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Resumo

Hoje em dia, com a desregulamentação do sistema de energia, a necessidade de maior efi-
ciência e estabelecimento de novos padrões de preservação do meio ambiente foram introduzidas
restrições mais duras sobre o planeamento, gestão e controlo do sistema de energia.

O sucesso comercial das empresas de energia depende da capacidade de apresentar propostas
competitivas, assim sendo, alcançar melhorias na previsão de carga pode levar a um aumento sub-
stancial dos lucros comerciais. Deste modo, existem muitos métodos de previsão que têm sido
publicados na literatura científica, cada um deles com especificações diferentes, dependendo dos
seus objetivos.

Nesta dissertação será levado em conta a repercussão com dias especiais, como feriados. A
média dos erros de previsão de carga para os feriados é muito mais elevada em comparação com os
dias normais, devido ao facto de nestas situações não existir quantidade suficiente de informação
histórica para representar as suas características.

Várias técnicas de previsão têm sido aplicada a este tipo de previsão, a maioria das abordagens
baseiam-se em técnicas de redes neuronais. Muitos investigadores têm apresentado bons resulta-
dos e melhorias visíveis em novas metodologias em comparação com métodos tradicionais, mas
nenhum deles tem sido capaz de resolver o problema da falta de informação histórica em dias
especiais. Portanto, esta tese tem como objetivo principal a resolução deste problema.

Nesta dissertação será feito o estudo de uma nova abordagem técnica para este problema, com
base em Redes Neuronais Autoassociativas / Autoencoders como um estimador de dados em falta,
em que serão considerados os dias especiais como os dados em falta.

O algoritmo Information Theoretical Learning Mean Shift é utilizado para um processo deno-
tado truque de densificação, ou seja, preencher com dados virtuais um conjunto escasso de dados
relacionados com o consumo de energia diária em dias especiais. Isto permite um treino adequado
das redes neuronais com os dados virtuais, reservando-se todos os dados reais (escassos) para fins
de validação.

Este método foi aplicado num problema de previsão de demanda com dados reais de uma con-
cessionária de distribuição no Brasil, onde a previsão para dias especiais foi difícil devido à falta
de dados em registos históricos.

Palavras-chave: Mean shift, Information Theoretic Learning, Rede Neuronal Autoassociativa,
Autoencoder, previsão de carga, dias especiais, feriado.
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Abstract

Nowadays with the deregulation of the power system, requirement of higher efficiency and
establishment of new standards on environmental preservation, were introduced harder constraints
on the planning, management and control of the power system.

Commercial success of the energy companies depends on the ability to submit competitive
bids, and improvements in forecasting the load can lead to substantial increases in trading profits.

Therefore, exist many forecasting methods that have been published in scientific literature,
each of them with different specifications, depending on its objectives.

In this dissertation the repercussion of some special days will be taken in consideration, such
as holidays. Average load forecasting errors on holidays is much higher than those for normal
days because in this situation there is not enough historical information to represent their charac-
teristics.

Several forecasting techniques have been applied to this kind of forecasting, the majority of
the approaches are based on neural network techniques. Many researchers have presented good
results and visible improvements on new methodologies compared with the traditional methods
but none of them has been able to solve the problem of the lack of historic information on special
days. Therefore, this thesis have as its main purpose the resolution of this problem.

In this dissertation the studying of a new technical approach to this problem will be made,
based in Autoassociative Neural Network (AANN) / Autoencoder as a missing data estimator, in
which the special days will be considered as the input missing data.

The Information Theoretical Learning Mean Shift algorithm is used to a process nominated
densification trick, i.e., populate, with virtual data, a scarce set related to daily energy consumption
in special days. This allows the proper training of neural networks with the virtual data, reserving
all the scarce real data for validation purposes.

This method was applied in a demand forecasting problem with real data of a Brazilian distri-
bution utility, where the prediction for special days was difficult to be achieved due to the lack of
data in historical records.

Keywords: Mean shift, Information Theoretic Learning, Autoassociative Neural Networks, Au-
toencoder, load forecasting, special days, holiday.
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Chapter 1

Introduction

This master thesis was developed in INESC Porto, integrated in the Master Degree in Electri-

cal and Computer Engineering at the Faculty of Engineering of the University of Porto (FEUP).

A new concept of load forecasting on special days is presented in this work, using the Infor-

mation Theoretical Learning Mean Shift (ITLMS) algorithm in a process of densification of the

real data set, resulting in the criation of virtual data to train an Autoassociative Neural Network

(AANN) / Autoencoder.

The main concern is to resolve the problem of not enough amount of historical information

to represent special days, such as holidays. This approach is based on Autoencoders as a missing

data estimator, in which will be considered the special days as the input missing data. In order to

predict the holiday demand, it is used the Evolutionary Particle Swarm Optimization (EPSO) as

an optimization algorithm.

1.1 Background and Context

Load forecasting became an essential instrument in power system planning, management and

operation.

The reasons for its growing importance are related to the deregulation of the power system. The

energy market, demands higher efficiency and establishment of new standards on environmental

preservation. This introduced harder constraints on power system management and control. These

changes require more sophisticate tools of planning and operation and, therefore, more accurate

predictions of load is necessary [7].

Nowadays, basic operating functions such as unit commitment, economic dispatch, hydro-

thermal coordination, transaction evaluation, fuel scheduling, unit maintenance, transaction eval-

uation and system security analysis can be performed efficiently with an accurate and robust

forecast, improving the security of the power system and reducing the generation and operation

costs [8].

Commercial success depends on the ability to submit competitive bids, and improvements in
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2 Introduction

forecasting the load can lead to substantial increases in trading profits. The forecasting tools are

interesting not only to power system operators, but also to load serving entities, merchant plants

or generators and other market participants [9].

The quest for top-quality forecasting involves a broad variety of investigation fields, including

several areas of engineering, economy, meteorology, and others. This explains the considerable

forecasting methods that have been published in scientific literature.

The practical details of each particular load forecasting implementation differ from case to

case, depending on the objectives. In this dissertation the repercussion with special days, such as

holidays will be taken into account.

Average load forecasting errors for the holidays are much higher than those for normal days.

In fact, their rate of occurrence may be considerably higher when dealing with real data. Besides,

these kinds of events may change the general forecasting operations, channeling the performance

to unacceptable levels [7, 10]. Special days also make the load forecast more difficult to treat

because in these situations there is not enough amount of historical information to represents their

characteristics.

Various forecasting techniques have been applied to this type of forecasting and the majority

of the recently reported approaches are based on neural network techniques. Many researchers

have presented good results. The attraction for these methods lies in the assumption that neural

networks are able to learn properties of the load, which would otherwise require careful analysis

to discover [11].

In short, the motivation in this dissertation thesis lies in fact that special days have been a

recurring problem in load forecasting and this new approach based on Autoencoders and ITLMS

algorithm may come to represent a successful tool to resolve the problem which none of forecast-

ing technique has been able to resolve, the scarce existence of historical information on these day’s

type.

1.2 Objectives

Considering the promising results given in the recent paper [4], Sumaili, Miranda et al. have

applied a densification trick using Information Theoretical Learning Mean Shift algorithm to allow

demand forecasting in special days with scarce data. This work will be explained in greater detail

in the chapter 2.

In this dissertation will be studied this tool for scarce data treatment.

• Will the ITLMS algorithm be able to identify distinct clusters in consumption data using a

process of clustering associating the holidays in distinct days of the week?

• Will the ITLMS algorithm be usefull to allow virtual data collecting of each distinct specific

clusters?
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• Will be needed the criation of more or less groups of virtual data in order to perform a

suitable neural network training set?

• Will this tool be able to resolve the problem of lack of historical data on special days?

Consulting the relevant literature have been observed great results for Autoencoders used as

recognition machine, with this powerful tool can be estimated missing data in a database.

• If it is considered the special days as a missing data, might this tool adequately predict these

kind of days?

• Might Autoencoder be an usefull tool in a load forecasting?

• Comparing the achieved results with Autoencoders and the results of the work [4], which of

them is the best?

Therefore this dissertation looking for achieve these objectives set out.
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Chapter 2

State of the Art

Several research centers and companies invested in research and development of methods /

models of load forecasting, which led to a large number of forecasting systems, some of which are

already under operation and marketing. The prediction systems are essentially characterized by

the forecast horizon (minutes, hours, days), computational complexity and value of the forecast

error.

This chapter does not aim to present a detailed study of all forecasting methodologies in the

literature, but rather to show that there are numerous applications developed with the aim of mak-

ing load forecasting on special days.

The main factors influencing the load will also be presented in more detail, how the classifica-

tion of load forecasting is performed and the kind of division of days per year.

2.1 Factors which influence the load behaviour

An electric network is formed by the random uniting of different consumers. Changes in

the consumption of different groups makes up the future load different from the previous circum-

stances. It is therefore crucial to study and understand the factors which influence the load in order

to present methods to minimize the difference between the actual load and the forecasted load.

There are many factors which influence the load behaviour. These factors all differ in terms of

time of onset, duration and effect on the electricity consumption. According to [12], these factors

may be divided into two groups, namely special events and ever-present factors. Sports events and

strikes are examples of special events, while weather and human behavioural patterns are exam-

ples of ever-present factors.

The most significant external factor that influences the load is probably the weather [11, 13,

14, 15]. The factors relating to the weather that are usually taken into account are temperature,

rainfall, humidity, wind speed and cloud cover, as it is logical that all these factors have an effect

on the use of electricity. Other factors, such as the psychological effect of hot, sunny weather, air

conditioners and television audience behavior have also been suggested. Others permanent factors

5
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that are related to the load behaviour are the state of the economy, the level of factories production

and the GDP [8, 11, 12, 15, 16, 17, 18, 19, 20, 21].

As an example of special events we can regard blackouts, large customer behavior (e.g. a large

enterprise is shut down), natural disasters (e.g. floods and earthquakes), national sports events or

strikes. Other special events such as holiday periods, the Easter Weekend and the Christmas period

also occur regularly and have a significant effect on the load [8, 15, 19, 22, 23].

The onset and duration of these factors are usually known in advance, however the exact effect

that they will have on the consumption is not.

There are methods based on the relationship between some variables and the load. Observing

these variables in time and their relationship with the load allows the projection of the load in the

future and the forecasting of its behavior.

In order to reduce the forecast error on anomalous situations, some authors develop forecast

techniques specialized on each of the factors (e.g. holidays, festivals, rapid weather changes) [14,

18, 19, 24, 25, 26, 27, 28, 29].

This explains, why there are so many research and applications of methods / models to im-

prove the load forecasting.

2.2 Load forecasting classification

The load forecasting can be classified according to the future horizon of time, this temporal

scope may have various limits depending on the purpose [11, 12, 20, 21, 30, 31].

There are three types of load forecasting:

• Long-term load forecasting which consists of forecasting the load demand curve from 1

year and is useful to project demand years ahead and help in strategic development such as

scheduling construction of new power generators as well as the determination of prices and

regulatory policy.

• Mid-term load forecasting which consists of forecasting the load demand curve from 1 week

to 1 year, are mainly used as reference for studies of contingency, maintenance scheduling,

and for negotiations to purchase, sale and exchange of energy between the agents of the

electric system.

• Short-term load forecasting which consists of forecasting the load demand curve from 1

hour, 24 hour to one week ahead, and is essential for tasks such as the scheduling of fuel

purchases, inter company power transactions, security analysis and short term maintenance

scheduling.

In this thesis the short-term load forecasting applied to special days will only be approached.
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2.3 Types of days per year

Normally, all days are divided into two principal groups named normal days (weekdays) and

special days.

Holidays are special days that have a high influence in the load demand curve. In the data

set, it is observed that load demand is lower on holidays than on normal days. Moreover, the load

demand curve is not only affected on holidays, but also on days located before and after holidays.

According to [15], there are two types of special days, fixed by weekday and fixed by date. A

special day fixed by weekday occurs always at the same weekday but its date varies. Its location

within a year may even vary within a month (e.g. Easter), depending on the year and the special

day. Special days fixed by date fall always at the same time of year (e.g. Christmas). However, as

the date is fixed the weekday varies, and for example it may occur during the weekend in one year

and in the middle of the week in the next year.

There may be different special days in different countries, regions and cities (e.g. the city day

or the independence day).

Different researchers give different configurations to the week days.

In [8], it describes the normal days like days in which events such as national and religious

celebrations or national and religious mourning ceremonies don’t occur. Normal days may include

any day of the week (Saturday, Sunday, Monday, Tuesday, Wednesday, Thursday, and Friday).

Special days are classified in three types, official holidays, days before official holidays, and

days after official holidays:

• Official holidays (except for the two week New Year vacation) are days in which religious

and national celebrations and mourning ceremonies occur.

• On days before holidays, there is less social activity and in mid-day there is a decrease in the

consumption of electricity. Therefore for a more accurate forecast the days before official

holidays should be studied in a different category.

• The load pattern of normal days after holidays is different from other normal days of the

week and shows a decrease in the amount of electricity consumed especially during the early

working hours of the day. Regarding the fact that this difference is caused by the official

holiday, they are considered special days and should be studied in a different category.

