38 research outputs found

    Self-Adaptive, Dynamic, Integrated Statistical and Information Theory Learning

    Full text link
    The paper analyses and serves with a positioning of various error measures applied in neural network training and identifies that there is no best of measure, although there is a set of measures with changing superiorities in different learning situations. An outstanding, remarkable measure called EExpE_{Exp} published by Silva and his research partners represents a research direction to combine more measures successfully with fixed importance weighting during learning. The main idea of the paper is to go far beyond and to integrate this relative importance into the neural network training algorithm(s) realized through a novel error measure called EExpAbsE_{ExpAbs}. This approach is included into the Levenberg-Marquardt training algorithm, so, a novel version of it is also introduced, resulting a self-adaptive, dynamic learning algorithm. This dynamism does not has positive effects on the resulted model accuracy only, but also on the training process itself. The described comprehensive algorithm tests proved that the proposed, novel algorithm integrates dynamically the two big worlds of statistics and information theory that is the key novelty of the paper.Comment: 62 pages, 30 figures, original articl

    Correntropy: Answer to non-Gaussian noise in modern SLAM applications?

    Get PDF
    The problem of non-Gaussian noise/outliers has been intrinsic in modern Simultaneous Localization and Mapping (SLAM) applications. Despite numerous algorithms in SLAM, it has become crucial to address this problem in the realm of modern robotics applications. This work focuses on addressing the above-mentioned problem by incorporating the usage of correntropy in SLAM. Before correntropy, multiple attempts of dealing with non-Gaussian noise have been proposed with significant progress over time but the underlying assumption of Gaussianity might not be enough in real-life applications in robotics.Most of the modern SLAM algorithms propose the `best' estimates given a set of sensor measurements. Apart from addressing the non-Gaussian problems in a SLAM system, our work attempts to address the more complex part concerning SLAM: (a) If one of the sensors gives faulty measurements over time (`Faulty' measurements can be non-Gaussian in nature), how should a SLAM framework adapt to such scenarios? (b) In situations where there is a manual intervention or a 3rd party attacker tries to change the measurements and affect the overall estimate of the SLAM system, how can a SLAM system handle such situations?(addressing the Self Security aspect of SLAM). Given these serious situations how should a modern SLAM system handle the issue of the previously mentioned problems in (a) and (b)? We explore the idea of correntropy in addressing the above-mentioned problems in popular filtering-based approaches like Kalman Filters(KF) and Extended Kalman Filters(EKF), which highlights the `Localization' part in SLAM. Later on, we propose a framework of fusing the odometeries computed individually from a stereo sensor and Lidar sensor (Iterative Closest point Algorithm (ICP) based odometry). We describe the effectiveness of using correntropy in this framework, especially in situations where a 3rd party attacker attempts to corrupt the Lidar computed odometry. We extend the usage of correntropy in the `Mapping' part of the SLAM (Registration), which is the highlight of our work. Although registration is a well-established problem, earlier approaches to registration are very inefficient with large rotations and translation. In addition, when the 3D datasets used for alignment are corrupted with non-Gaussian noise (shot/impulse noise), prior state-of-the-art approaches fail. Our work has given birth to another variant of ICP, which we name as Correntropy Similarity Matrix ICP (CoSM-ICP), which is robust to large translation and rotations as well as to shot/impulse noise. We verify through results how well our variant of ICP outperforms the other variants under large rotations and translations as well as under large outliers/non-Gaussian noise. In addition, we deploy our CoSM algorithm in applications where we compute the extrinsic calibration of the Lidar-Stereo sensor as well as Lidar-Camera calibration using a planar checkerboard in a single frame. In general, through results, we verify how efficiently our approach of using correntropy can be used in tackling non-Gaussian noise/shot noise/impulse noise in robotics applications

