1.
= I∗(l, uL).

The theorem is proved.

4.3. Quantum canonical map

We define a universally positive Laurent polynomial related to the quantum space Xq as an
element of the (non commutative) fraction field Tqi which for any seed i′ is a Laurent polyno-
mial, with positive integral coefficients, in q and the corresponding quantum X -coordinates
Xi. We denote by L+(Xq) the semiring of universally positive Laurent polynomials on the
quantum space Xq. Dropping the condition of positivity of the coefficients we get the ring of
universally Laurent polynomials L(Xq) on the quantum space Xq.

Let us make a few remarks preceding the conjecture.

1. Given an order on the set I, an element a = (a1, . . . , an) ∈ Zn provides a monomial

(77) Xa := q
−
∑

i<j
ε̂ijaiaj

∏
i

Xai
i .

It is ∗-invariant and does not depend on the choice of ordering of I used to define it (Sec-
tion 3.1).

2. For any positive spaceX and a positive integerN there is a subsetX (NZt) ⊂ X (Zt). It
consists of the points whose coordinates in one, and hence in any positive coordinate system
for X are integers divisible by N . The canonical map of positive spaces p : A → X induces
the map

(78) p : A(Zt)→ X (Zt).

Let us take the inverse image of the subsetX (NZt) under this map, and consider the positive
abelian semigroup it generates. We denote it by ZA(N):

ZA(N) := Z+

{
p−1

(
X (NZt)

)}
.

Observe that α ∈ KerL[∗, ∗] provides an element l(α) ∈ A(Zt) which lies inZA(N) for allN .

3. Recall that for a split torus H the set H(Zt) is the group of cocharacters X∗(H) of H.
In particular it is an abelian group. The canonical isomorphism

X∗(HA) = X∗(HX∨)

allows us to consider an elementα ∈ HA(Zt) as a characterχα of the torusHX∨ . The inverse
image of this character under the projection θ∨q delivers a central element

(79) χ̃qα := (θ∨q )∗χα ∈ Center
(
L+(X∨q )

)
.
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4. The torusHA acts on theA-space. So the abelian groupHA(Zt) acts on the setA(Zt).
We denote this action by ∗. In coordinates it looks as follows. Choose a seed i. Then an
element α ∈ HA(Zt) is given by {α1, . . . , αn} where αi ∈ Z and

∑
j εijαj = 0 for all i ∈ I.

The element {α1, . . . , αn} ∈ HA(Zt) acts on {β1, . . . , βn} ∈ A(Zt) by

{α1, . . . , αn} ∗ {β1, . . . , βn} = {α1 + β1, . . . , α1 + βn}.

5. Let p be a prime, q a primitive p-th root of unity. Then Z[q] is the cyclotomic ring. Let
(1− q) be the ideal generated 1− q. It is the kernel of the surjective map

πp : Z[q] −→ Z/pZ, q 7−→ 1.

For a Z[q]-module M denote by πp(M) the reduction of M modulo the ideal (1 − q). So
πp(M) is an Fp-vector space.

The following conjecture is the main conjecture in our paper.

C 4.8. – There exists a quantum canonical map, that is, a Γ-equivariant iso-
morphism

(80) Îq : Z+{A(Zt)} ∼−→ L+(X∨q )

satisfying the following properties:

1. Î1(l) = IA(l).
2. Let a = (a1, . . . , an) be the coordinates of l ∈ A(Zt) in a cluster coordinate system.

Then the highest term of Îq(l) is Xa = q
−
∑

i<j
ε̂ijaiaj ∏

iX
ai
i .

3. Self-duality: ∗̂Iq(l) = Îq(l).
4. Îq(l1)̂Iq(l2) =

∑
l c
q(l1, l2; l)̂Iq(l), where the cq(l1, l2; l) are Laurent polynomials of q

with positive integral coefficients. Moreover cq(l1, l2; l1 + l2) = 1.
5. The center at roots of unity: Let N be a positive integer and q a primitive N -th root of

unity. Then the map Îq induces an isomorphism

(81) Îq
(
ZA(N)

)
∼−→ Center

(
L+(X∨q )

)
.

6. The quantum Frobenius on L+(X ): Let N ∈ Z>0 and q be a primitive N -th root of
unity. Then the quantum Frobenius map F∗N (see Theorem 3.11) is related to the map Îq

as follows: F∗N IA(l) = Îq(N · l), i.e. in every cluster coordinate system {Xi} one has

(82) F∗N IA(l)(Xi) := IA(l)(XN
i ) = Îq(N · l)(Xi).

7. Let p be a prime, q a primitive p-th root of unity. Then there is a canonical isomorphism

(83) πp

(
L+(Xq)

)
= L+(X )⊗ Z/pZ.

8. The map Îq transforms the action of an element α ∈ HA(Zt) on A(Zt) to the multipli-
cation by the corresponding central element χ̃qα, given by (79):

(84) Îq({α ∗ β}) = χ̃qα · Îq({β}).