In other papers [11], the classifying of the special days is not examined separately and all days

are divided by the guiding principle of three distinct classes:

• Mondays-Fridays;

• Saturdays;

• Sundays.
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In this type of configuration the special days are normally classified like Sundays [32, 33] but

other researchers classified the special days like Fridays [34] or Saturdays [7] depending on the

country or region under analysis.

Analysing another example, [11] the Taiwan power system (of 1986) suggest that the days

should to be divided in four categories:

• Sundays and holidays;

• Mondays and days after holidays;

• Saturdays;

• weekdays except holidays.

The classification of the days of the week influence the model of load forecasting, so it is

important to take in consideration what is the best configuration to achieve the objectives of the

forecast.

2.4 Load forecasting on special days

The improvement of the accuracy of load forecasting is critical for increasing the reliability

and efficiency of the power systems. The load forecasting problem is a complex nonlinear prob-

lem linked with social considerations, economic factors, and weather variations. In particular, load

forecasting for holidays is a challenging task once only a small number of recent historical data is

available, compared with what is available for normal weekdays and weekends.

According to [7], the practical details of each particular load forecasting implementation differ

from case to case, depending mainly on forecasting objectives, prediction scope, variables to be

predicted, historical data available (quantity and quality), and rate and repercussion of anomalous

events. Anomalous events may adulterate the general forecasting operations, leading the perfor-

mance to unacceptable levels.

So far, many studies of the load forecasting have been made, many of them developed for load

forecast on special days and acceptable results have been achieved.

The load curves of the same special days are dissimilar each year due to the system load

growth/decline trend [10, 35]. If this yearly growth is ignored, the general shapes of same days

become similar. Therefore, for many studies of load forecasting of one special day, only the data

of that day in previous years or special days with the same behavior (e.g. special days that occur

on Wednesdays) is used.

With that in mind, the load forecasting methods can be divided into two principal categories:

statistical methods and computational intelligence techniques [29].

In literature, statistical methods such as auto-regression and time series have been used broadly
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for STLF. A lot of models using classical techniques were created during the last decades, such

as Box-Jenkins models, ARIMA models, Kalman filtering models, and the spectral expansion

techniques-based models. All of these techniques work well in normal conditions, but they lead

to incorrect results when dealing with special days. Extreme complicated relationships that lead

to immense mathematical operations for load forecasting are one of the most important defects of

these techniques. Time-consuming for load forecasting, intrinsic inaccuracy and numerical insta-

bility are another of their deficiencies [34].

In recent years, use of intelligent techniques based on neural networks have increased no-

ticeably for solving engineering problems. For example, Artificial Neural Network (ANN) and

Fuzzy systems are two powerful tools that can be used approximately in every prediction and

modeling problem. It has been shown that ANN are universal approximators with the capability

of modeling every nonlinear system [34]. Considering this capability, some researchers have de-

signed ANN-based short term load forecaster. Contemporary load forecasting techniques, such

as Similar-day approach, Bayesian Neural Networks (BNN), Recurrent Wavelet Network (RWN),

Neural Network-Fuzzy methods, have been developed recently and showing more acceptable re-

sults than traditional methods.

Then some load forecasting models applied to special days will be presented.

2.4.1 Similar-day approach

The load forecasting on special days can be made based on similarity behavior of a holiday

with another day of the week. In most of countries, the services affected by the occurrence of

the holiday are similar to that which occur with weekends. For this reason, the load curve of a

holiday is approximately equal to the weekends near this day. In some regions, this similarity is

greater with Saturday, in others with Sunday and in others with Fridays. Some studies use this

similarity with the holiday and another day of the week to proceed with the prediction. Fidalgo

and Lopes [7] describe a solution to forecasting holidays to the Portuguese electrical system based

on artificial neural networks. The holiday is provided through a neural network trained exclusively

to the last Saturday. As the forecasting system knows only the behavior of Saturdays, this model

will forecast holidays as if it were any Saturday. Other similar work was described by Srinivasan,

Chang and Liew [33] where predictions of holidays based on similarity with Sundays were made.

The author uses neural nets together with fuzzy logic to forecast in the region of Singapore.

In the paper [34] Barzamini et al. proved that the load pattern for official holidays is com-

pletely different for the load pattern for normal working days of the week, but has much similarity

with the Friday nearest to it. Therefore, in this paper in order to forecast the load on official holi-

days for Iran National Power System and its regions is used the Friday neural network sub-model

first, and after the primary forecast is corrected by applying the rules of the fuzzy-expert system.

Others researchers also applied this method in their model of load forecasting [11, 32, 36, 37,

38, 39].
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2.4.2 Artificial neural networks

Within the most acclaimed tools in the field of load forecasting, the Artificial Neural Networks

(ANNs) have been supplanting long-established techniques in many applications.

In part, this success may be justified by ANN advantages like its adapting capacity and its

tolerance to noisy data [7]. In fact, it is rare to find papers that report a poorer performance of

ANN when compared to other methods.

In particular, load forecasting represents one of the most successful ANN applications in the

power system domain [22, 23, 17, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53].

An example of this tool is refered in [54] where a multi-layer artificial neural network with an

adaptive learning algorithm is used to forecast system hourly loads up to 168 hours for the Public

Utilities Board (PUB) of Singapore. The ANN-based load models are trained using hourly histor-

ical load data and daily historical maximum/minimum temperature data supplied by the PUB and

Meteorological Service Singapore respectively. The models are trained by day types to predict

daily peak and valley loads. The hourly forecast loads are computed from the predicted peak and

valley loads and average normalized loads for each day type. The average absolute error for a 24-

hour ahead forecast using the actual load and temperature data is shown to be 2.32% for Mondays

through Sundays and 5.98% for ten special day types in a year.

However, conventional artificial neural networks (ANN) based short-term load forecasting

techniques have limitations in their use on special days. This is due to dissimilar load behaviors

of holidays compared with those of ordinary weekdays during the year and to insufficiency of

training patterns. In this way, some researchers suggest new techniques with integrated models

like Bayesian Neural Networks, Recurrent Wavelet Network or Neural Network-Fuzzy methods.

2.4.3 Bayesian Neural Networks

In the paper [35] Mahdavi et al. proposed a new short-term load forecasting method for special

days in irregular load conditions. The proposed method uses a Bayesian neural network (BNN) to

forecast the hourly loads of special days. To do that, hybrid Monte Carlo method was used. This

type of learning enables to work with simpler architecture than in other works.

In this paper, instead of using hybrid methods, only the Multi Layer Perceptron (MLP) net-

work for STLF was used. This architecture is used for forecasting all special days. The key point

here is to apply Bayesian learning to train the MLP. This type of learning leading to a simpler

architecture gets a better result in comparison with that of the previous work. As pointed out in

[14] the benefits of Bayesian approach include an indication of the degree of uncertainty in the

predictions, automatic selection of an appropriate scale for network weights, and the avoidance of

overfitting. BNN can better deal with a limited data set.

The training patterns were collected from the historical load data for the years of 1996–2002.

The method was tested with the actual load data of special days for the years of 2003–2004. The

test results showed very accurate forecasting with the average percentage relative error of 1.93%.
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Other researchers like [36, 55, 56, 57, 58] also use the Bayesian approach in its works.

2.4.4 Recurrent Wavelet Network

In the paper [59] Baniamerian et al. presented a dynamic model for short-term special days

load forecasting which uses a Recurrent Wavelet Network (RWN).

The wavelet networks have been developed as a complex-neuron alternative for universal ap-

proximation. As an alternative, by increasing the complexity of network architecture (i.e. recurrent

neural network) and further intricate problems can be tackled.

Based on the complexity of load series for special days and lack of data, it is reasonable to

use recurrent wavelet network (RWN) [60]. This method has been rarely used for time series pre-

diction [61], because of its initialization problem. Initialization method in RWN severely affects

training process the same as wavelet network. Thus, a new initialization method is suggested,

based on Orthogonal Least Square (OLS) technique. Moreover, this RWN, by back-propagation-

based training, has been used for short-term load forecasting of special events and gives good

experimental results.

This method decreases training time considerably. The simulation results have shown the po-

tential of proposed network to tackle highly complex load forecasting problem.

The network is capable of handling the inherent complexity of load forecasting problem.

As an example of another research which uses RWN in their work we have [62].

2.4.5 Neural network-fuzzy methods

Kim et al. in [27] proposed a new short-term load forecasting method for special days in

anomalous load conditions. The proposed method uses a hybrid approach of ANN based tech-

nique and fuzzy inference method to forecast the hourly loads of special days. In this method,

special days are classified into five different day-types. Five ANN models for each day-type are

used to forecast the scaled load curves of special days, and two fuzzy inference models are used

to forecast the maximum and the minimum loads of special days. Finally, the results of the ANN

and the fuzzy inference models are combined to forecast the 24 hourly loads of special days. The

proposed method was tested with actual load data of special days for the years of 1996-1997. The

test results showed very accurate forecasting with the average percentage relative error of 1.78%.

The fuzzy theory is actively utilized to reduce the uncertainty and the nonlinear property which

are latent to the problem of load forecasting on special days [10, 8].

The fuzzy inference method minimizes model errors and the number of the membership func-

tions to grasp nonlinear behavior of power system loads.

The concept of fuzzy regression analysis was introduced by Tanaka et al. [63], where a lin-

ear programming (LP) - based method with symmetric triangular fuzzy parameters was proposed.

Fuzzy data analysis, regarded as a nonstatistical procedure for probablilistic systems was reported
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by Tanaka et al. [64]. The fuzzy regression approach showed usefulness to problems of load fore-

casting and load estimation in power distribution systems [65, 66].

In the paper [10], a new fuzzy linear regression method for the short-term load forecasting

of the holidays was proposed. An improved Tanaka’s fuzzy regression model [63], and the fuzzy

regression approach [65] by introducing fuzzy input-output data using shape-preserving fuzzy

arithmetic operations. Coefficients and both input and output data are considered as fuzzy num-

bers. The new fuzzy regression model improves the prediction accuracy for the short-term load

forecasting of the holidays falling on any type of day. The maximum average percentage error

obtained was 3.57% in the short-term 24 hourly loads forecasting of the holidays for the years of

1996–1997.

Other researchers like [29, 67, 68, 69, 70, 71, 72, 73, 74] use also the fuzzy approach in its

works.

2.5 A densification trick using ITL Mean Shift to allow demand fore-
casting in special days

In the recent paper [4], Sumaili, Miranda et al. proposed a new method to resolve the problem

of the lack of historical data in special days. They were inspired by the results of the Information

Theoretical Learning Mean Shift algorithm aplied in a process denoted densification trick success-

fully applied in a problem of incipient fault diagnosis in power transformers [75], where scarce

data on failures existed.

Thus, the ITLMS algorithm was used to populate, with virtual data, a scarce set related to daily

energy consumption in special days. This allows the proper training of neuronal networks with the

virtual data, reserving all the scarce real data for validation purposes. The networks are then used

to predict consumption in special days. An example with real data from a Brazilian distribution

utility was used in order to illustrate this technique.

The remarkable accuracy achieved in forecasting for holidays confirmed the correctness of this

new approach. With the division of the data set by the five work days of the week (from Monday

to Friday) was obtained the following forecasting indicators: the NMAE varied from 1.85% to

3.92%, while the variation range of the std was from 1.66% to 2.50%.

It is important to note that this results was obtained using a simple neural network for each

cluster cluster of special days. More sophisticated arrangements of neural networks are likely to

allow further improvement with a narrower accuracy.
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2.6 Conclusion

Through the analysis of recent research in the area of load forecasting on special days, it was

verified that good results have been achieved and visible improvements in new methodologies was

achieved compared with the traditional methods.

It has been proven that the methods based on ANN are good approximators with the capability

of modeling every nonlinear system.

However, conventional ANN based short-term load forecasting techniques have limitations in

their use on special days. Therefore, some researchers suggest new techniques with integrated

models that reduce the uncertainty and the nonlinear property of the load, in this way it was pos-

sible to minimize the forecast errors.

Despite the success of these methods none of them has been able to solve the problem of the

lack of historical information on special days. So this thesis has as main purpose the resolution

of this problem based in the recent work of Sumaili, Miranda et al. [4]. The method implemented

will be described below in more detail.
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Chapter 3

Tools

In this chapter the used tools in this thesis work will be presented. These main tools in-

clude the Information Theoretic Learning Mean Shift (ITLMN) algorithm, Autoassociative Neu-

ral Networks (AANN) also known as Autoencoders and Metaheuristics methods, with focus in

Evolutionary Computation (EC) algorithms (Evolutionary Algorithm (EA), Particle Swarm Opti-

mization (PSO) and Evolutionary Particle Swarm Optimization (EPSO)).

The research where the autoencoder structure to implement the new method to load forecasting

on special days was inspired, will also be addressed.

Therefore, the following chapter seeks to inform more about these tools, their advantages and

how they are currently applied.

3.1 Information Theoretic Learning Mean Shift

The Information Theoretic Learning Mean Shift (ITLMS) algorithm was introduced by Rao,

Principe and Martins [76, 1] as a means to capture the dominant structures in the data set, as em-

bedded in its estimated probability density function (pdf) [75].

Figure 3.1: pdf estimated, from [1].
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In this subchapter this algorithm, as well as its potentialities will be presented.

