38,287 research outputs found

    A New Under-Sampling Method to Face Class Overlap and Imbalance

    Get PDF
    Class overlap and class imbalance are two data complexities that challenge the design of effective classifiers in Pattern Recognition and Data Mining as they may cause a significant loss in performance. Several solutions have been proposed to face both data difficulties, but most of these approaches tackle each problem separately. In this paper, we propose a two-stage under-sampling technique that combines the DBSCAN clustering algorithm to remove noisy samples and clean the decision boundary with a minimum spanning tree algorithm to face the class imbalance, thus handling class overlap and imbalance simultaneously with the aim of improving the performance of classifiers. An extensive experimental study shows a significantly better behavior of the new algorithm as compared to 12 state-of-the-art under-sampling methods using three standard classification models (nearest neighbor rule, J48 decision tree, and support vector machine with a linear kernel) on both real-life and synthetic databases

    A Training Sample Sequence Planning Method for Pattern Recognition Problems

    Get PDF
    In solving pattern recognition problems, many classification methods, such as the nearest-neighbor (NN) rule, need to determine prototypes from a training set. To improve the performance of these classifiers in finding an efficient set of prototypes, this paper introduces a training sample sequence planning method. In particular, by estimating the relative nearness of the training samples to the decision boundary, the approach proposed here incrementally increases the number of prototypes until the desired classification accuracy has been reached. This approach has been tested with a NN classification method and a neural network training approach. Studies based on both artificial and real data demonstrate that higher classification accuracy can be achieved with fewer prototypes

    AMPSO: A new Particle Swarm Method for Nearest Neighborhood Classification

    Get PDF
    Nearest prototype methods can be quite successful on many pattern classification problems. In these methods, a collection of prototypes has to be found that accurately represents the input patterns. The classifier then assigns classes based on the nearest prototype in this collection. In this paper, we first use the standard particle swarm optimizer (PSO) algorithm to find those prototypes. Second, we present a new algorithm, called adaptive Michigan PSO (AMPSO) in order to reduce the dimension of the search space and provide more flexibility than the former in this application. AMPSO is based on a different approach to particle swarms as each particle in the swarm represents a single prototype in the solution. The swarm does not converge to a single solution; instead, each particle is a local classifier, and the whole swarm is taken as the solution to the problem. It uses modified PSO equations with both particle competition and cooperation and a dynamic neighborhood. As an additional feature, in AMPSO, the number of prototypes represented in the swarm is able to adapt to the problem, increasing as needed the number of prototypes and classes of the prototypes that make the solution to the problem. We compared the results of the standard PSO and AMPSO in several benchmark problems from the University of California, Irvine, data sets and find that AMPSO always found a better solution than the standard PSO. We also found that it was able to improve the results of the Nearest Neighbor classifiers, and it is also competitive with some of the algorithms most commonly used for classification.This work was supported by the Spanish founded research Project MSTAR::UC3M, Ref: TIN2008-06491-C04-03 and CAM Project CCG06-UC3M/ESP-0774.Publicad

    Feature Selection and Weighting by Nearest Neighbor Ensembles

    Get PDF
    In the field of statistical discrimination nearest neighbor methods are a well known, quite simple but successful nonparametric classification tool. In higher dimensions, however, predictive power normally deteriorates. In general, if some covariates are assumed to be noise variables, variable selection is a promising approach. The paper’s main focus is on the development and evaluation of a nearest neighbor ensemble with implicit variable selection. In contrast to other nearest neighbor approaches we are not primarily interested in classification, but in estimating the (posterior) class probabilities. In simulation studies and for real world data the proposed nearest neighbor ensemble is compared to an extended forward/backward variable selection procedure for nearest neighbor classifiers, and some alternative well established classification tools (that offer probability estimates as well). Despite its simple structure, the proposed method’s performance is quite good - especially if relevant covariates can be separated from noise variables. Another advantage of the presented ensemble is the easy identification of interactions that are usually hard to detect. So not simply variable selection but rather some kind of feature selection is performed. The paper is a preprint of an article published in Chemometrics and Intelligent Laboratory Systems. Please use the journal version for citation

    PointMap: A real-time memory-based learning system with on-line and post-training pruning

    Full text link
    Also published in the International Journal of Hybrid Intelligent Systems, Volume 1, January, 2004A memory-based learning system called PointMap is a simple and computationally efficient extension of Condensed Nearest Neighbor that allows the user to limit the number of exemplars stored during incremental learning. PointMap evaluates the information value of coding nodes during training, and uses this index to prune uninformative nodes either on-line or after training. These pruning methods allow the user to control both a priori code size and sensitivity to detail in the training data, as well as to determine the code size necessary for accurate performance on a given data set. Coding and pruning computations are local in space, with only the nearest coded neighbor available for comparison with the input; and in time, with only the current input available during coding. Pruning helps solve common problems of traditional memory-based learning systems: large memory requirements, their accompanying slow on-line computations, and sensitivity to noise. PointMap copes with the curse of dimensionality by considering multiple nearest neighbors during testing without increasing the complexity of the training process or the stored code. The performance of PointMap is compared to that of a group of sixteen nearest-neighbor systems on benchmark problems.This research was supported by grants from the Air Force Office of Scientific Research (AFOSR F49620-98-l-0108, F49620-0l-l-0397, and F49620-0l-l-0423) and the Office of Naval Research (ONR N00014-0l-l-0624)
    corecore