9. Restricting the scalars from Z+ to Z we get an isomorphism Îq : Z{A(Zt)} ∼−→ L(X∨q ).
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R. – 1. The map F∗N was defined only for those N which satisfy the condition
formulated in Theorem 3.11. Formula (82) suggests a definition of the quantum Frobenius
map F∗N on the algebra L(X ) for all N . Indeed, the first equality in (82) serves as a defini-
tion of F∗N in a given cluster coordinate system {Xi}, and the second would imply that it is
independent of the choice of the coordinate system.

2. The isomorphism (83) plus (82) obviously imply Frobenius Conjecture (66).

3. The property (84) in the coordinate form looks as follows: assuming
∑
j εijαj = 0,

Îq({α1 + β1, . . . , αn + βn}) = q
−
∑

i<j
ε̂ijαiαj

∏
i

Xαi
i · Î

q({β1, . . . , βn}).

Property (84) cannot even be stated if we skip the Langlands dual (defined at the end of Sec-
tion 1.2) in (80), replacing X∨q by Xq. Indeed, there is no canonical isomorphism between
X∗(HA) and X∗(HX ).

4.4. An example: the map IA for the cluster ensemble of type A2

Let εij =

(
0 1

−1 0

)
. Then the cluster modular group is Z/5Z. Its generator acts on the

X -space by

(X,Y ) 7→ (Y (1 +X−1)−1, X−1),

and on the tropical A-space and by (a, b) 7→ (b,max(b, 0) − a). The canonical map IA is
given by:

IA(a, b) =



XaY b for a ≤ 0 and b ≥ 0(
1+X
XY

)−b
Xa for a ≤ 0 and b ≤ 0(

1+X+XY
Y

)a ( 1+X
XY

)−b
for a ≥ 0 and b ≤ 0

((1 + Y )X)b
(

1+X+XY
Y

)a−b
for a ≥ b ≥ 0

Y b−a((1 + Y )X)a for b ≥ a ≥ 0.

Or equivalently

IA(a, b) =



XaY b for a ≤ 0 and b ≥ 0

XaY b(1 +X−1)−b for a ≤ 0 and b ≤ 0

XaY b(1 +X−1)−b(1 + Y −1 +X−1Y −1)a for a ≥ 0 and b ≤ 0

XaY b(1 + Y −1)b(1 + Y −1 +X−1Y −1)a−b for a ≥ b ≥ 0

XaY b(1 + Y −1)a for b ≥ a ≥ 0.

One can easily verify, that the formulae agree on the overlapping domains of values of a and b.
For a more elaborate and geometric discussion of this example, see [20].

R. – By freezing some of the variables of a cluster ensemble, we prohibit muta-
tions in the direction of these variables, and therefore change the spaces of universally posi-
tive Laurent polynomials for the correspondingA andX spaces. However we do not change
the sets of the points of these spaces with values in any semifield. So by freezing some of the
variables we do not change the source of a canonical map, we do change its target.
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5. Canonical pairings in the finite type case

5.1. The canonical pairing between the tropical spaces

Given a seed i, let us consider the following function (8) Pi on A(Rt)×X (Rt):

(85) Pi :=
∑
i∈I

diaixi.

For a finite type cluster ensemble (A,X ) we define a version I ′ of the canonical pairing be-
tween the tropical spaces by maximizing this function over the (finite) set of all seeds:

(86) I ′ : A(Rt)×X (Rt) −→ R, I ′(a, x) := max{seeds i}
∑
i

diaixi.

In the duality conjectures, however, we are looking for a canonical pairing involving the trop-
ical points of the Langlands dual cluster X -variety X∨:

(87) I : A(Rt)×X∨(Rt) −→ R.

This apparent contradiction is resolved by the following lemma.

L 5.1. – Let x = {xi} ∈ X (Zt). Then the coordinates {dixi} behave under the
mutations in the tropical space X (Zt) just like the coordinates of a point δ(x) of the Langlands
dual tropical space X∨(Zt). So there is a canonical Γ-equivariant inclusion

δ : X (Zt) ↪→ X∨(Zt),

given in any cluster coordinate system by {xi} 7−→ {dixi}. The map δ is an isomorphism for
rational or real tropical points.

Proof. – The tropical mutation formulae are

x]i = xi − [εik]+max(0, xk), x′i =

{
−xk if i = k,

xi + [εik]+xk if i 6= k.

So we get the claim by changing xj 7−→ djxj and using positivity of dk as well as the formula
(19).

Lemma 5.1 tells that the pairing I ′ determines the restriction of the canonical pairing (87)
to the subset δ(X (Zt)) of points of X∨(Zt) with the coordinates {dixi}. Let us check now
that the canonical pairing I(a, δ(x)) defined this way satisfies the crucial part 4) of Conjec-
ture 4.3.

The latter tells that if y ∈ X∨(Zt) has non-negative coordinates {yi} in a cluster coordi-
nate system, then one should have I(a, y) =

∑
i aiyi. Theorem 5.2 guarantees that this is the

case for the points y of δ(X (Zt)). Indeed, if y = δ(x) then yi = dixi, so I(a, y) =
∑
i diaixi.

T 5.2. – Suppose that (A,X ) is a finite type cluster ensemble. Then, for any
(a, x) ∈ A(Rt) × X (Rt), there exists a seed i at which the maximum in (85) is attained, such
that all coordinates xi of x at i are non-negative.