The Mean Shift algorithm was firstly proposed by Fukunaga and Hostler in 1975 [77]. In this

paper they showed that this algorithm is a steepest descent technique where the points of a new

dataset are moving in each iteration towards the modes of the original dataset.

Considering a dataset X0 = (Xi)
N
i=1 ε RD, using the nonparametric method of parzen window

technique [78] and a gaussian kernel given by G(t) = e−
t
2 with bandwidth σ > 0, the pdf can

be estimated by:

p(x,σ) =
1
N

N

∑
i=1

G

(∥∥∥∥x− xi

σ

∥∥∥∥2
)

(3.1)

The objective of this algorithm is to find the modes of the dataset where ∇p(x) = 0. With

that in mind, the iterative stationary point equation is:

m(x) =
∑

N
i=1 G

(∥∥ x−xi
σ

∥∥2
)
· xi

∑
N
i=1 G

(∥∥ x−xi
σ

∥∥2
) (3.2)

The difference m(x)− x is known as mean shift.

In literature, this first algorithm is known as Gaussian Blurring Mean Shift (GBMS) indicating

the successive blurring of the dataset towards its respective modes due the actual solution being a

single point that minimizes the overall entropy of the data set.

In spite of this important development, the Mean Shift idea was forgotten until 1995, when

Cheng [79] introduced a slight change in the algorithm. While in Fukunaga’s algorithm the origi-

nal dataset is forgotten after the first iteration, X (0) = X0, the Cheng’s algorithm keeps this dataset

in memory. This initial dataset is used in every iteration to be compared with the new dataset Y .

However Y is initialized the same way, Y (0) = X0. This also introduces a small change in the

iterative equation:

m(x) =
∑

N
i=1 G

(∥∥ x−x0i
σ

∥∥2
)
· x0i

∑
N
i=1 G

(∥∥ x−x0i
σ

∥∥2
) (3.3)

In literature, this algorithm changed is known as Gaussian Mean Shift (GMS) Algorithm.

Mean Shift algorithms have been shown a very versatile and robust tool in feature space anal-

ysis [80] and is often used in image segmentation [81, 82], denoising, tracking objects [83] and

several other computer vision tasks [84, 85].

Recently, in 2006, Rao, Principe and Martins [76, 1] introduced a new formulation of mean

shift known as Information Theoretic Learning Mean Shift (ITLMS) and showed that GBMS and

GMS are special cases of this one.
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The idea in this algorithm was to create a cost function that minimizes the cross entropy of the

data while the Cauchy-Schwartz distance is kept at a given value.

Knowing that a gaussian kernel (with bandwidth σ > 0) is given by:

Gσ = e
−x2

2·σ2 (3.4)

an estimation of a pdf, using the parzen window technique [78], is:

p(X) =
1
N

N

∑
i=1

Gσ (x− xi) (3.5)

Renyi’s quadratic entropy [86] for a pdf can be calculated using:

H(X) = − log
+∞∫
−∞

p2(x) dx (3.6)

Therefore, replacing 3.5 into 3.6,

H(X) = − logV (X) (3.7)

with

V (X) =
1

N2

N

∑
i=1

N

∑
j=1

Gσ ′(xi− x j) (3.8)

where σ ′ =
√

2σ . V (x) is known as the information potential of the pdf p(X). The derivative

of this expression with respect to a single point xi gives a quantity denoted information force ex-

erted by all data particles on xi.

To measure the cross entropy between two pdf, one has

H(X ,X0) = − logV (X ,X0) (3.9)

with

V (X ,X0) =
1

N2

N

∑
i=1

N

∑
j=1

Gσ ′(xi− x0 j) (3.10)

The Cauchy-Schwartz distance between two pdfs (p and q) can be calculated using:

DCS(X ,X0) = log
(
(
∫

p2(x)dx) · (
∫

q2(x)dx)
(

∫
p(x) ·q(x)dx)2

)
(3.11)

DCS(X ,X0) = −[H(X) + H(X0) − 2H(X ,X0)] (3.12)
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The ITLMS algorithm aims at finding data sets X that capture structural information from a set

X0. This is achieved by a double criteria optimization, minimizing the entropy of X while keeping

the Cauchy–Schwartz distance at some value k. An unconstrained optimization formulation, under

a parameter λ (Lagrange multiplier) that represents the tradeoff between the two objectives is

given by

J(X) = min H(X) + λ · [DCS(X ,X0)− k] (3.13)

Differentiating J(X) with respect to each xi gives an algorithmic rule that allows the transfor-

mation of X0 into another set at iteration t +1, making use of the information contained in the pdf

of X at iteration t, estimated by 3.5:

xt+1
i =

c1 ·S1 + c2 ·S2

c1 ·S3 + c2 ·S4
(3.14)

where

c1 =
1−λ

V (X)
, c2 =

1−λ

V (X ,X0)
(3.15)

and

S1 =
N

∑
j=1

Gσ

(
‖xt

i − xt
j‖2

σ ′

)
× xt

j (3.16)

S2 =
N

∑
j=1

Gσ

(
‖xt

i − xt
0 j‖2

σ ′

)
× x0 j (3.17)

S3 =
N

∑
j=1

Gσ

(
‖xt

i − xt
j‖2

σ ′

)
(3.18)

S4 =
N

∑
j=1

Gσ

(
‖xt

i − xt
0 j‖2

σ ′

)
(3.19)

As shown in [76], adjusting the λ parameter changes the data properties sought by the algo-

rithm:

λ = 0 – the algorithm minimizes the data entropy, returning a single point. This is the GBMS

algorithm;

λ = 1 – the algorithm is a mode seeking method. The particles converge to the modes of the

pdf p(X), the same as GMS;



3.2 Autoassociative Neural Networks 19

λ > 1 – the principal curve of the data is returned (1 < λ < 2). A higher value of λ makes

the algorithm seek to represent all the characteristics of the pdf.

Each generation of points xt
i describe a pdf p(X t) that retains information from p(X0). Each

point xt
i along the iterations t describes a path from xi0 toward a mode of the pdf p(X0), or to a

principal curve of the data cluster, or to a region of higher density, depending on the value of λ

adopted. By path, one means a succession of points X0,X1, ...,X t , ... that may be driven toward

or away from the mode, depending on allowing points to follow the direction of the information

force (∂V/∂X as in 3.8) or the reverse direction.

The set XV = X1∪X2 ... ∪X t is the set of virtual data generated by the ITLMS algorithm. It

forms a dense cluster that shares properties with the original X0.

This use of XV is called the densification trick.

This property was successfully applied in a problem of incipient fault diagnosis in power trans-

formers [75] by Miranda et al., where scarce data on failures existed.

Therefore, this densification trick becomes especially useful when data is scarce or often in-

sufficient to a neural network training practice.

The insufficient number of samples is a difficulty present in many works reported. In partic-

ular, the solidity of models whose validation rests on such a low number of test samples may be

questioned.

With the use of the ITLMS, the training set may be composed of only virtual points, keeping

the totality of the real data to be used in the testing phase. This largely increases the robustness of

the testing procedure and the confidence in the results it will provide.

The densification trick using ITLMS demonstrates to be a powerful tool to resolve the problem

of the typical lack of historical data on special days, as demonstrated in [4] by Sumaili, Miranda

et al.. Its application in the construction of a neural network system for the 1 day-ahead prediction

of electric energy consumption in special days was suggested, for a Brazilian distribution utility.

In chapter 4 the results of the densification of data sets which will be applied as pratical exam-

ple in this thesis will be presented.

3.2 Autoassociative Neural Networks

For a better understanding of which is an Autoassociative Neural Networks (AANN), the next

general contextualization of Artificial Neural Networks will be provided.

Artificial Neuronal Networks, or just Neuronal Networks (NN) are machines designed the way

human brain performs/learns a particular task or function of interest [2]. NN provide a principled

framework for learning linear and non-linear mappings from an input to an output space, corre-

sponds to a connectionist paradigm of information processing, including a massive paralel process

of numerical computacions [6], through a process of learning. The basic processing element of

a NN is the neuron [87]. Neurons are composed of several inputs, one output and an activation

function which executes the internal processing, transforming the inputs into the output. Usually,
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neurons are organized in layers with unidirectional links always in a forward direction, from the

input to output of the NN(feedforward networks).

Figure 3.2: Nonlinear Model of a Neuron, from [2].

Connections between neurons are associated with synaptic weights wk j, such that a signal

emitted by a neuron is multiplied by the weight of the conection before entering a next neuron [6].

This process is schematized in figure 3.2 and the equations demonstrated are:

The weighted sum of inputs x j:

uk =
m

∑
j=1

wk j.x j (3.20)

The summing junction of the bias bk to the uk:

vk = uk +bk (3.21)

Finally, the output yk is the result of vk through activation function ϕ(·).

yk = ϕ(vk) (3.22)
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Autoassociative Neural Networks (AANN), also known as autoencoders, are feedforward neu-

ral networks with a middle hidden layer that intends to reconstruct the output equal the input.

Thereby, the size of the output layer is always the same as the size of the input layer. The

simplest autoencoder architecture has only one middle hidden layer, once the use of more hidden

layers makes the training tedious and furthermore, it will also not give good results [88]. The opti-

mal number of the hidden neurons, thought dependent on the type of application, must be smaller

than that of the input and output. In the figure 3.3, a typical diagram of an autoencoder is shown.

Figure 3.3: The structure of a eigth-input, eight-output autoencoder

The autoencoders perform two main operations: a forward compressing operation transform-

ing from data space to code space at the hidden layer called “encoding”, and reverse transformation

from code space to data space at the output layer called “decoding”.

If linear activation functions are used, autoencoder will be performing similar to Principal

component analysis (PCA) method [89, 90] that is, reduce the dimensionality of data. With non-

linear activation functions, autoencoders chart the input space on a nonlinear manifold in such a

way that an approximate reconstruction is possible with less error [91]. Plus, PCA does not easily

show how to do the inverse reconstruction, which is straightforward with autoencoders [92].

The goal is to train the network such that the composed operation is as close as possible to

the identity mapping. By defining a network structure where inputs and outputs are tied to train-

ing samples, appropriate network parameters (weights and biases) can be trained by on criterion

optimization, the classical function adopted is the minimization of the Mean Square Error (MSE)

between the input and the outputs.

If X is the input vector and Y the output vector, then for N samples:

MSE : min ε = min
1
N

N

∑
k=1
‖Xk−Yk‖2 (3.23)

A good interpretation of the MSE criterion is that it represents the minimization of the vari-

ance of the pdf of error distribution. However, this criterion is optimal only if this distribution is
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Gaussian, which may be questionable in many applications where a non-parametric method may

achieve a better result [75].

The reconstructions can be learnt via some algorithms like gradient descent or the backpropa-

gation.

To train a neural network, two independent data sets are needed: one to train the network and

another to validate its results. While the training set is used to adjust the connection weights, the

validation set is used to verify if the network is generalising in a proper way. Generalising is the

neural network ability to recognize points with the same properties of the ones in the training set

but didn’t belong to it.

Therefore, one interesting property of autoencoders is that when the network is properly

trained, it may be used as a recognition machine. If a new input vector provides different char-

acteristics from the global pattern of the data used for training, the error between the output and

input tends to be high, since the result does not match the input. This is extremely useful in pattern

recognition tasks as an approach to missing data in database estimation [93, 94, 95, 96] and it is

very important to the work done in this thesis.

Autoencoders are often used to compress data like images [97, 98, 99], or for instance, face

images could be identified and clustered according to sex, distinguished from non-faces [100], etc.

Another application is the reconstruction of missing data, used in applications to missing sensor

restoration [101, 102, 103], reconstructing missing data in state estimation [92], diagnosing faults

in power transformers [75] and several other applications [104, 105, 106, 107].

3.3 Missing Data Estimation Using Autoencoders

A great deal of research has recently been done to discover new ways of estimating the missing

values in databases. Among others, Abdella and Marwala [93] and Mohamed and Marwala [96]

used neural networks together with Genetic Algorithms (GA) to approximate missing data. Qiao

et al. [103] used neural networks and Particle Swam Optimisation (PSO) to keep track of the

dynamics of a power plant in the presence of missing data. Dhlamini et al. [105] have used Evo-

lutionary computing in condition monitoring of high voltage (HV) bushings in the presence of

missing data. Miranda et al. [92] used neural networks together with Evolutionary Particle Swam

Optimisation (EPSO) to solve the problem of recomposing missing information at the SCADA of

energy/distribution management systems (EMS/DMS). In their study, auto-associative neural net-

works were used together with GA, PSO or EPSO to predict the missing data and also to optimise

the prediction.

The optimization algorithms (GA, PSO or EPSO) are used to estimate the missing values by

optimizing an objective function. The complete vector combining the estimated and the observed

values is fed into the auto-encoder as input and as shown in figure 3.4. Symbols Xk and Xu repre-

sent the known variables and the unknown or missing variables, respectively. The combination of

Xk and Xu represent the full input space.



