175 research outputs found

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Visual Servoing

    Get PDF
    The goal of this book is to introduce the visional application by excellent researchers in the world currently and offer the knowledge that can also be applied to another field widely. This book collects the main studies about machine vision currently in the world, and has a powerful persuasion in the applications employed in the machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field. For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and researcher, they can study and learn the chapters, and then employ another application method

    Global motion compensated visual attention-based video watermarking

    Get PDF
    Imperceptibility and robustness are two key but complementary requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often suffer from embedding distortions resulting in poor visual quality in host media. This paper proposes a unique video watermarking algorithm that offers a fine balance between imperceptibility and robustness using motion compensated wavelet-based visual attention model (VAM). The proposed VAM includes spatial cues for visual saliency as well as temporal cues. The spatial modeling uses the spatial wavelet coefficients while the temporal modeling accounts for both local and global motion to arrive at the spatiotemporal VAM for video. The model is then used to develop a video watermarking algorithm, where a two-level watermarking weighting parameter map is generated from the VAM saliency maps using the saliency model and data are embedded into the host image according to the visual attentiveness of each region. By avoiding higher strength watermarking in the visually attentive region, the resulting watermarked video achieves high perceived visual quality while preserving high robustness. The proposed VAM outperforms the state-of-the-art video visual attention methods in joint saliency detection and low computational complexity performance. For the same embedding distortion, the proposed visual attention-based watermarking achieves up to 39% (nonblind) and 22% (blind) improvement in robustness against H.264/AVC compression, compared to existing watermarking methodology that does not use the VAM. The proposed visual attention-based video watermarking results in visual quality similar to that of low-strength watermarking and a robustness similar to those of high-strength watermarking

    Zero watermarking scheme for privacy protection in e-Health care

    Get PDF
    E-health care is an emerging field where health services and information are delivered and offered over the Internet. So the health information of the patients communicated over the Internet has to protect the privacy of the patients. The patient information is embedded into the health record and communicated online which also induces degradation to the original information. So, in this article, a zero watermarking scheme for privacy protection is proposed which protects the privacy and also eliminates the degradation done during embedding of patient information into the health record. This method is based on simple linear iterative clustering (SLIC) superpixels and partial pivoting lower triangular upper triangular (PPLU) factorization. The novelty of this article is that the use of SLIC superpixels and PPLU decomposition for the privacy protection of medical images (MI). The original image is subjected to SLIC segmentation and non-overlapping high entropy blocks are selected. On the selected blocks discrete wavelet transform (DWT) is applied and those blocks undergo PPLU factorization to get three matrices, L, U and P, which are lower triangular, upper triangular and permutation matrix respectively. The product matrix L×U is used to construct a zero-watermark. The technique has been experimented on the UCID, BOWS and SIPI databases. The test results demonstrate that this work shows high robustness which is measured using normalized correlation (NC) and bit error rate (BER) against the listed attacks

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Detection of image forgery for forensic analytics.

    Get PDF
    Due to the technical revolution in digital image processing, different advanced image manipulation software has been used in recent years to produce new unrealistic images without leaving evidence of what is happening in the world, so it would be difficult to detect tampering visually. Digital image forgeries have many techniques, but it is still very difficult to identify copy-move forgery. Therefore, we use a robust algorithm in this paper to detect copy-move forgery based on the descriptor speed-up robust feature (SURF) as a key-point detection, high-pass filtering as a matching feature, nearest neighbor used as a clustering algorithm to divide the entire image. By swapping the matched feature points with the corresponding super pixel blocks, the doubtful regions are identified, and then, the corresponding blocks are combined on the basis of similar local color features (LCF). Finally, to obtain the suspected forged areas, morphological close operation was applied. The results of the study indicate that the proposed method achieves considerable output based on key-point detection compared to other forgery detection methods used in the current method in order to address the research challenges
    corecore