(8) We will see below that it is the tropicalization of the more fundamental element (90).
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Proof. – Let us investigate how the function Pi behaves under mutations. Let {ai} be the
coordinates of a ∈ A(Rt). Set

(88) ϕk(a) := (p∗xk)(a) =
∑
j

εkjaj .

P 5.3. – Given a mutation µk : i→ i′, we have

(Pi′ − Pi)(a, x) =

{
dk|xk|ϕk(a) if xkϕk(a) < 0,

0 otherwise.

This implies the following:

a) If xk = 0, the mutation at the vertex k does not change the function Pi.

b) If xk > 0, the mutation at the vertex k strictly decreases the function Pi if ϕk(a) < 0,
and does not change it otherwise.

c) If xk < 0, the mutation at the vertex k strictly increases the function Pi if ϕk(a) > 0, and
does not change it otherwise.

We show in Section 6.1 that this is an easy consequence of Basic Lemma 6.1.

L 5.4. – Let X be an arbitrary cluster X -variety. Let i0 → i1 → · · · → in → i0 be
a sequence of mutations. Denote by ks the direction of the mutation is → is+1.

Let us assume that there exists a tropical point x ∈ X (Rt) such that for every s = 0, . . . , n

the xks -coordinate of the point x for the seed is is negative. Then the sequence is trivial, i.e.
n = 0.

Proof. – Take a point a ∈ A(Rt) with ϕk0(a) > 0. Then, by Proposition 5.3, after the
cluster transformation i0 → i1 → · · · → in → i0 the sum

∑
diaixi will strictly increase.

This contradiction proves the lemma.

Take a point (a, x) ∈ A(Rt)× X (Rt). Take a seed i which realizes the maximum of sum
(85) evaluated at this point. If all coordinates xi of x in this seed are non-negative, we are
done. If not, there exists a vertex k such that xk < 0. Let us perform a mutation at k. If the
new coordinate system is non-negative for x, we are done. If not, we perform a mutation at
a vertex k′ such that xk′ < 0, and so on. Since X is of finite type, after a finite number of
mutations we get to a certain coordinate system for the second time. This contradicts Lemma
5.4, and thus proves the theorem.

C 5.5. – Let X be a finite type cluster X -variety. Then for every x ∈ X (Rt)
there exists a cluster coordinate system such that the coordinates xi of the point x are non-
negative.
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5.1.1. The positive part of a tropical space. – Given a positive spaceX , the set of the points of
the tropical space X (Rt) which have non-negative coordinates in a given coordinate system
is a convex cone. We call it the positive cone assigned to the coordinate system. The union of
the positive cones forms the positive part X (Rt)+ of X (Rt).

D 5.6. – A positive space X is of definite (semi-definite, indefinite) type if the
subset X (Rt)+ is equal to (respectively dense in, not dense in) X (Rt).

Corollary 5.5 tells that a finite type cluster X -variety is of definite type.

C 5.7. – A cluster X -variety is of finite type if and only if it is of definite type.

E. – 1. Let S be a surface with holes and marked points on the boundary. De-
note by h the number of holes without marked points on its boundary. There is an action
of the group (Z/2Z)h by birational automorphisms of the moduli space XPGL2,S , see [6]. It
acts by cluster transformations if and only if h > 1. Therefore, by Theorem 12.2 in loc. cit.,
the cluster atlas on XPGL2,S is of semi-definite type if and only if h > 1.

However even if h = 1, the group Z/2Z acts by positive transformations which leave in-
variant the semiring L+(XPGL2,S) of positive regular functions. Therefore it is natural to
extend the cluster atlas on XPGL2,S by adding the images of the cluster coordinate systems
by the action of the group Z/2Z. We call the obtained positive atlas the extended cluster atlas.
The moduli space XPGL2,S is of semi-definite type for this atlas.

2. The canonical pairing I for the cluster ensemble (ASL2,S ,XPGL2,S) coincides with the
intersection pairing between the A- and X -laminations defined in Section 12 of loc. cit..

In Section 5.2 we show that for a finite type clusterX -variety the positive cones give a finite
decomposition of the space X (Rt). It is dual to the generalized associahedron. Combining
this with the Laurent Phenomenon Theorem [13] we construct the canonical map IX in the
finite type case. Its tropicalization provides the canonical pairing (86).

5.2. The canonical map IX

Any subset of vertices of a seed i provides us with a subseed j ⊂ i. Mutating the seed i at a
vertex of j we get a new seed with a subseed canonically identified with j. So we can mutate
at its vertices, and so on. The collection of seeds obtained this way is called the set of seeds
j-equivalent to a seed i. We use the notation i1 ∼j i2 for j-equivalent seeds.

Let l ∈ X (Zt). Let i be a non-negative seed for l, i.e. the x-coordinates of l in this seed
are non-negative. Let j(l) be the subseed of i determined by the zero x-coordinates of l, i.e.
by the set of coordinates xi such that xi(l) = 0. We call it the zero subseed for l.