3.3 Missing Data Estimation Using Autoencoders 23

Figure 3.4: Autoencoder and optimization algorithm based missing data estimator - Constrained
Search model

This method uses an autoencoder, so it will be expected that through a well chosen architec-

ture, the input and the output are very similar. This is, however, only feasible on a dataset similar

to the problem space, as outlined above. In other words, the autoencoder is trained to minimize the

difference between its input and output vectors only possible for an input vector with satisfactorily

similar properties to those of the input vectors upon which it was trained. This procedure is what

allows the autoencoder to estimate the missing data. The difference between the target and the

actual output is used as error. In [93] Abdella and Marwala used the square of the error to create

a function which has a global optimum where the difference between the target and the output is

zero. By squaring this error, the zero-crossing of the linear error becomes the minimum error of

the quadratic error.

This leads to the following equation:

ε =

({(
Xk

Xu

)}
– f

(
−→
W ,

{(
Xk

Xu

)}))2

(3.24)

where X and
−→
W are input and weight vectors whereas Xk and Xu represent the known and

unknown input variables, respectively. This equation is used as the objective function that is mini-

mized using GA. More details about the base method can be found in [93]. On the other hand, the

publications [102] and [92] describe some useful properties of autoencoders in restoring missing

values. After the autoencoder is adequately trained, basic approaches such as unconstrained search

and constrained search can be considered, the study of these methods have the purpose to find a

better technique for discovering the true point of convergence.

Constrained Search model controls the error convergence in all the input-output data of the
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autoencoder.

min ε = min

({(
Xk

Xu

)}
– f

(
−→
W ,

{(
Xk

Xu

)}))2

(3.25)

where X and
−→
W , as in the function 3.24, are input and weight vectors, Xk and Xu represent the

known and unknown input variables, respectively. In the figure 3.4 this approach can be seen.

On the other hand, Unconstrained Search model controls the convergence by the optimization

algorithm in order to minimize the input-output error only on the missing data. The following

equation can be regarded:

min ε = min
(
{Xu} – f

(−→
W ,{Xu}

))2
(3.26)

where Xu and
−→
W are unknown input variables and weight vectors. In the following figure this

model can be seen.

Figure 3.5: Autoencoder and optimization algorithm based missing data estimator - Unconstrained
Search model

The Autoencoder training will be preformed by the MATLAB© Neural Network ToolboxTM

7 software. For more details consult the User’s Guide [5].
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3.4 Metaheuristic Methods

Metaheuristic methods employ smart strategies for searching in the solution space, the best

solution in a quick and efficient manner. Metaheuristics can be organized as it is shown in the next

figure.

Figure 3.6: Metaheuristics classification.

The evolutionary computation is based on the evolutionary mechanisms found in nature. These

mechanisms are directly related with Darwin’s Theory of Evolution, where he states that life on

Earth is the result of a selection process, done by the environment in which only the fittest and

adapted ones possess chances of surviving and consequently reproduce itself [108].

The goal in this optimization is to find the best possible solution or solutions to a problem,

whatever the nature of its variables, with respect to one or more criteria. To do that a population

or set of possible solutions (individuals) to the problem is formed. Each individual is evaluated by

an optimization function, and the best are selected to reproduce. Then new individuals from the

selected will be produced and the new generation is formed. This new generation is assessed and

the individuals with the worst performance are eliminated prevailing the best individuals and a new

phase of reproduction originates the subsequent generation. This process is repeated generation

after generation, and the population should keep improving itself with the individuals with better

assessment until a certain stop criterion is satisfied. The best individual found in this process is

taken as the solution of the optimization problem.



26 Tools

In this way, the various methods of evolutionary computation can be distinguished by the

following factors:

• the form of representation (chromosome) of a solution or individual;

• the form of decoding the chromosomes;

• the form of making the selection;

• the form of making the reproduction (or generation of new individuals).

The evolutionary computation, for historical reasons, has been divided for several years in

Evolution Strategies (ES) and Evolutionary Programming (EP) but nowadays it does not make

sense to divide these two variants once they correspond to phenotype methods.

ES/EP diverge of Genetic Algorithms GA (genotype methods) in the way they represent the

alternatives, solutions or individuals of the population. GA are based on the genetic discrete rep-

resentation of each individual to generate new individuals with better possibilities to survive while

ES/EP are based on the direct representation of the solutions and are only based in the own prob-

lem variables without passing through any intermediate algorithm of encoding / decoding.

In evolutionary algorithms (EA) the searching mechanism is constituted by the action of mu-

tation and recombination, where the concurrence of these two operators proposes new points in

space departing from previous locations, which are then subject to evaluation and selection. It is

the presence of a selection operator that distinguishes evolutionary algorithms from other meta-

heuristics.

As is described by Miranda et al. [109] Particle Swarm Optimization (PSO) algorithms have

no selection operator, but a specific movement rule is adopted that defines how a new particle is

created departing from its history and from information from the swarm. Under controlled cir-

cumstances, this can drive the swarm to the optimal solution of a problem. The PSO movement

rule has dynamic characteristics that drive the optimization process towards the optimum without

requiring selection. Eberhart and Kennedy developed PSO, inspired in the analogy of swarms of

insects, flocks of birds, schools of fish or other groups, in which the behavior of each individual

is simultaneously influenced by own factors and factors (social) that result from the behavior of

others [110]. This is a concept far from the classical paradigm of EA.

Therefore, in PSO the particles move under the action of three influences (vectors) that com-

plement each other and are called inertia, memory and cooperation. The first vector pushes the

particle in a direction identical to that that had been following. The second vector attracts the par-

ticle toward the best position occupied by the particles during their life. The third vector attracts

the particle towards the best point in space so far discovered by the swarm.

With PSO, unlike the EA, there is no competition between particles or auto-adaptation of their

characteristics. From the beginning their promoters realized the need to introduce controls on the

behavior of swarms, or to enhance the efficiency of search you want to avoid divergence of the

swarm. These controls have been, in most cases, externally applied, based on empirical recipes,

and have begun testing ideas of self-adaptation [108].



3.4 Metaheuristic Methods 27

This idea of self-adaptation inspired a new concept of evolutionary algorithms the Evolution-

ary Particle Swarm Optimization (EPSO) algorithms [111] based in evolution strategies. EPSO is

an evolutionary swarm optimization algorithm meta-heuristic that combines the concepts of evo-

lutionary strategies, which is a characteristic of EA, with particle swarm optimization of PSO.

EPSO seeks to give an adaptive character of the particles swarm algorithms, being then pre-

dictable, that this method in many applications can reach better results than the classic PSO [3,

108].

Then these two algorithms, PSO and EPSO, will be described in more detail.

3.4.1 Particle Swarm Optimization (PSO)

The PSO algorithm has been presented as illustrating the movement of a set of particles ex-

ploring the space of solutions or decisions of n dimension according to the number of problem

variables. The simple model of PSO is described below as Miranda relates in [108].

Each particle corresponds to an alternative solution for a given optimization problem. Given a

population of n particles, each particle i has the following composition:

• A position vector Xi;

• A velocity vector Vi;

• A memory vector bi of the best position found during his lifetime;

• A value of the objective function relative of the current position Xi;

• A value of the objective function relative of the best position found by the particle bi.

At any given instant t (corresponding to a given iteration) i a particle changes its position Xi to

Xnew
i according to the following movement rule:

Xnew
i = Xi + V new

i (3.27)

where V new
i is the new velocity of the particle i, i.e., the vector representing the change of

position of the particle i and is given by

V new
i = Vi + Rnd · Wmi · (bi − Xi) + Rnd · Wci · (bg − Xi) (3.28)

where

Wmi weight conditioning the memory term;

Wci weight conditioning the cooperation term;

bi best position found by the particle in its past life;
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bg best position found by the swarm of particles in their past life;

Rnd random numbers sampled from a uniform distribution in [0,1].

The following figure illustrates this concept.

Figure 3.7: Ilustrating the movement of a particle i in PSO, influenced by the three terms: Inertia,
Memory and Cooperation [3].

The weights affecting the various terms are affected in each iteration by multiplying random

numbers, which causes a disturbance in the trajectory of each particle which has been shown to be

beneficial for space exploration and discovery of the optimal solution.

The weights in this simple model are defined initially and externally. This raises a tuning

problem of these weights in order to reach the convergence. In fact, this is the main disadvantage

of PSO algorithm, it is not self-adaptative.

In order to achieve better results we can apply mechanisms in the movement rule that, although

none of them solve the problem of the lack of self-adaptivity, it can bring improvements to the PSO

algorithm [3].

There exists then two principal mechanisms, one of them can be described in the following

manner:

V new
i = Dec(t) · Wii · Vi + Rnd · Wmi · (bi − Xi) + Rnd · Wci · (bg − Xi) (3.29)

I.e. apply in the inertia term a Dec(t) function whose value decreasing with the progress of

iterations, reducing progressively the importance of this term [112], and also apply a new weight

Wii.

The other mechanism (proposed by Maurice Clerc [113]) consists in the multiplication of the

movement rule by a constriction factor K. This factor consists of a diagonal matrix of constriction

factors of dimension k.
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Kk =
2

|2−Wk−
√

W 2
k −4 · Wk|

, Wk =WmK +Wck, Wk > 4 (3.30)

3.4.2 Evolutionary Particle Swarm Optimization (EPSO)

As described above the EPSO algorithm can be seen as a hybrid method of ES/EP and PSO

techniques. As an ES, an EPSO algorithm may be described (as Miranda in [3]) by the following

general scheme:

Replication each particle is replicated n times;

each particle has its strategic parameters mutated;

Reproduction each mutated particle generates an offspring through recombination, according

to the particle movement rule, described below;

Evaluation each offspring has its fitness evaluated;

Selection by stochastic tournament or other selection procedure, the best particles survive to

form a new generation, composed of a selected descendant from every individual in the

previous generation.

The EPSO reproduction rule can be described by the following expression where given a par-

ticle Xi, a new particle Xnew
i will be:

Xnew
i = Xi + V new

i (3.31)

The movement rule of the EPSO is given by

V new
i = Wi∗i · Vi + Wm∗i · (bi − Xi) + Wc∗i · (b∗g − Xi) · P (3.32)

where

Wii weight conditioning the inertia term;

Wmi weight conditioning the memory term;

Wci weight conditioning the cooperation term;

bi best position found by the particle in its past life;

bg best position found by the swarm of particles in their past life;
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P communication factor, assumes binary variables of value 1 with probability p and value

0 with probability (1-p); the p value, set as an external parameter, controls the passage of

information within the swarm and is considered 1 in classical formulations.

EPSO algorithms include the adoption of a stochastic star communication topology, instead of

the deterministic scheme usually adopted in PSO. This has the advantage of sharing the knowledge

of each particle’s knowledge of the global best position, controlled by a communication probabil-

ity P, which is self-adaptive throughout the algorithm run and also externally defined. The effect

produced by the adoption of a stochastic star communication topology is that a particle will ignore

the global best on some iterations and include it in other iterations. This not only allows more

local search by each particle, but also allows the elimination of disturbing noise, by allowing the

dynamics of particle movement to be more stable and avoiding premature convergence [109].

The symbol ∗ indicates that these parameters will undergo evolution under a mutation process.

The difference for the particle swarm PSO is that the evolution does not only occur in the

behavior of particles, but also on the weights that affect the movement of these in the search space.

One of the main features is that it is a self-adaptive method, that is, automatically adjusts the

swarm behavior in order to enhance efficiency in the search and on the other hand, prevent the

divergence of the swarm.

This characteristic lies in the fact that at a given instant, there is a particle which has the best

position in the search space, and the population of particles have to move in this direction. In

addition, each particle is also attracted to its previous best position.

This process of the EPSO is illustrated in the following figure 3.8.

Figure 3.8: Illustration of EPSO particle reproduction: a particle Xi generates an offspring at a
location commanded by the movement rule [3].
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The approximate basic mutation rule for the strategic parameters is the following:

Wk∗i = Wki · [ 1 + τ · N(0,1) ] (3.33)

where

N(0,1) random variable with Gaussian distribution (0 mean and variance 1);

τ learning parameter, fixed externally, controlling the amplitude of the mutations – smaller

values of τ lead to higher probability of having values close to 1.

As for the global best bg, it is randomly disturbed to give

b∗g = bg + Wb∗i · N(0,1) (3.34)

where wbi is the strategic weight parameter associated with particle i. It controls the size of

the interval of bg where it is more likely to find the real global best solution. This weight wbi is

mutated (denoted by *) according to the general mutation rule.

In several papers it is possible to verify the advantages of this optimization tool in electrical

power applications [111, 114, 115, 116, 117, 118, 119, 120].
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Chapter 4

Data Treatment

The historical data which were taken into account in this thesis are the same that were applied

in [4] by Sumaili, Miranda et al., the real data from a Brazilian distribution utility. The historical

data refer to about 10 years of consumption (from January 2002 to September 2012).

In Brazil, public holidays may be legislated at the federal, statewide and municipal levels.

Most holidays are observed nationwide, but each state and city may have its own holidays as well.

Apart from the yearly official holidays (listed below), the Constitution of Brazil also estab-

lishes that election days are to be considered national holidays as well. General elections are held

on the first Sunday of October, in the first round, and on the last Sunday of October, in the second

round, of every even year.

Table 4.1: National holidays in Brazil.