    Bayesian calibration for multiple source regression model

    Get PDF
    In large variety of practical applications, using information from different sources or different kind of data is a reasonable demand. The problem of studying multiple source data can be represented as a multi-task learning problem, and then the information from one source can help to study the information from the other source by extracting a shared common structure. From the other hand, parameter evaluations obtained from various sources can be confused and conflicting. This paper proposes a Bayesian based approach to calibrate data obtained from different sources and to solve nonlinear regression problem in the presence of heteroscedastisity of the multiple-source model. An efficient algorithm is developed for implementation. Using analytical and simulation studies, it is shown that the proposed Bayesian calibration improves the convergence rate of the algorithm and precision of the model. The theoretical results are supported by a synthetic example, and a real-world problem, namely, modeling unsteady pitching moment coefficient of aircraft, for which a recurrent neural network is constructed

    An Updated Catalog of 4680 Northern Eclipsing Binaries with Algol-Type light curve morphology in the Catalina Sky Surveys

    Get PDF
    We present an updated catalog of 4680 northern eclipsing binaries (EBs) with Algol-type light curve morphology (i.e., with well-defined beginning and end of primary and secondary eclipses), using data from the Catalina Sky Surveys. Our work includes revised period determinations, phenomenological parameters of the light curves, and system morphology classification based on machine learning techniques. While most of the new periods are in excellent agreement with those provided in the original Catalina catalogs, improved values are now available for ~10% of the stars. A total of 3456 EBs were classified as detached and 449 as semi-detached, while 145 cannot be classified unambiguously into either subtype. The majority of the SD systems seems to be comprised of short-period Algols. By applying color criteria, we searched for K- and M-type dwarfs in these data, and present a subsample of 609 EB candidates for further investigation. We report 119 EBs (2.5% of the total sample) that show maximum quadrature light variations over long timescales, with periods bracketing the range 4.5-18 yrs and fractional luminosity variance of 0.04-0.13. We discuss possible causes for this, making use of models of variable starspot activity in our interpretation of the results

    A Machine Learning System for Automatic Detection of Preterm Activity Using Artificial Neural Networks and Uterine Electromyography Data

    Get PDF
    Preterm births are babies born before 37 weeks of gestation. The premature delivery of babies is a major global health issue with those affected at greater risk of developing short and long-term complications. Therefore, a better understanding of why preterm births occur is needed. Electromyography is used to capture electrical activity in the uterus to help treat and understand the condition, which is time consuming and expensive. This has led to a recent interest in automated detection of the electromyography correlates of preterm activity. This paper explores this idea further using artificial neural networks to classify term and preterm records, using an open dataset containing 300 records of uterine electromyography signals. Our approach shows an improvement on existing studies with 94.56% for sensitivity, 87.83% for specificity, and 94% for the area under the curve with 9% global error when using the multilayer perceptron neural network trained using the Levenberg-Marquardt algorithm

    An Updated Catalog of 4680 Northern Eclipsing Binaries with Algol-type Light-curve Morphology in the Catalina Sky Surveys

    Get PDF
    We present an updated catalog of 4680 northern eclipsing binaries (EBs) with Algol-type light-curve (LC) morphology (i.e., with well-defined beginnings and ends of primary and secondary eclipses), using data from the Catalina Sky Surveys. Our work includes revised period determinations, phenomenological parameters of the LCs, and system morphology classifications based on machine-learning techniques. While most of the new periods are in excellent agreement with those provided in the original Catalina catalogs, improved values are now available for ~10% of the stars. A total of 3456 EBs were classified as detached and 449 were classified as semi-detached, while 145 could not be classified unambiguously into either subtype. The majority of the SD systems seem to be comprised of short-period Algols. By applying color criteria, we searched for K- and M-type dwarfs in these data, and present a subsample of 609 EB candidates for further investigation. We report 119 EBs (2.5% of the total sample) that show maximum quadrature light variations over long timescales, with periods bracketing the range 4.5–18 years and a fractional luminosity variance range of 0.04–0.13. We discuss possible causes for this, making use of models of variable starspot activity in our interpretation of the results

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics
    corecore