T 5.8. – Let X be a finite type cluster X -variety, and l ∈ X (Zt). Let i be a non-
negative seed for l, and j(l) ⊂ i the zero subseed for l. Let i′ be another non-negative seed for l.
Then the seeds i and i′ are j(l)-equivalent.
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Proof. – Choose a cluster transformation c connecting the seeds i and i′. Among the
sequences of mutations realizing c, choose the subset of sequences maximizing the minimal
value ofPs(l), and in this subset choose a sequence where this minimum is attained a minimal
number of times. Due to the finite type assumption, the number of possible values is finite,
so such a subset exists. Our goal is to show that for any such a sequence the x-coordinates
of all mutating vertices are zero. Let i = s0, s1, . . . , sg = i′ be our sequence of seeds

Consider the first seed sr where the minimum of Psr (l) is attained for the first time. Sup-
pose that we come to this seed by a mutation µj at the vertex j and leave it by a mutaion µi
at the vertex i. Recall that if the pair (i, j) generates the standard (h+2)-gon, i.e. (16) holds,
then the cluster transformation µjµi equals the one given by a sequence µiµj . . . of length h,
where h + 2 is the period of the sequence µjµi . . . , times σij in the A2 case. We shall show
that if we replace the subsequence of mutations µiµj in our cluster transformation by the se-
quence µjµi . . . of length h, then in the new sequence either the minimum of Psi(l) will be
bigger or it will be attained a smaller number of times, contradicting our assumption.

To show this it is sufficient to prove the following

L 5.9. – For the exchange functions εij corresponding to Dynkin diagrams
A1 × A1, A2, B2, G2, the values Ps(l), Pµjs(l), Pµiµjs(l), . . . change growth to decay only
once per period.

To prove this we will show that in this sequence the x-coordinates at the mutated vertices
change their signs only once per period, and then use Proposition 5.3.

The claim we have to prove is an immediate corollary of the following observation. Recall
the mutations µ (typesA2 andA1×A1) or µ± (typesB2 andG2). Consider the action of the
sequence of cluster transformations µ, µ2, µ3, . . . or, respectively, µ±, µ∓µ±, µ±µ∓µ±, . . .
on the tropical plane (x1, x2). The sequence of x1-coordinates of the points on the orbit
of a point is the set we were looking for. Now Lemmas 2.17, 2.19 and 2.20 imply that the
x1-coordinate changes the sign just once per period. The theorem is proved.

By the Laurent Phenomenon Theorem [13], IX (l) is a universally Laurent polynomial.

C 5.10. – Theorem 5.8 is valid for an arbitrary cluster X -variety.

Theorems 5.2 and 5.8 tell that the spaceX (Rt) has a canonical decomposition into cones.
The cones are parametrised by the cluster X -coordinate systems. Namely, such a cone is
given by the set of all points with non-negative coordinates in a given cluster coordinate sys-
tem.

P 5.11. – The decomposition of X (Rt) is dual to the generalized associahe-
dron.

Proof. – Follows immediately from the combinatorial description of the (n − k)-di-
mensional faces of the cones implied by Theorem 5.8: the cones are parametrised by the
j-equivalence classes of seeds, where |j| = k. Furthermore, the subcones of a given cone are
parametrised by the subseeds j′ squeezed between j and i.

C 5.12. – In any cluster coordinate system the decomposition ofX (Rt) is a de-
composition into convex cones.
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5.2.1. Construction of the canonical map IX for finite type cluster ensembles. – It is provided
by Theorems 5.2 and 5.8 as follows. Given l ∈ X (Zt), Theorem 5.2 tells that there exists a
seed i such that all coordinates (x1, . . . , xn) of l for this seed are non-negative. Set

(89) IX (l) := Ax1
1 · · ·Axnn

where (A1, . . . , An) are theA-coordinates for the Langlands dual seed i∨. Such a seed i may
not be unique. However Theorem 5.8 guaranties that expression (89) does not depend on
the choice of i. Indeed, it tells that any other seed i′ is j(l)-equivalent to i, and hence the
expression (89) for i′ is the same as for i. So IX (l) is well defined.

6. Motivic avatar of the form Ω on the A-space and the dilogarithm

Given a seed i, we introduce a Casimir element Pi. It does depend on the choice of a seed i.
Basic Lemma 6.1 provides a transformation formula for the element Pi. Its applications in-
clude a proof of Proposition 5.3 as well as the key properties of the motivic dilogarithm class
introduced in Section 6.4.

6.1. The basic lemma

Given a seed i, the seed cluster toriAi and Xi are dual to each other. Recall the clusterA-
and X -coordinates {Ai} and {Xi} related to the seed i. The set of characters {Xdi

i } of the
torus Xi is dual to the basis of characters {Ai} of the torus Ai, see (4). So there is a natural
Casimir element

(90) Pi :=
∑
i∈I

di ·Ai ⊗Xi ∈ Q(A)∗ ⊗Q(X )∗.

Here Q(A)∗ is the multiplicative group of the field of rational functions on A, similarly
Q(X )∗. We denote by d · ∗ the multiplication of an element ∗ of the tensor product by an
integer d.