Date Holiday name Holiday type
January 1 New Year’s Day Fixed by date

47 days before Easter Carnival/Shrove Tuesday Fixed by day (Tuesday)
Day after Carnival Carnival end (until 14 hrs) Fixed by day (Wednesday)

Friday before Easter Good Friday Fixed by day (Friday)
Computus1 Easter Day Fixed by day (Sunday)

April 21 Tiradentes Day Fixed by date
May 1 Labour Day Fixed by date

Thursday after Trinity Sunday2 Corpus Christi Fixed by day (Thursday)
September 7 Independence Day Fixed by date
October 12 Our Lady of Aparecida Fixed by date
November 2 All Souls Day Fixed by date
November 15 Republic Proclamation Day Fixed by date
December 25 Christmas Day Fixed by date
December 31 New Year’s Eve (from 14 hrs) Fixed by date

1The Computus (Latin for “computation”) is the calculation of the date of Easter, the first Sunday after the first
ecclesiastical full moon (that follows the Northern spring equinox) falling on or after 21 March

2Trinity Sunday is the first Sunday after Pentecost. Pentecost is celebrated seven weeks (50 days) after Easter
Sunday, hence its name.

33
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Other days can also be considered as special days, like the days preceding the Carnival, the

Christmas Eve, the Valentine’s Day or even the Fridays or Mondays in extended weekends, among

other.

For more details the following website may be consulted: www.timeanddate.com/holidays/

brazil/

In this chapter the treatment of the historical data will be described taking into account the

following criteria:

• In this study of load forecasting on special days, holidays which occur at Saturdays and

Sundays will not be analysed, nor consecutive holidays with frequency inferior to eight

days;

• The load forecasting will be based on the daily energy consumption of the days preceding

the holiday

• The demand of the same special days are dissimilar each year due to the system load

growth/decline trend. If this yearly growth is ignored, the general shapes of same days

become similar. Therefore, in this study, like in many others, the load forecasting will be

performed based on historical data of holidays with the same behavior (e.g. special days

that occur on Wednesdays and which have the same weekly behavior);

• As mentioned earlier, to resolve the problem of the lack of historical data on special days

the ITLMS algorithm will be used to make the densification of data set.

4.1 Normalization of Data Set and Its Classification Using ITLMS

As mentioned above, the demand of the same special days are dissimilar each year due to the

system load growth/decline trend. If this yearly growth is ignored, the general shapes of same

days become similar. Therefore, the load forecasting can be performed based on historical data of

holidays which occur at the same day and with the same weekly behavior.

Therefore, the first step to data treatment of the holidays and their previous days is to make

a correction in all of them in order to obtain their similarity. The normalization was made with

respect to the consumption of the previous week.

The next images illustrates this method.

www.timeanddate.com/holidays/brazil/
www.timeanddate.com/holidays/brazil/
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Figure 4.1: Demand correction method.

(a) Set of consumption patterns. (b) Normalized special day patterns.

Figure 4.2: Normalization of the data set, from [4].

It is important to refer which of the special days correspond to the last represented day.

After applying this method, ITLMS algorithm was used to understand the similarity between

the patterns shown in figure 4.2b. Therefore, it was possible to identify distinct patterns for special

days, and cluster them in similar classes. This way, each special day / holiday was associated to a

particular pattern (cluster).

With setting λ = 0.9 in 3.15 the identification of thirteen different modes was possible. The

patterns converging to a common mode were grouped in individual clusters. It was thus possi-

ble to form six clusters corresponding to the five days of the week (from Monday to Friday, two

clusters on Friday) and others seven groups with the remaining outliers that were not taken into

consideration in this study.

In a second approach with λ = 0.1 in 3.15 ten different modes were identified. Five clusters

corresponding to the five days of the week were formed, and other five groups with the remaining

outliers that were also not taken into consideration in this study.

The reason for not considering the remaining outliers is because some patterns correspond
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to a very special cases which should deserve individual analysis. Some of these cases possibly

correspond to blackouts, which severely reduced the daily consumption, or also, holidays that do

not have a fixed week day distort the observed pattern or even the occurence of two holidays in

the same week.

The following figure shows two examples of clusters organized. In the same cluster there are

holiday with occurrence on the same day and same weekly behavior.

(a) Monday holidays, cluster with 11 patterns. (b) Tuesday holidays, cluster with 19 patterns.

Figure 4.3: Holidays grouped by the same weekly behavior and which occurred at the same day
(Approach 1).

In these two graphs it is possible to observe which different special days (properly standard-

ized) was grouped in the same cluster in order to perform the load forecasting.

The representation of all clusters of patterns can be seen in appendix A.1.

In table 4.2 the number of patterns obtained on database using the properly correction and the

ITLMS for classification is shown.

Table 4.2: Database complete description.

Approach 1 (λ = 0.9) Approach 2 (λ = 0.1)
Special Day Real Data

Monday 11
Tuesday 19

Wednesday 14
Thursday 22

Friday 10
Friday 6

Special Day Real Data
Monday 11
Tuesday 22

Wednesday 14
Thursday 22

Friday 19

The reason of the database considering two different groups of special days which occur on

Friday in the approach 1 is because these holidays, even falling on same weekday, have a different

weekly behavior and the settings given to ITLMS led to consider these days in different clusters

(See figure 4.4).
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(a) Friday holidays (1), cluster with 10 patterns. (b) Friday holidays (2), cluster with 6 patterns.

Figure 4.4: Holidays grouped by the same weekly behavior and which occurred at the same day.

It is interesting to observe that the lowest value of consumption in each diagram corresponds

to the consumption on Sunday, so, it is simple to identify each diagram in association to each day

of the week. The phenomenon of "extended weekend" is easily detected in the Tuesday cluster

where the consumption on Monday is on average smaller that on the other working days.

4.2 Densification of Data Set

As stated before in section 3.1, the densification trick using ITLMS algorithm will be applied

as a way of resolving the problem of lack of historical data, insufficient to an AANN training

practice.

It is thus intended that the training set is composed of only virtual points, keeping the totality

of the real data to be used in the validation phase. This largely increases the robustness of the

validation procedure and the confidence in the results it will provide.

The ITLMS algorithm for each cluster was run in order to create a dense cluster of virtual

data.

In table 4.3 the full description of the database obtained is shown. The different values of

virtual data can be justified with the number of the original real data and the number of iterations

needed by the mean shift algorithm to converge to a single mode.

In this study the convergence was reached after 21 iterations, generating 21 virtual patterns

for each original data point in approach 1. In approach 2 the convergence was reached after 59

iterations, generating 59 virtual patterns for each original data point. I.e., the total number of

virtual patterns in each cluster is the number of original real points times the number of iterations

performed.
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Table 4.3: Database complete description.

Approach 1 (λ = 0.9) Approach 2 (λ = 0.1)
Special Day Real Data Virtual Data

Monday 11 231
Tuesday 19 399

Wednesday 14 294
Thursday 22 462

Friday 10 210
Friday 6 126

Special Day Real Data Virtual Data
Monday 11 649
Tuesday 22 1298

Wednesday 14 826
Thursday 22 1298

Friday 19 1121

The two following box plots 4.5 represent the degree of dispersion (spread) and skewness be-

tween real and virtual data given in first approach to the Monday holidays. It is possible to verify

that ITLMS algorithm converges the virtual data for the mode of the real data.

When dealing with neural networks training it is very important the evaluation of the disper-

sion and skewness of the training data, once that they will reflect on the final quality of results.

Therefore, as the dispersion of the training data on each cluster is low, good results are expected.

(a) Real data of Monday holidays. (b) Virtual data of Monday holidays.

Figure 4.5: Box plots represent the evolution of the densification trick using ITLMS algorithm on
group of Monday holidays.

The representation of the densification of all data sets can be seen in appendix A.2.
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Load Forecasting Models

In this chapter all models which were taken into account to perform the load forecasting on

special days will be described, as well as the results of each of them.

As mentioned above, all models were based on Autoencoders so in order to perform their

training the MATLAB NN Toolbox and their functions was used as will be explained below.

5.1 Training with MATLAB NN Toolbox

The implementation of neural networks has proven to be a complex task, composed of many

sub-tasks that must be carefully considered in order to achieve high accuracy. Can be considered

sub-tasks like the data normalization (properly dealt in Chapter 4),the choice on the number of

hidden layers and neurons, the selection of the activation functions and network training func-

tions, among many others topics and parameters that will be taken into account in this Chapter.

In order to perform the training of the autoencoder (AANN), as outlined above the load fore-

casting will be based on the daily energy consumption of the days preceding the holiday.

To find the best training model of the autoencoder (AANN), the MATLAB Neural Network

Toolbox was used. This Toolbox contains many network training functions, so after various ex-

periences the two training functions which achieved the best results were selected, Levenberg-

Marquardt backpropagation (trainlm) and bayesian regulation backpropagation (trainbr). These

two training functions will use the MSE performance function. Its results can be seen further

below.

39



40 Load Forecasting Models

5.1.1 Levenberg-Marquardt backpropagation

trainlm is a network training function that updates weight and bias values according to Levenberg-

Marquardt Algorithm (LMA) optimization. It is often the fastest backpropagation algorithm in the

MATLAB toolbox, although it does require more memory than other algorithms [5].

The LMA is a method of optimization firstly published by Kenneth Levenberg [121] and then

improved by Donald Marquardt [122].

The LMA method is a standard technique used to solve nonlinear least squares problems. This

optimization method is indeed a combination of two minimization methods: the gradient descent

method and the Gauss-Newton method.

In the gradient descent method, the sum of the squared errors is reduced by updating the

parameters in the direction of the greatest reduction of the least squares objective. In the

Gauss-Newton method, the sum of the squared errors is reduced by assuming the least squares

function is locally quadratic, and finding the minimum of the quadratic.

Therefore, LMA method brings together the best from both methods, acts more like a gradient-

descent method when the parameters are far from their optimal value, and acts more like the

Gauss-Newton method when the parameters are close to their optimal value [123].

Figure 5.1: Levenberg-Marquardt Algorithm.

The LMA (like Newton’s methods) was designed to approach second-order training speed

without having to compute the Hessian matrix. When the performance function has the form

of a sum of squares (as is typical in training neural networks), then the Hessian matrix can be

approximated as

H = JT J (5.1)
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and the gradient will be

g = JT e (5.2)

where J is the Jacobian matrix that contains first derivatives of the network errors with respect

to the weights and biases, and e is a vector of network errors. The Jacobian matrix can be com-

puted through a standard backpropagation technique that is much less complex than computing

the Hessian matrix [124].

The LMA adaptively varies the parameter updates between the gradient descent and Gauss-

Newton update using this approximate Hessian matrix,

xk+1 = xk − [JT J+µI]−1JT e (5.3)

where I is the identity matrix and µ is the Marquardt adjustment parameter.

Small values of the algorithmic parameter µ result in a Gauss-Newton update and large

values of µ result in a gradient descent update. At a large distance from the function minimum, the

steepest descent method is utilized to provide steady and convergent progress toward the solution.

As the solution approaches the minimum, µ is adaptively decreased, the Levenberg-Marquardt

method approaches the Gauss-Newton method, and the solution typically converges rapidly to the

minimum [5, 123].

Validation vectors are used to stop training early if the network performance on the validation

vectors fails to improve or remains the same for maximum validation failures epochs in a row.

Test vectors are used as a further check that the network is generalizing well, but do not have any

effect on training [5].

The NN training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached;

• The maximum amount of time is exceeded;

• Performance is minimized to the goal;

• The performance gradient falls below the minimum stipulated;

• Marquardt adjustment parameter µ exceeds the maximum defined;

• Validation performance has increased more than maximum validation failures.

It is important to note that, this function uses the Jacobian, which assumes that performance

is a mean or sum of squared errors. Therefore, networks trained with this function must use either

the MSE or SSE performance function.
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5.1.2 Bayesian regulation backpropagation

trainbr is a network training function that updates the weight and bias values according to

Levenberg-Marquardt optimization. It minimizes a combination of squared errors and weights,

and then determines the correct combination so as to produce a network that generalizes well. The

process is called Bayesian regularization [5].

With this regularization, any oversized network should be able to sufficiently represent the true

function.

Considering the application of MacKay’s Bayesian techniques [125, 126] will allow the opti-

mal setting of the regularization parameters and it will be possible to prevent overfitting in neural

network training [127].

As occurs in trainlm, this function uses the Jacobian for calculations, thus the performance

function considered should be MSE or SSE.

This Bayesian regularization takes place within the Levenberg-Marquardt algorithm. Back-

propagation is used to calculate the Jacobian jX of performance with respect to the weight and

bias variables X . Each variable is adjusted according to LMA,

j j = jX ∗ jX (5.4)

je = jX ∗ E (5.5)

dX = −( j j+µI) (5.6)

where E is all errors and I is the identity matrix.

For more details the papers of Mackay [125, 126] and Foresee and Hagan [127] can be

consulted.

The NN training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached;

• The maximum amount of time is exceeded;

• Performance is minimized to the goal;

• The performance gradient falls below the minimum stipulated;

• Marquardt adjustment parameter µ exceeds the maximum defined;

• Validation performance has increased more than maximum validation failures.
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5.1.3 Division of data set

The data set is usually divided in two or three sets. In this thesis will be considered the

division in three parts: train, test and validation. The training set is implemented to built up the

model adjusting the weights on NN, while test set is to prevent overfitting and validation set is to

validate the model built determining how well the predictive model generalizes.

In all models of autoencoder training the following division of data of train, test and validation

was taken into account:

Train and Test Virtual data (was divided considering as train data all virtual data least the

same number of real data, in order to applied the last number of virtual data as test data);

Validation Real data.

Figure 5.2: Division of data set.

5.1.4 Autoencoders structures and others relevant parameters

In this study, three different autoencoders structures will be considered:

1. The first autoencoder structure is composed by eight-input, eight-output and seven neurons

in the hidden layer;

2. The second is composed by seven-input, seven-output and six neurons in the hidden layer;

3. The third is composed by five-input, five-output and four neurons in the hidden layer.

It is important to note that the last neurons in each input and output configuration correspond

to the special day, the other inputs / outputs correspond to the days preceding the holiday. There-

fore, these three structures are considered in way to verify the influence of more or less days in

the forecasting model. It will be analysed only these three structures, once to evaluate all possible

structures would require an exhaustive study, this would require more time than we had.
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The following picture illustrate the general autoencoder structure.

Figure 5.3: Autoencoder structure, from MATLAB.

As shown by the picture, and was presented in subchapter 3.2, the autoencoder needs two

transfer functions for “encoding” and “decoding”, i.e., a compressing operation transforming from

data space to code space at the hidden layer, and reverse transformation from code space to data

space at the output layer.

Transfer functions or activation functions, ϕ at 3.22, are used for limiting the amplitude of the

output of a neuron.

The “encoding” transfer function was performed by a hyperbolic tangent sigmoid (tansig) and

is given by

a = tansig(n) = 2/
(

1+ e(−2 · n)
)
−1 (5.7)

where n represents input data and a output data.

Figure 5.4: Hyperbolic tangent sigmoid transfer function, from [5].

The “decoding” was performed by a linear transfer function (purelin) and is given by

a = purelin(n) = n (5.8)

Figure 5.5: Linear transfer function, from [5].
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The following figure illustrate an example of the window of the results of training the autoen-

coder with the MATLAB NN Toolbox. In this example the cluster of Thursday holidays of the first

approach of the densification trick using ITLMS algorithm and the function Levenberg-Marquardt

backpropagation (trainlm) as the network training function were used.

Figure 5.6: Neural network training window, from MATLAB.

In this figure it is possible to observe the principal parameters which were taken into account

to make the autoencoder training:

Table 5.1: Network training functions parameters.

Maximum number of epochs 5000
Performance goal 0
Maximum validation failures 2000
Minimum performance gradient 1×10−14

Note: These parameters were chosen after many tests and simulations, is possible achieve

better results with different parameters, but this would require an exhaustive study.

Besides of these parameters, to perform the diverse training models the selection of the train-

ing function (trainlm or trainbr) and the structure of the autoencoder (8-7-8, 7-6-7 or 5-4-5) were

also taken into account. In the example of the figure 5.6 can be seen how the choice of all these

parameters was made.
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Another important observation in this example is the NN training which was stopped when the

maximum number of epochs were reached.

The MATLAB NN Toolbox gives also more results to evaluate the performance of training

models. Then the comparative results of the two training functions (trainlm and trainbr) with the

autoencoder structure 8-7-8 under the same conditions will be presented.

(a) trainlm (training performance MSE=5.47×10−17) (b) trainbr (training performance MSE=1.64×10−16)

Figure 5.7: Performance plots, from MATLAB.

(a) trainlm (b) trainbr

Figure 5.8: Training state plots, from MATLAB.



5.1 Training with MATLAB NN Toolbox 47

Analysing the results is always important evaluate if an overfitting problem occurs at the pro-

cess of training the NN.

A model is typically trained by maximizing its performance on some set of training data. By

the other hand, the model efficacy is determined not by its performance on the training data but by

its ability to perform well on unseen data.

When a model begins to memorize training data rather than learning to generalize from trend

this is called overfitting. This corresponds a test data error much higher than the train data error

and means that the neural system is over determined [6]. A properly trained system should corre-

spond with the same order of magnitude for the error measures to both training and testing data.

To avoid overfitting, this point must be identified and the training must be stoped. The following

figure ilustrates the point where the optimal learning and generalization are achieved, that is close

to the global minimum of test error.

Figure 5.9: Overfitting, overfitting, from the training epoch t∗, from [6].

Therefore, through the results of the figure 5.7 is possible verify that the problem of overfitting

does not occur.

Despite the results indicate that the trainlm is the training function with minor training per-

formance MSE, the evaluation of the best method of training autoencoders is only possible to

verify further along once that only the results of the complete model can demonstrate the correct

validation of the predictions.
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5.2 Description of the Forecasting Models

In this section the complete models which were used to perform the forecasts will be described.

Taking into account the base models presented in the section 3.3 the following three models

will be considered:

Model 1 – Unconstrained search model - an optimization algorithm searches for the input

values that minimize the input/output error on the signal that correspond to the special day;

Model 2 – Unconstrained search model - an optimization algorithm searches for the input

values that minimize the input/output error on all the signals except one that correspond to

the special day;

Model 3 – Constrained search model - an optimization algorithm searches for the input values

that minimize the input/output error on all the signals.

The following pictures illustrate well these three forecasting models.

Figure 5.10: Model 1 – Autoencoder and optimization algorithm - Unconstrained Search model.

Figure 5.11: Model 2 – Autoencoder and optimization algorithm - Unconstrained Search model.
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Figure 5.12: Model 3 – Autoencoder and optimization algorithm - Constrained Search model.

Therefore, it is concluded that, complete forecasting models can be divided as follows.

Table 5.2: Forecasting models, complete description.

Model Optimization search model Days preceding the holiday Training functions
1

4
trainlm

2 trainbr
3

6
trainlm

4 trainbr
5

7
trainlm

6 trainbr
7

4
trainlm

8 trainbr
9

6
trainlm

10 trainbr
11

7
trainlm

12 trainbr
13

4
trainlm

14 trainbr
15

6
trainlm

16 trainbr
17

7
trainlm

18 trainbr
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5.3 Results analysis

In this section the results of the models under analysis will be presented, as well as the relating

discussion of them.

Before being assessed all forecasting models, the metaheuristics PSO and EPSO were evalu-

ated in order to find which is the most robust.

5.3.1 PSO vs EPSO

In order to evaluate the most robust metaheuristic method to implement in forecasting model,

some tests were performed.

In these tests only one forecasting model was considered and the results given by PSO and

EPSO in the same conditions.

The forecasting model was

• Training function – trainbr;

• Horizon of days preceding the holiday – 7 days;

• Optimization search model – model 3.

The initialization parameters of the two metaheristics are

Table 5.3: Parameters initialization.

PSO EPSO

Parameters Value
Wm 0.03
Wc 0.06

Iterations 200

Parameters Value
Wi 0.03
Wm 0.03
Wc 0.06
Wb 0.06
τ 0.01
P 0.8

Iterations 200

Note: These parameters initialization were chosen after many tests and simulations, is possi-

ble achieve better results with different parameters, but this would require an exhaustive study.
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Therefore, the results after ten forecasts of the first real data of Thursday holidays cluster

(normalized daily energy consumption = 0.126935) are illustrated in the next figures.

(a) PSO (b) EPSO

Figure 5.13: Ten forecasts of the same day using PSO and EPSO as optimization algorithm.

The following pictures illustrate an example of the MSE minimization which were performed

by PSO and EPSO algorithms.

(a) PSO (b) EPSO

Figure 5.14: MSE minimization using PSO and EPSO as optimization algorithm.

Given these results, it can be concluded that EPSO proved to be a metaheuristic more robust

than the PSO.

The algorithm robustness, which has to do with the warranty (probability) that, regardless of

the initialization, the algorithm will converge to the optimal or your vicinity. It is not expected that

the algorithm is executed several times on the same problem. It is expected that it gives only one

trust result. It is precisely this confidence in the result which is measured by the concept of ro-

bustness, it is expected that the algorithm when, executed several times, always finds good results
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with very small deviations of the optimal solution.

Analyzing the results in detail, it was found that the PSO, in many cases, gets stuck in local

optima and that this influences the quality of results.

Furthermore, EPSO has a better accuracy for the same computational effort.

Therefore, the optimization method chosen is the EPSO.

5.4 Prediction results

The tests of the all models were performed in four stages:

1. With the first approach of the densification of data and the application of only one cluster

(e.g. cluster of Thursday holidays) all 18 forecasting models were tested. The intention with

this study is verify the influence of more or less days in the forecasting model;

2. After the evaluation the results of the first stage the best models (consideration of more or

less days preceding the holiday) were considered to perform the forecasting on all clusters

of the first approach of data densification;

3. For the best model found in the stage 2, the influence of the consideration of two different

approachs of densification of data was evaluated (Approach 1: 21 virtual data for each real

data; Approach 2: 59 virtual data for each real data).

4. In the end, the comparison with prediction results given in [4] will be made.

The results analisys will be evaluated by some forecasting indicators such as the variation

range std (standard deviation), MSE (mean square error), MAE (mean absolute error), NMSE (nor-

malized mean square error), NMAE (normalized mean absolute error) and MAPE (mean absolute

percentage error). These performance metrics and their calculations are shown in the following

table.
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Table 5.4: Performance metrics and their calculations.

Metrics Calculation

std std (xi) =

n
∑

i=1
(xi−x)

n−1

MSE MSE =

n
∑

i=1
(xi−x̂i)

2

n

MAE MAE =

n
∑

i=1
|xi−x̂i|

n

NMSE NMSE =

n
∑

i=1
(xi−x̂i)

2

std(x̂i)·n

NMAE NMAE =

n
∑

i=1
|xi−x̂i|
n
∑

i=1
|xi|

MAPE MAPE =

n
∑

i=1
|xi−x̂i|/xi

n ×100%
∗ xi and x̂i are the real values and predicted values.

5.4.1 Stage 1

In this first stage, it is intended to make the evaluation of all forecasting models.

After all tests the following results were reached.

Table 5.5: Prediction results summary of all forecasting models (Thursday).

Model std MSE MAE NMSE NMAE MAPE
1 1.058% 1.0E-04 0.871% 2.865% 6.675% 6.719%
2 0.483% 2.5E-05 0.372% 0.699% 2.850% 2.841%
3 0.944% 8.2E-05 0.783% 2.261% 6.006% 6.036%
4 0.384% 1.0E-05 0.267% 0.288% 2.047% 2.037%
5 0.138% 1.3E-05 0.298% 0.350% 2.282% 2.282%
6 0.277% 8.6E-06 0.221% 0.238% 1.712% 1.712%
7 1.929% 3.4E-04 1.433% 9.512% 10.991% 11.093%
8 0.984% 9.0E-05 0.800% 2.487% 6.134% 6.161%
9 2.669% 6.7E-04 2.122% 18.532% 16.272% 16.438%
10 0.625% 3.0E-05 0.470% 0.823% 3.607% 3.592%
11 0.453% 1.1E-05 0.288% 0.308% 2.208% 2.209%
12 0.306% 1.7E-06 0.090% 0.048% 0.691% 0.681%
13 1.757% 2.9E-04 1.352% 7.880% 10.368% 10.462%
14 0.724% 5.1E-05 0.590% 1.404% 4.523% 4.535%
15 1.708% 2.7E-04 1.476% 7.490% 11.317% 11.406%
16 0.537% 2.3E-05 0.415% 0.636% 3.183% 3.168%
17 0.373% 7.3E-06 0.233% 0.202% 1.788% 1.786%
18 0.304% 1.1E-06 0.071% 0.031% 0.544% 0.540%
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(a) All models.

(b) Six best models.

Figure 5.15: Prediction results to all 22 Thursday holidays.

Note: The special days in this graph are not distributed by a temporal logic but rather by the

value of daily energy, from larger to smaller.

It is possible verified that have many models with predictions quite far the true values. The

best models at the issue of number of days that preceding the special day, are those which consider

7 days preceding the holiday.

This occurs because the consideration of more days allows a better differentiation of the pat-

terns and their weekly behavior.

Therefore, these six models will be analysed in more detail in the next stage.
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5.4.2 Stage 2

Once found the best models, their results to all clusters of special days will be analysed.

All these results can be seen in appendix B.0.3. In this analysis only will be considered in

more detail the best model of all, the Model 18. The results can be seen below:

Table 5.6: Prediction results summary of the Model 18.

Special day Real days tested std MSE MAE NMSE NMAE MAPE
Monday 11 0.349% 2.0E-08 0.007% 0.001% 0.053% 0.054%
Tuesday 19 0.375% 1.3E-06 0.073% 0.033% 0.571% 0.569%

Wednesday 14 0.466% 1.6E-07 0.031% 0.003% 0.234% 0.234%
Thursday 22 0.304% 1.1E-06 0.071% 0.031% 0.544% 0.540%
Friday (1) 10 0.243% 3.4E-09 0.003% 0.0001% 0.027% 0.028%
Friday (2) 6 0.444% 2.0E-10 0.001% 4.4E-06% 0.007% 0.007%

(a) Monday (b) Tuesday

(c) Wednesday (d) Thursday

(e) Friday (1) (f) Friday (2)

Figure 5.16: Prediction results summary of the Model 18 applied to all clusters.
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With this model excellent results were achieved. Through the graphs is possible to observe

that the prediction results were close enough of the real results.