Let us investigate how the Casimir element Pi changes under a mutation µk : i −→ i′.
Denote by {A′i} and {X ′i} the cluster coordinates related to the seed i′. Recall the notation

p∗Xk =
∏
j∈I

A
εkj
j =

A+
k

A−k
∈ Q(A)∗.

L 6.1. – Given a mutation µk : i −→ i′ at the vertex k, one has

Pi′ −Pi = dk

(
p∗Xk ⊗ (1 +Xk)− (1 + p∗Xk)⊗Xk

)
.
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Proof. – We decompose the mutation µk into the composition µk = µ′k ◦ µ
]
k (Section

2.1). The map µ′k clearly preserves the element Pi. Let us calculate the effect of the auto-
morphism µ]k. We have∑

i

di ·A′i ⊗X ′i −
∑
i

di ·Ai ⊗Xi

(26)−(27)
=

∑
i

di ·Ai ⊗Xi(1 +Xk)−εik + (1 + p∗Xk)−1 ⊗Xk −
∑
i

di ·Ai ⊗Xi

=
∑
i

di ·Ai ⊗ (1 +Xk)−εik − dk · (1 + p∗Xk)⊗Xk

=
∑
i

−diεik ·Ai ⊗ (1 +Xk)− dk · (1 + p∗Xk)⊗Xk.

Notice that −diεik = −εik = εki = dkεki. So the first term is equal to∑
i

dkεki ·Ai ⊗ (1 +Xk) = dk · p∗Xk ⊗ (1 +Xk).

The basic lemma is proved.

Proof of Proposition 5.3. – Notice that Pi is nothing else but the tropicalization of the el-
ement Pi. Furthermore, max(0, x) = [x]+. So the basic lemma implies

(Pi′ − Pi)(a, x) = dk

(
ϕ∗k(a) [xk]+ − [ϕ∗k(a)]+ xk

)
.

If xk > 0, we get

(Pi′ − Pi)(a, x) = dkxk

(
ϕ∗k(a)− [ϕ∗k(a)]+

)
=

{
0 if ϕ∗k(a) ≥ 0

dkxkϕ
∗
k(a) < 0 if ϕ∗k(a) < 0.

If xk < 0, we get

(Pi′ − Pi)(a, x) = −dkxk[ϕ∗k(a)]+ =

{
−dkxkϕ∗k(a) > 0 if ϕ∗k(a) > 0

0 if ϕ∗k(a) ≤ 0.

The proposition is proved.

6.2. The group K2, the Bloch complex and the dilogarithm

6.2.1. The Milnor group K2 of a field. – Let A be an abelian group. Recall that Λ2A is the
quotient of ⊗2A modulo the subgroup generated by the elements a⊗ b+ b⊗ a. We denote
by a ∧ b the projection of a⊗ b to the quotient.

Let F be an arbitrary field. The Milnor group K2(F ) is an abelian group given as the
quotient of the groupF ∗⊗F ∗ by the subgroup generated by the Steinberg relations (1−x)⊗x
where x ∈ F ∗ − {1}. The image of the generator x ⊗ y in F ∗ ⊗ F ∗ is denoted by {x, y}. It
is well known [23] that the Steinberg relations imply that {x, y} = −{y, x}. So one has

(91) K2(F ) =

∧2 F ∗

Steinberg relations
.
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6.2.2. A regulator map onK2. – LetX be a smooth algebraic variety. Denote by Ω2
log(X) the

space of 2-forms with logarithmic singularities on X. Denote by Q(X) the field of rational
functions on X. One has d log∧d log((1− f) ∧ f) = 0. So there is a group homomorphism

d log∧d log : K2(Q(X)) −→ Ω2
log(X), f ∧ g 7−→ d log(f) ∧ d log(g).

6.2.3. The Bloch complex. – It is clear from (91) that the Milnor groupK2(F ) is the cokernel
of the map

δ : Z[F ∗ − {1}] −→
∧2

F ∗, {x} 7−→ (1− x) ∧ x,
where {x} is the generator of Z[F ∗ − {1}] corresponding to x ∈ F ∗ − {1}.

It turns out that one can describe nicely some elements in the kernel of this map
parametrised by connected varieties of dimension bigger than zero. Namely, let r(∗, ∗, ∗, ∗)
be the cross-ratio of four points on P1, normalized by r(∞, 0, 1, x) = x. Let R2(F ) be the
subgroup of Z[F ∗ − {1}] generated by the following elements (the “five term relations”):

5∑
i=1

(−1)i{r(x1, . . . , x̂i, . . . , x5)}, xi ∈ P 1(F ), xi 6= xj .

Then one can check that δ(R2(F )) = 0 (see [19] for a conceptual proof). Let us set

B2(F ) :=
Z[F ∗ − {1}]
R2(F )

.

Then the map δ gives rise to a homomorphism of F :

δ : B2(F ) −→
∧2

F ∗.

We view it as a complex, called the Bloch complex. Let {x}2 be the projection of {x} to
B2(F ). It is handy to add the elements {0}2, {1}2, {∞}2 and put δ{0}2 = δ{1}2 = δ{∞}2 = 0.