The Normalized Mean Absolute Error (NMAE) varies from 0.007% (Friday (2)) to 0.571%

(Tuesday), while the variation range of the corresponding standard deviation is from 0.243% to

0.466%. The indicator Mean Absolute Percentage Error (MAPE) varies from 0.007% to 0.569%.

This accuracy is very satisfactory.

5.4.3 Stage 3

This stage, have the objective of to evaluate the performance of the best model found consid-

ering two different approaches of densification of data. Using ITLMS, as stated in chapter 4, two

different virtual data sets were achieved (Approach 1: 21 virtual data for each real data; Approach

2: 59 virtual data for each real data).

As the clusters of real data are not equal for the two approaches, this comparison only was

made to the three clusters with the same real data. The results achieved were:

Table 5.7: Prediction results summary. Comparison between two different approachs of densifica-
tion of data (A1 and A2).

Special day Real days tested std A1 std A2 NMAE A1 NMAE A2
Monday 11 0.349% 0.349% 0.053% 0.053%

Wednesday 14 0.466% 0.463% 0.234% 0.254%
Thursday 22 0.312% 0.312% 0.544% 0.686%

(a) Monday (b) Wednesday

(c) Thursday

Figure 5.17: Prediction results of the two approaches.
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It is possible conclude that this two approaches are equivalents. For the Mondays predictions

the same forecasting indicators were obtained. In the other two cluster the results were also very

close.

5.4.4 Stage 4

In this final stage, the results achieved in the paper [4] will be compared with the results that

were given by the best model found in this work, considering, logically, the same clusters of data.

In [4] were used the same data sets of the second approach of the densification of data per-

formed in this dissertation.

In order to provide a fuller understanding of the differences between this two forecasting

methods, the following table presents the characteristics of both techniques.

Table 5.8: Characteristics of two different forecasting methods. Proposed in this work and pro-
posed in the paper [4].

Based on Autoencoders Based on Simple Feedforward NN [4]
Network Training Structure

8-7-8 7-3-1
Transfer functions

tansig – purelin tansig – purelin
Training functions

Bayesian regulation backpropagation Simple Backpropagation
Forecasting Model
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Table 5.9: Prediction results summary. Comparison with the results achieved in [4]

Special day Real days tested std std in [4] NMAE NMAE in [4]
Monday 11 0.35% 1.76% 0.05% 1.85%
Tuesday 22 0.45% 2.50% 0.91% 2.82%

Wednesday 14 0.46% 1.90% 0.25% 3.41%
Thursday 22 0.31% 1.66% 0.69% 2.55%

Friday 19 0.50% 2.46% 1.08% 3.92%

The Normalized Mean Absolute Error (NMAE) varies from 0.05% (Monday) to 1.08% (Fri-

day) for the model with Autoencoder, while the results in [4] were in the order of 1.85% (Monday)

to 3.92% (Friday).

The variation range of the corresponding standard deviation is from 0.31% to 0.50% better

than in [4] with 1.66% to 2.50%.

As can be demonstrated, with this new forecasting model into analysis, better results were

achieved.

An improvement of std prediction parameter in the order of 76% (Wednesday) to 82% (Tues-

day) was achieved, and for NMAE in the order of 68% (Tuesday) to 97% (Monday).

To all results was verified that the best results were achieved to the clusters with less days in

real data. It is simple verify that this occur because with less data is more simple to find the cor-

rect pattern while for a cluster with more patterns becomes more difficult to interpolate the correct

pattern.

For more detail of the results achieved the following excel file can be consulted:

https://dl.dropboxusercontent.com/u/23872037/Results.xlsx

https://dl.dropboxusercontent.com/u/23872037/Results.xlsx


Chapter 6

Conclusion

This work demonstrates the advantage of using the Information Theoretic Learning Mean Shift

algorithm, in the form of a desnsification trick, in order to solve the problem of scarce data on spe-

cial days.

With this tool became possible the neuronal networks training even when faced with scarce

data sets, the problem of special days. The ITLMS can be used to identify distinct clusters in the

load data, associating in a easy way holidays that occurs in distinct days of the week and then

allow the virtual data collected representing these specific clusters.

It has been proven that the use of the virtual data as training set can be applied as if they were

training with real data.

The alliance of this powerful tool with an Auto Associative Neural Network, demonstrated to

be a robust model in the load forecasting on special days.

This Autoencoder based on missing data estimation, use an optimization performed by the

metaheuristic EPSO in order to predict the special day (missing data) taking in consideration the

days that precede the holiday.

The high accuracy achieved by this method confirms that this tools can bring improvements

in the performance of the load forecasting methodologies, specially, on days with occurence of

scarce historical data to represent their behavior.

The achieved results, considering the NMAE indicator, were in the order of 0.007% (Friday

(2)) to 0.571% (Tuesday) in the first approach of data densification (21 virtual data for each real

data), and in the order of 0.05% (Monday) to 1.08% (Friday) in the second approach (59 virtual

data for each real data).

Through the obtained results, it can be concluded that Autoencoders based on missing data

estimation gives better results than a simple Feedforward Neural Network.

An improvement in the predictions in the order of 68% to 97% was achieved.

This topology could be an important step in load forecasting on special days and even on nor-

mal days.

59
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6.1 Future Work

In spite of the advances done in this work, much work remains to be done in the area of load

forecasting on special days.

It would be important verify the performance of this new forecasting model, with historical

data from other power distribution utilities.

It would be also interesting perform the load forecasting not just on holidays but also on nor-

mal days.

Besides the several tests that were made, more tests with other parameters in each tool of the

model can allow the achievement of better results.

The development a more efficient algorithm to the autoencoder training can bring better re-

sults. There are several ones using evolutionary algorithms in the literature, for example in [128]

in order to perform the wind power forecasting, the NN training with metaheuristic EPSO was im-

plemented. In the same work as in others [129, 130], were considered others optimization criteria

adopting entropy concepts to train the NN, based in mutual information principle [131]. Renyi’s

Entropy is combined with a Parzen Windows estimation of the error pdf to form the basis of three

criteria (MEE, MCC and MEEF) under which neural networks are trained. In some researchs, the

results was favourably compared with the traditional MSE criterion.



Appendix A

Results of the data treatment

A.1 Results of the load correction method

A.1.1 Approach 1

Figure A.1: Monday holidays, cluster with 11 patterns.

Figure A.2: Tuesday holidays, cluster with 19 patterns.
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Figure A.3: Wednesday holidays, cluster with 14 patterns.

Figure A.4: Thursday holidays, cluster with 22 patterns.

Figure A.5: Friday holidays (1), cluster with 10 patterns.



A.1 Results of the load correction method 63

Figure A.6: Friday holidays (2), cluster with 6 patterns.

A.1.2 Approach 2

Figure A.7: Monday holidays, cluster with 11 patterns.

Figure A.8: Tuesday holidays, cluster with 22 patterns.
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Figure A.9: Wednesday holidays, cluster with 14 patterns.

Figure A.10: Thursday holidays, cluster with 22 patterns.

Figure A.11: Friday holidays, cluster with 19 patterns.
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A.2 Results of the densification of data sets

A.2.1 Approach 1

(a) Real data of Monday holidays. (b) Virtual data of Monday holidays.

Figure A.12: Box plots represent the evolution of the densification trick using ITLMS algorithm
on group of Monday holidays.

(a) Real data of Tuesday holidays. (b) Virtual data of Tuesday holidays.

Figure A.13: Box plots represent the evolution of the densification trick using ITLMS algorithm
on group of Tuesday holidays.
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(a) Real data of Wednesday holidays. (b) Virtual data of Wednesday holidays.

Figure A.14: Box plots represent the evolution of the densification trick using ITLMS algorithm
on group of Wednesday holidays.

(a) Real data of Thursday holidays. (b) Virtual data of Thursday holidays.

Figure A.15: Box plots represent the evolution of the densification trick using ITLMS algorithm
on group of Thursday holidays.
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(a) Real data of Friday holidays (1). (b) Virtual data of Friday holidays (1).

Figure A.16: Box plots represent the evolution of the densification trick using ITLMS algorithm
on group of Friday holidays (1).

(a) Real data of Friday holidays (2). (b) Virtual data of Friday holidays (2).

Figure A.17: Box plots represent the evolution of the densification trick using ITLMS algorithm
on group of Friday holidays (2).
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A.2.2 Approach 2

(a) Real data of Monday holidays. (b) Virtual data of Monday holidays.

Figure A.18: Box plots represent the evolution of the densification trick using ITLMS algorithm
on group of Monday holidays.

(a) Real data of Tuesday holidays. (b) Virtual data of Tuesday holidays.

Figure A.19: Box plots represent the evolution of the densification trick using ITLMS algorithm
on group of Tuesday holidays.
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(a) Real data of Wednesday holidays. (b) Virtual data of Wednesday holidays.

Figure A.20: Box plots represent the evolution of the densification trick using ITLMS algorithm
on group of Wednesday holidays.

(a) Real data of Thursday holidays. (b) Virtual data of Thursday holidays.

Figure A.21: Box plots represent the evolution of the densification trick using ITLMS algorithm
on group of Thursday holidays.
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(a) Real data of Friday holidays. (b) Virtual data of Friday holidays.

Figure A.22: Box plots represent the evolution of the densification trick using ITLMS algorithm
on group of Friday holidays (1).



Appendix B

Prediction results

Table B.1: Forecasting models, complete description.

Model Optimization search model Days preceding the holiday Training functions
1

4
trainlm

2 trainbr
3

6
trainlm

4 trainbr
5

7
trainlm

6 trainbr
7

4
trainlm

8 trainbr
9

6
trainlm

10 trainbr
11

7
trainlm

12 trainbr
13

4
trainlm

14 trainbr
15

6
trainlm

16 trainbr
17

7
trainlm

18 trainbr
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B.0.3 Stage 2

Table B.2: Prediction results summary of forecasting models with 7 days preceding the holiday
(Monday).

Model std MSE MAE NMSE NMAE MAPE
5 0.134% 8.3E-06 0.217% 0.238% 1.719% 1.694%
6 0.330% 8.2E-07 0.061% 0.023% 0.486% 0.490%

11 0.334% 3.9E-06 0.134% 0.112% 1.063% 1.063%
12 0.350% 2.2E-08 0.010% 0.001% 0.082% 0.083%
17 0.337% 1.6E-06 0.105% 0.047% 0.833% 0.833%
18 0.349% 2.0E-08 0.007% 0.001% 0.053% 0.054%

Table B.3: Prediction results summary of forecasting models with 7 days preceding the holiday
(Tuesday).

Model std MSE MAE NMSE NMAE MAPE
5 0.278% 1.5E-05 0.293% 0.366% 2.304% 2.323%
6 0.379% 9.9E-06 0.204% 0.249% 1.608% 1.610%

11 0.464% 1.3E-05 0.243% 0.335% 1.915% 1.902%
12 0.391% 1.4E-06 0.096% 0.036% 0.756% 0.757%
17 0.415% 1.5E-05 0.269% 0.382% 2.120% 2.111%
18 0.375% 1.3E-06 0.073% 0.033% 0.571% 0.569%

Table B.4: Prediction results summary of forecasting models with 7 days preceding the holiday
(Wednesday).

Model std MSE MAE NMSE NMAE MAPE
5 0.669% 4.7E-05 0.467% 0.950% 3.572% 3.566%
6 0.454% 2.3E-06 0.071% 0.046% 0.547% 0.554%

11 0.589% 1.4E-05 0.301% 0.23% 2.307% 2.333%
12 0.480% 9.4E-07 0.063% 0.019% 0.483% 0.478%
17 0.404% 1.5E-05 0.308% 0.314% 2.356% 2.384%
18 0.466% 1.6E-07 0.031% 0.003% 0.234% 0.234%

Table B.5: Prediction results summary of forecasting models with 7 days preceding the holiday
(Thursday).

Model std MSE MAE NMSE NMAE MAPE
5 0.138% 1.3E-05 0.298% 0.350% 2.282% 2.282%
6 0.277% 8.6E-06 0.221% 0.238% 1.712% 1.712%

11 0.453% 1.1E-05 0.288% 0.308% 2.208% 2.209%
12 0.306% 1.7E-06 0.090% 0.048% 0.691% 0.681%
17 0.373% 7.3E-06 0.233% 0.202% 1.788% 1.786%
18 0.312% 1.1E-06 0.071% 0.031% 0.544% 0.540%



Table B.6: Prediction results summary of forecasting models with 7 days preceding the holiday
(Friday (1)).

Model std MSE MAE NMSE NMAE MAPE
5 0.246% 8.9E-09 0.007% 0.0004% 0.058% 0.058%
6 0.237% 8.9E-07 0.036% 0.036% 0.296% 0.299%

11 0.570% 2.5E-05 0.412% 1.007% 3.414% 3.405%
12 0.251% 1.9E-08 0.008% 0.001% 0.066% 0.067%
17 0.279% 4.8E-06 0.154% 0.196% 1.274% 1.257%
18 0.243% 3.4E-09 0.003% 0.0001% 0.027% 0.028%

Table B.7: Prediction results summary of forecasting models with 7 days preceding the holiday
(Friday (2)).

Model std MSE MAE NMSE NMAE MAPE
5 0.379% 2.4E-05 0.422% 0.545% 3.226% 3.275%
6 0.442% 1.0E-09 0.003% 2.3E-05% 0.021% 0.021%
11 0.690% 4.6E-05 0.565% 1.043% 4.322% 4.349%
12 0.446% 3.0E-10 0.001% 6.7E-06% 0.008% 0.007%
17 0.639% 1.2E-05 0.312% 0.259% 2.388% 2.387%
18 0.444% 2.0E-10 0.001% 4.4E-06% 0.007% 0.007%

Appendix C

Publications

• Paper to be submitted in a Periodical at Power System
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Load Forecasting on Special Days Using
ITL Mean Shift and Autoassociative Neural

Networks
Daniel Sá, Vladimiro Miranda, Fellow, IEEE and Jean Sumaili, Fellow, IEEE

Abstract—In this paper, a new concept of load forecasting
on special days is presented. Using the Information Theoretical
Learning Mean Shift algorithm in a process of densification
(densification trick) of a scarce data set, resulting in the criation
of virtual data to train an Autoassociative Neural Network,
allows the use of all real data for validation purposes. The
main objective is resolve the problem of not enough amount
existence of historical information to represent the special days,
such as holidays. This approach is based on Autoassociative
Neural Networks as a missing data estimator, in which will be
considered the special days as the missing data. An example with
daily energy consumption real data from a Brazilian distribution
utility illustrates this forecasting model.

Index Terms—Information Theoretic Learning, Mean shift,
Autoassociative Neural Networks, load forecasting.

I. INTRODUCTION

NOWADAYS with the deregulation of the power system,
requirement of higher efficiency and establishment of

new standards on environmental preservation, were introduced
harder constraints on the planning, management and control
of the power system [1].

Commercial success of the energy companies depends on
the ability to submit competitive bids, and improvements in
forecasting the load can lead to substantial increases in trading
profits.

The quest for top-quality forecasting involves a broad vari-
ety of investigation fields, including several areas of engineer-
ing, economy, meteorology, and others. The practical details
of each particular load forecasting implementation differ from
case to case, depending on the objectives. In this paper the
repercussion with special days will be taken into account.

Holidays are special days that have a high influence in the
load demand curve. In the data set, it is observed that load
demand is lower on holidays than on normal days. Moreover,
the load demand curve is not only affected on holidays, but
also on days located before and after holidays.

According to [2], there are two types of special days, fixed
by weekday and fixed by date. A special day fixed by weekday
occurs always at the same weekday but its date varies (e.g.
Easter). Special days fixed by date fall always at the same
time of year (e.g. Christmas). However, it may occur during
the weekend in one year and in the middle of the week in the
next year.

Load forecasting for holidays is a challenging task once only
a small number of recent historical data is available, compared

with what is available for normal weekdays. Consequently, av-
erage load forecasting errors for the holidays are much higher
than those for normal days. Besides, these kinds of events
may change the general forecasting operations, channeling the
performance to unacceptable levels.

So far, many studies of the load forecasting on special
days have been made and the majority are based on neural
networks(NN) techniques. Despite the success of these meth-
ods none of them has been able to solve the problem of the
lack of historical information. Therefore, in this paper, the
resolution of this problem is based in the recent work of
Sumaili, Miranda et al. [3], where was proposed a new method
to solve the problem of the lack of historical data in special
days. They were inspired by the results of the Information
Theoretical Learning Mean Shift algorithm aplied in a process
denoted densification trick successfully applied in a problem
of incipient fault diagnosis in power transformers [4], where
scarce data on failures existed.

Thus, the ITLMS algorithm was used to populate, with
virtual data, a scarce set related to daily energy consumption
in special days. This allows the proper training of neuronal
networks with the virtual data, reserving all the scarce real
data for validation purposes. The networks are then used to
predict consumption in special days. An example with real
data from a Brazilian distribution utility was used in order to
illustrate the technique and the same database was used in this
work.

Consulting the relevant literature have been observed great
results for Autoencoders used as recognition machine [4], [5],
with this powerful tool can be estimated missing data in a
database. Considered the special days as a missing data, will
be evaluated if this tool can adequately predict these kind of
days.

In the end will be compared the achieved results with
Autoencoders and the results of the work [3] (with a simple
Feedforward Neuronal Network), evaluating which of them is
the best.

II. FORECASTING MODEL

The forecasting model applyed on special days, was in-
spired in the results of Autoencoders together with optimiz-
ation methods (e.g. Evolutionary Particle Swam Optimisation
(EPSO)) used in the estimation of missing data in a data-
base [4], [5].

Therefore, in this paper the forecasting will be performed
by an autoencoder. Autoencoders, are feedforward neural
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networks with a middle hidden layer that intends to reconstruct
the output equal the input, the size of the output layer is always
the same as the size of the input layer.

One interesting property of autoencoders is that may be
used as a recognition machine. If a new input vector provides
different characteristics from the global pattern of the data
used for training, the error between the output and input tends
to be high, since the result does not match the input.

Figure 1. Autoencoder and EPSO - Constrained Search forecasting model.

The constrained search model consists of an optimization
algorithm searches for the input values that minimize the
input/output error on all the signals. The EPSO metaheuristic
is used to estimate the missing values by optimizing the
objective function of minimization of the MSE. The complete
vector combining the estimated and the observed values is
fed into the autoencoder as input. In the figure 1, Xk and
Xu represent the known variables and the unknown / missing
variables, respectively.

It is important to note that the last neurons in each input
and output configuration correspond to the special day, the
other inputs / outputs correspond to the days preceding the
holiday. Therefore, the load forecasting will be based on the
daily energy consumption of the seven days preceding the
holiday.

III. CASE STUDY: DAILY ENERGY CONSUMPTION
FORECASTING ON SPECIAL DAYS

Allying the densification trick using ITLMS algorithm and
Autoencoders used as recognition machine is intended perform
the prediction on special days. The following sections describe
each phase of this new approach.

A. Data treatment
The historical data which were taken into account in this

paper are the same that were applied in [3], the real data from a
Brazilian distribution utility. The historical data refer to about
10 years of consumption (from January 2002 to September
2012)

The treatment of the historical data was achieved taking into
account the following criteria:

• The forecasting will be based on the daily energy con-
sumption of the seven days preceding the holiday. Week-
ends will not be analysed, nor consecutive holidays with
frequency inferior to eight days;

• The demand of the same special days are dissimilar each
year due to the system load growth/decline trend. If
this growth is ignored, the general shapes of same days
become similar. Therefore, the load forecasting will be
performed based on historical data of holidays with the
same behavior;

• As mentioned earlier, to solve the problem of the lack of
historical data on special days the ITLMS algorithm will
be used to make the densification of data set.

The first step to data treatment of the holidays and their
previous days is to make a normalization (with respect to the
consumption of the previous week) in all of them in order to
obtain their similarity. Then, ITLMS algorithm was used to
understand the similarity between the patterns. Therefore, it
was possible to identify distinct patterns for special days, and
cluster them in similar classes.

With setting λ = 0.9 in a first approach and λ = 0.1 in
a second approach in ITLMS parameters, the identification
of thirteen and ten different modes for each approach was
possible. The patterns converging to a common mode were
grouped in individual clusters. It was thus possible to form
clusters corresponding to the five days of the week (from
Monday to Friday) and others groups with the remaining
outliers that were not taken into consideration in this study.

As stated before, the densification trick using ITLMS al-
gorithm will be applied as a way of resolving the problem of
lack of historical data, insufficient to an autoencoder training
practice. The training set is composed of only virtual points,
keeping the totality of the real data to be used in the validation
phase. This largely increases the robustness of the validation
procedure and the confidence in the results it will provide.

In table I the full description of the database obtained is
shown. The number of patterns obtained on database using
the properly correction and the ITLMS for classification, and
the number of patterns of virtual data created by densification
of the real data. The different values of virtual data can be
justified with the number of the original real data and the
number of iterations needed by the mean shift algorithm to
converge to a single mode. In this paper was taken into account
two different approachs:

• Approach A: 21 iterations, generating 21 virtual data for
each real data;

• Approach B: 59 iterations, generating 59 virtual data for
each real data).

Table I
DATABASE COMPLETE DESCRIPTION.

Approach A (λ = 0.9) / Approach B (λ = 0.1)

Special Day Real Data Virtual Data
A B A B

Monday 11 11 231 649
Tuesday 19 22 399 1298

Wednesday 14 14 294 826
Thursday 22 22 462 1298

Friday 10 19 210 1121
Friday 6 — 126 —

The reason of the database considering two different groups
of special days which occur on Friday in the approach 1 is
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because these holidays, even falling on same weekday, have
a different weekly behavior and the settings given to ITLMS
led to consider these days in different clusters.

B. Prediction results

1) The influence of the consideration of two different ap-
proachs of densification of data: As the clusters of real data
are not equal for the two approaches, this comparison only
was made to the three clusters with the same real data. The
results achieved were:

Table II
PREDICTION RESULTS SUMMARY. COMPARISON BETWEEN TWO

DIFFERENT APPROACHS OF DENSIFICATION OF DATA (A1 AND A2).

Special day Real days std NMAE
A B A B

Monday 11 0.349% 0.349% 0.053% 0.053%
Wednesday 14 0.466% 0.463% 0.234% 0.254%
Thursday 22 0.312% 0.312% 0.544% 0.686%

It is possible conclude that this two approaches are
equivalents. For the Mondays predictions the same forecasting
indicators were obtained. In the other two cluster the results
were also very close.

2) Comparison with prediction results given in [3]: The
results achieved in the paper [3] will be compared with the
results that were given by the model found in this work,
considering, logically, the same clusters of data, data sets of
the Approach B of the densification of data performed in this
paper.

In order to provide a fuller understanding of the differences
between this two forecasting methods:

Table III
CHARACTERISTICS OF TWO DIFFERENT FORECASTING METHODS.

PROPOSED IN THIS WORK AND PROPOSED IN THE PAPER [3].

Based on Autoencoders Based on Feedforward NN [3]
Training functions

Bayesian Regulation Bp. Simple Backpropagation
Forecasting Model

Autoencoder 8-7-8, based on Simple Feedforward NN 7-3-1,
missing data estimation, after the proper NN training,

optimization performed by the the daily consumption forecasting
EPSO in order to predict is made considering the seven

the special day (missing data) inputs as the seven days that
taking in consideration the seven procede the holidays and

days that precede the holiday. the output the holiday predicted.

Table IV
PREDICTION RESULTS SUMMARY. COMPARISON WITH THE RESULTS

ACHIEVED IN [3]

Special day Real days std std [3] NMAE NMAE [3]
Monday 11 0.35% 1.76% 0.05% 1.85%
Tuesday 22 0.45% 2.50% 0.91% 2.82%

Wednesday 14 0.46% 1.90% 0.25% 3.41%
Thursday 22 0.31% 1.66% 0.69% 2.55%

Friday 19 0.50% 2.46% 1.08% 3.92%

The Normalized Mean Absolute Error (NMAE) varies
from 0.05% (Monday) to 1.08% (Friday) for the model with
Autoencoder, while the results in [3] were in the order of
1.85% (Monday) to 3.92% (Friday). The variation range of
the corresponding standard deviation is from 0.31% to 0.50%
better than in [3] with 1.66% to 2.50%.

As can be demonstrated, with this new forecasting model
into analysis, better results were achieved.

An improvement of std prediction parameter in the order
of 76% (Wednesday) to 82% (Tuesday) was achieved, and for
NMAE in the order of 68% (Tuesday) to 97% (Monday).

To all results was verified that the best results were achieved
to the clusters with less days in real data. It is simple verify
that this occur because with less data is more simple to find the
correct pattern while for a cluster with more patterns becomes
more difficult to interpolate the correct pattern.

IV. CONCLUSION

This paper demonstrates the advantage of using the Inform-
ation Theoretic Learning Mean Shift algorithm, in the form
of a desnsification trick. With this tool became possible the
neuronal networks training even when faced with scarce data
sets, the problem of special days. The ITLMS can be used
to identify distinct clusters in the load data, associating in a
easy way holidays that occurs in distinct days of the week and
then allow the virtual data collected representing these specific
clusters.

It has been proven that the use of the virtual data as training
set can be applied as if they were training with real data.

The alliance of this powerful tool with an Auto Associative
Neural Network, demonstrated to be a robust model in the
load forecasting on special days.

This Autoencoder based on missing data estimation, use an
optimization performed by the metaheuristic EPSO in order to
predict the special day (missing data) taking in consideration
the days that precede the holiday.

The high accuracy achieved by this method confirms that
this tools can bring improvements in the performance of
the load forecasting methodologies, specially, on days with
occurence of scarce historical data to represent their behavior.

Through the obtained results, it can be concluded that
Autoencoders based on missing data estimation gives better
results than a simple Feedforward Neural Network.

This topology could be an important step in load forecasting
on special days and even on normal days.
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