Recall that K1(F ) = F ∗. The product in Quillen’s K-theory provides a map

K1(F )⊗K1(F )⊗K1(F ) −→ K3(F ).

The cokernel of this map is the indecomposable part K ind
3 (F ) of K3(F ). By Suslin’s theorem

[26] there is an isomorphism

(92) Ker
(
B2(F )

δ−→
∧2

F ∗
)
⊗Q ∼

= K ind
3 (F )⊗Q.

6.2.4. The dilogarithm. – Recall the classical dilogarithm function

Li2(z) := −
∫ z

0

log(1− t)d log t.

The single-valued cousin of the dilogarithm, the Bloch-Wigner function

L2(z) := Im
(

Li2(z) + arg(1− z) log |z|
)

satisfies the Abel five term functional equation
4∑
i=0

(−1)iL2(r(x0, . . . , x̂i, . . . , x4)) = 0.

Equivalently, it provides a group homomorphism

L2 : B2(C)→ R,
∑

ni{z}2 7−→
∑

niL2(zi).
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6.3. The W– class in K2

Recall that a seed i provides cluster coordinates {Ai} on A. Set

(93) Wi :=
∑
i,j∈I

ε̃ij ·Ai ∧Aj ∈
∧2

Q(A)∗, ε̃ij := diεij .

Let us consider a map

π : A −→ X ×A

given as a composition

A ↪→ A×A p⊗Id−→ X ×A.

Here the first map is the diagonal map, and the second is the map p on the first factor.

L 6.2. – The element Wi is the projection of π∗Pi to
∧2 Q(A)∗.

Proof. – One can write the element Wi as follows:

(94) Wi =
∑
i∈I

di ·Ai ∧ p∗Xi.

Indeed, ∑
i,j∈I

ε̃ij ·Ai ∧Aj =
∑
i,j∈I

di ·Ai ∧A
εij
j =

∑
i∈I

di ·Ai ∧ p∗Xi.

The lemma follows immediately from this.

P 6.3. – Let µk : i→ i′ be a mutation. Then one has

µ∗kWi′ −Wi = −2dk · p∗
(

(1 +Xk) ∧Xk

)
= −2dk · δ{−p∗Xk}2.

Proof. – Follows from Basic Lemma 6.1 and Lemma 6.2.

C 6.4. – The element

W =
∑
i,j∈I

ε̃ij · {Ai, Aj} ∈ K2(Q(A))

does not depend on the choice of the cluster coordinate system {Ai}.

Proof. – Observe that 2·(1+x)∧x = 2·(1−(−x))∧(−x) is twice a Steinberg relation.

C 6.5. – The 2–form

Ω =
∑
i,j∈I

ε̃ij · d logAi ∧ d logAj

does not depend on the choice of cluster coordinates {Ai}.

L 6.6. – The element W is lifted from U , i.e. one has W ∈ p∗
∧2 Q(U)∗.
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Proof. – This is equivalent to the following. Let {bj} be a set of integers such that∑
j εijbj = 0. Then replacing Ai by λbiAi we do not change the class Wi. Let us check this

claim. We have, using the skew symmetry of εij :∑
i,j∈I

ε̃ij · (λbiAi) ∧ (λbjAj)−
∑
i,j∈I

ε̃ij ·Ai ∧Aj = 2
∑
i∈I

∑
j∈I

ε̃ijbj ·Ai ∧ λ = 0.

The last equality follows from the condition
∑
j

ε̃ijbj = 0, which is equivalent to
∑
j

εijbj = 0.

The lemma is proved.

A cluster coordinateAk provides a valuation vAk of the field Q(A) given by vAk(Aj) = δjk.

L 6.7. – The element W has zero tame symbol with respect to the valuation vAk .

Proof. – The tame symbol for the valuation vAk is equal to∏
j∈I

A
ε̃kj
j =

(∏
j∈I

A
εkj
j

)dk
= p∗Xdk

k .

One has 1 +Xk = (A+
k + A−k )/A−k = AkA

′
k/A

−
k . Thus 1 +Xk = 0 if Ak = 0. The lemma is

proved.

R. – Over local fields. The K2-class W has the following amusing applica-
tion. Let F be a local field. Let µF be the group of roots of unity contained in F . Let
α : K2(F ) −→ µF be the norm residue symbol ([Mi], ch. 15). It is a (weakly) continuous
function on F × F ([Mi], ch. 16). Clearly there is a restriction i∗xW ∈ K2(F ) of W to any
F -point x of the union of the cluster tori. So we get a continuous function

hF : A(F ) −→ µF ; x ∈ A(F ) 7−→ α(i∗xW ) ∈ µF .

If F = R, we get a continuous function hR : A(R) −→ Z/2Z. Its value on A(R>0) is +1.

L 6.8. – The action of the torusHA on the spaceA preserves the classW inK2. The
orbits of this action coincide with the null-foliation of the 2-form Ω.

Proof. – Follows from the very definitions and Lemma 1.5.

C 6.9. – The symplectic structure on the positive space U provided by the form
Ω on the space A coincides with the symplectic structure induced by the Poisson structure on
the space X .

Proof. – This is an immediate consequence of Lemma 1.5, Proposition 2.9, and
Lemma 6.8.

A degenerate symplectic structure on the space of real tropical A-space. Let {ai} be the
coordinates corresponding to a seed i. Consider the 2-form ω :=

∑
i,j∈I ε̃ijdai ∧ daj on the

spaceA(Rt). Since mutations are given by piece-wise linear transformations, it makes sense
to ask whether this form is invariant under mutations. The following easy lemma follows
from Proposition 6.3.

L 6.10. – The form ω does not depend on the choice of a cluster coordinate system.
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So the 2-form ω provides the real tropical spaceA(Rt) with a degenerate symplectic struc-
ture invariant under the modular group.

6.4. The motivic dilogarithm class

6.4.1. The weight two motivic complexes. – Let X(k) be the set of all codimension k irre-
ducible subvarieties of X. Recall the tame symbol map

(95) Res :
∧2

Q(X)∗ −→
∏

Y ∈X(1)

Q(Y )∗; f ∧ g 7−→ RestY

(
fvY (g)/gvY (f)

)
where vY (f) is the order of zero of a rational function f at the generic point of an irreducible
divisor Y , and RestY denotes restriction to Y . The weight two motivic complex Γ(X; 2) of
a regular irreducible variety X with the field of functions Q(X) is the following complex of
abelian groups:

(96) Γ(X; 2) := B2(Q(X))
δ−→
∧2

Q(X)∗
Res−→

∏
Y ∈X(1)

Q(Y )∗
div−→

∏
Y ∈X(2)

Z

where the first group is in degree 1 and Res is the tame symbol map (95). If Y ∈ X(1) is
normal, the last map is given by the divisor div(f) of f . If Y is not normal, we take its nor-
malization ‹Y , compute div(f) on ‹Y , and then push it down to Y . The rational cohomology
of this complex of groups is the weight two motivic cohomology of the scheme X:

Hi(X,QM(2)) := HiΓ(X; 2)⊗Q.

The complex (96) is a complex of global sections of a complex of acyclic sheaves in the Zariski
topology. We denote this complex of sheaves by Γ(2).

6.4.2. Background on equivariant cohomology. – Let P be an oriented polyhedron, possibly
infinite. We denote by V (P ) the set of its vertices. Suppose that we have a covering U = {Uv}
of a schemeX by Zariski open subsets, parametrized by the set V (P ) of vertices v ofP . Then
for every face F of P there is a Zariski open subset UF := ∩v∈V (F )Uv. For every inclusion
F1 ↪→ F2 of faces of P there is an embedding jF1,F2

: UF1
↪→ UF2

. In particular there
is an embedding jF : UF ↪→ X. So we get a diagram of schemes {UF }, whose objects are
parametrized by the faces of P , and arrows correspond to codimension one inclusions of the
faces.

Given a complex of sheaves F• on X, the diagram {UF } provides a bicomplex F•,•U,P de-

fined as follows. For any integer k ≥ 0, letF•,kU,P be the following direct sum of the complexes
of sheaves:

F•,kU,P := ⊕F :codimF=k jF ∗jF
∗F•.

The second differential d2 : F•,kU,P −→ F
•,k+1
U,P is a sum of restriction morphisms j∗F1,F2

where
codim F1 = k and codimF2 = k + 1 with the signs reflecting the orientations of the faces
of F .

Assume that a group Γ acts on X, and it acts freely on a contractible polyhedron P , pre-
serving its polyhedral structure. Moreover, we assume that for any γ ∈ Γ and any face F
of P one has γ(UF ) = Uγ(F ). Finally, let us assume that F• is a Γ-equivariant complex of
sheaves on X. Then the group Γ acts freely on the bicomplex F•,•U,P . If the sheaves j∗UFF

i
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are acyclic – this will be the case below – then the Γ-equivariant hypercohomology ofX with
coefficients in F• are computed as follows:

(97) H∗Γ(X,F•) = H∗
Ä
Tot(F•,•U,P )Γ

ä
.

Here the right hand side has the following meaning: we take the total complex of the bi-
complex F•,•U,P , take its subcomplex of Γ-invariants and compute its cohomology. Formula
(97) holds modulo N -torsion if the group Γ acts on P with finite stabilisers, whose orders
divide N .

6.4.3. The motivic dilogarithm class. – The special cluster modular group Γ̂ acts on U . Let
us apply the above construction in the case when X = U and the cover U is given by (the
images of) the cluster tori:

D 6.11. – The second integral weight two Γ̂-equivariant motivic cohomology
group of U , denoted H2

Γ̂
(U ,ZM(2)), is obtained by the construction of Section 5.4 in the

following situation:
1. The scheme X is U .
2. The group Γ is the special cluster modular group Γ̂.
3. The polyhedral complex P is the modular complex M̂ to which we glue cells of dimen-

sion ≥ 3 to make it contractible.
4. The complex of sheaves F• is the complex of sheaves Γ(2) on U .

R. – i) One easily sees from the construction that the groupH2

Γ̂
(U ,ZM(2)) does

not depend on the choice of the cells of dimension ≥ 3 glued to the universal cover on M .
ii) One cannot define theHi

Γ̂
(U ,ZM(2)) for i < 2 in a similar way using the complex (96),

since it computes only the rational, but not the integral motivic cohomology in the degree 1.

T 6.12. – There is a class W ∈ H2

Γ̂
(U ,ZM(2)).

Proof. – A construction of a cocycle representing a cohomology class on the right boils
down to the following procedure.

i) For each seed i exhibit a class W ∈
∧2 Q(U)∗ such that for every irreducible divisor D

in U the tame symbol of Wi at D vanishes.
ii) To any mutation i→ i′ in M̂ find an element

(98) βi→i′ ∈ B2(Q(U)) such that δ
(
βi→i′

)
= Wi −Wi′ .

iii) Prove that for any 2-dimensional cell of M̂ the sum of the elements (98) assigned to
the oriented edges of the boundary of this cell is zero.

Recall the element Wi ∈
∧2 Q(U)∗ assigned to a seed i, see (93). For a mutation

µk : i→ i′ set
βi→i′ := −2dk · {−Xk}2 ∈ B2(Q(U)).

Then Proposition 6.3 is equivalent to (98). The 2-cells in M̂ are the standard (h + 2)-gons.
Therefore we have to check the statement only for the cluster transformations (16), which
are given by an (h+ 2)-fold composition of the recursion (59). Therefore iii) reduces to the
following
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L 6.13. – Let us define elementsxi of a fieldF by recursion (59). Then if the sequence
{xi} is periodic with the period h+ 2, one has

(99)
h+2∑
i=1

di{−xi}2 = 0 in B2(F )⊗Q, di =

{
b for i even,

c for i odd.

Proof. – Suppose that we have rational functions fi such that
∑

(1− fi) ∧ fi = 0. Then
(see [19]) if there is a point a ∈ F such that

∑
{fi(a)}2 = 0, then

∑
{fi(x)}2 = 0 for any

x ∈ F .

Formula (99) in the case A2 is equivalent to the famous five term relation for the diloga-
rithm. In the case A1 × A1 it is the well known inversion relation 2({x}2 + {x−1}2) = 0 in
the group B2(F ). It is easy to check using the recursion (59) that δ

∑h+2
i=1 di{−xi}2 = 0 in∧2 F ∗. (Modulo 2-torsion this follows from Proposition 6.3.) Specializing x1 = −1 in the

G2 case we get

3{1}2 + {−x2}2 + 3{1 + x2}2 + {x2
2}2 + 3{1− x2}2 + {x2}2 + 3{1}2 + {0}2.

Specializing further x2 = 0 we get 12{1}2 + 4{0}2 = 0. The B2 case is similar. The lemma
and hence the theorem are proved.

E. – The lemma asserts that the element on the left of (99) can be presented as
linear combinations of the five term relations. Write them down in the B2 and G2 cases.

C 6.14. – Let us define elements xi ∈ C by recursion (59). Then one has

(100)
h+2∑
i=1

diL2(−xi) = 0.

Proof. – Follows from Lemma 6.13 and and the five-term functional equation for the
dilogarithm.

C 6.15. – A path α : i → j in Ĝ provides an element βα ∈ B2(C) such that
δ(βα) = Wi −Wj.

Proof. – Decomposing the path α as a composition of mutations i = i1 → i2 → · · · →
in = j, set

βα :=
n−1∑
i=1

βii→ii+1 ∈ B2(C).

The relations in the groupoid Ĝ are generated by the ones corresponding to the standard
(h + 2)-gons. Thus Lemma 6.13 implies that this element does not depend on the choice
of a decomposition. It evidently satisfies formula (98). The corollary is proved.
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6.5. Invariant points of the modular group and K ind
3 (Q)

Let g be an element of the group Γ̂. It acts by an automorphism of the schemeU . It follows
that any stable point of g is defined over Q: it is determined by a set of equations with rational
coefficients. Let p ∈ U(Q) be a stable point of g. The element g can be presented by a loop
α(g) based at v.

P 6.16. – Let p ∈ U(Q) be a stable point of an element g ∈ Γ̂. Then there is
an invariant

βg,p := βα(g) ∈ K ind
3 (Q)⊗Q.

Proof. – Since p ∈ U , the element Wi can be evaluated at p. Corollary 6.15, applied to
the loop α(g) based at v, implies δβg,p = Wi(p) − Wi(p) = 0. So βα(g) ∈ H1(B(Q; 2)).
Using (92) we get an element in K ind

3 (Q)⊗Q.

Here is how we compute the invariant βg,p. Let us present g as a composition of muta-
tions: g = γ1 · · · γn. Each mutation γ determines the corresponding rational function Xγ

on U . Then

βg,p =
n∑
i=1

2dγ{Xγi(p)}2.

Here dγ is the multiplier assigned to the cluster coordinate Xγ . A similar procedure can be
applied to any stable point p ∈ U of g, assuming that the functionsXγi can be evaluated at p.

R. – According to Borel’s theorem, the rank of K ind
3 (F ) for a number field F

equals to the number r2(F ) of embeddings F ⊂ C up to complex conjugation.
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