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Abstract 
In solving pattern recognition problems, many classification methods, such as the nearest-neighbor (NN) rule, 
need to determine prototypes from a training set. To improve the performance of these classifiers in finding an 
efficient set of prototypes, this paper introduces a training sample sequence planning method. In particular, by 
estimating the relative nearness of the training samples to the decision boundary, the approach proposed here 
incrementally increases the number of prototypes until the desired classification accuracy has been reached. 
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This approach has been tested with a NN classification method and a neural network training approach. Studies 
based on both artificial and real data demonstrate that higher classification accuracy can be achieved with fewer 
prototypes. 
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1. Introduction 
The goal of a classification problem is to find the decision boundary so that objects or events of different classes 
can be classified accurately. To achieve this goal, a popular approach is to find a subset of the training samples 
called prototypes to become part of the classifier parameters. A well-known example is the K-nearest-neighbor 
(K-NN) rule, which classifies a sample based on the class memberships of its K-nearest prototypes. A radial basis 
function (RBF) neural network can also be classified into this category since the centers (i.e., the prototypes) of 
its hidden neurons are typically selected from the training set. 

The performance of these classifiers depends strongly on the prototypes. Intuitively, the closer a training sample 
is to the decision boundary, the more information it should be able to provide. It has been shown that 
classification results can indeed be improved by focusing the training algorithm on the boundary region data. 
For example, by labeling the desired output of true and false class samples as 1 and 0, respectively, a neural 
network inversion search technique can be used to find the boundary vicinity data (by finding appropriate inputs 
for the neural network to generate an output value of 0.5) (Davis & Hwang, 1991). However, since there are 
usually an infinite number of solutions for such a neural network inversion problem, it is difficult to determine 
whether the boundary vicinity data have been generated for every portion of the decision boundary. In addition, 
solving such a neural network inversion problem is often a computationally intensive process. 

A computationally simpler approach for finding boundary vicinity data is based on the mutual neighborhood 
value (MNV) (Chidananda Gowda & Krishna, 1978). To illustrate the idea of the MNV, a two-class problem is 
considered. Denoting the union of the class 𝑖𝑖 data as 𝐶𝐶𝑖𝑖, let 𝑿𝑿𝐴𝐴 represent the input portion of a training sample 
in 𝐶𝐶1 and 𝑿𝑿𝐵𝐵 its NN among the training sample input vectors in 𝐶𝐶2. Then, if 𝑿𝑿𝐴𝐴 is the 𝐾𝐾th nearest neighbor 
to 𝑿𝑿𝐵𝐵 among the training sample input vectors in 𝐶𝐶1, the MNV associated with 𝑿𝑿𝐴𝐴 is defined as 

(1) MNV(𝑿𝑿𝐴𝐴) = 1 + 𝐾𝐾. 
This concept can be generalized to multi-class problems by defining the following minimum mutual 
neighborhood value (MMNV): 

(2) MMNV(𝑿𝑿) = min
𝑗𝑗,𝑗𝑗≠𝑖𝑖

MNV𝑗𝑗(𝑿𝑿)𝑿𝑿 ∈ 𝐶𝐶𝑖𝑖 , 

where MNVj(X) represents the MNV value for an 𝑿𝑿 from 𝐶𝐶𝑖𝑖 with respect to 𝐶𝐶𝑗𝑗. It has been shown that using the 
MMNV to determine the processing sequence of the training samples can improve the performance of a NN 
classification method (Davis & Hwang, 1991) and a neural classifier (Sin & deFigueiredo, 1993). 

A potential problem of the MMNV method is that it is relatively ineffective in handling problems with 
overlapping classes. This difficulty can be illustrated by considering a two-class problem whose decision 
boundary is a simply closed curve. If 𝑿𝑿𝐴𝐴 is a sample in 𝐶𝐶1 and 𝑿𝑿𝐵𝐵 is its nearest 𝐶𝐶2 neighbor, 
then 𝑿𝑿𝐴𝐴 and 𝑿𝑿𝐵𝐵 should be at different sides of the decision boundary when there is no class overlapping. 
Since 𝑿𝑿𝐵𝐵 is closer to 𝑿𝑿𝐴𝐴 than all the other 𝐶𝐶2 samples, 𝑿𝑿𝐵𝐵 should therefore be relatively close to the decision 
boundary and can thus be used to estimate the relative nearness of 𝑿𝑿𝐴𝐴 to the decision boundary. However, for 
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problems with class overlapping, it is possible that 𝑿𝑿𝐴𝐴 and 𝑿𝑿𝐵𝐵 are located on the same side of the decision 
boundary. As a result, 𝑿𝑿𝐵𝐵 may not be at the vicinity of the decision boundary and is thus not a good reference 
point for estimating the relative nearness of 𝑿𝑿𝐴𝐴 to the decision boundary. Since 𝑿𝑿𝐵𝐵 can also be the 
nearest 𝐶𝐶2 neighbor for many other 𝐶𝐶1 samples, this problem can significantly degrade the performance of a 
MMNV-based classifier. A remedy of this weakness of the MMNV method is provided in this paper. 

The paper is organized as follows. Two previously proposed MMNV-based classification methods are discussed 
in the next section. The proposed approach is presented in Section 3, and experimental results that demonstrate 
the effectiveness of the approach with real-world data are provided in Section 4. Conclusions are drawn 
in Section 5. For the sake of simplicity, the scope of the paper is limited to classification problems with only two 
classes, namely, 𝐶𝐶1 and 𝐶𝐶2. However, the approach can readily be generalized to multi-class problems. 

2. Previous work 
Two MMNV-based classification methods are presented to demonstrate how an appropriately arranged training 
sample sequence (TSS) can help a classifier find an efficient set of prototypes. The two classification methods are 
implemented and compared with the proposed approach in Section 4. 

2.1. The condensed NN rule 
To build a compact NN classifier, the condensed nearest neighbor (CNN) rule uses a subset of the training 
samples as prototypes by increasing the number of prototypes one at a time (Hart, 1968). In particular, the 
design process of the CNN rule can be described conceptually by the following procedure: 

1. Divide the training set into two parts called STORE and GRABBAG. Initially, STORE contains only the first 
sample of the training set whereas GRABBAG includes all the remaining training samples. 

2. With the points in STORE as the prototypes, use the NN rule to classify the next sample in GRABBAG. 
This sample stays in GRABBAG if it can be classified correctly. Otherwise, it is transferred to STORE and 
thus becomes a new prototype. 

3. Repeat step 2 until all the samples in GRABBAG have been tested. 
4. Start a new pass through GRABBAG by repeating steps 2 and 3. Repeat this procedure until no sample 

can be transferred from GRABBAG to STORE in one pass. 

In this procedure, when a GRABBAG sample is classified incorrectly, the sample is transferred to STORE and 
becomes a new prototype. Thus, the earlier a sample is sent to STORE for classification, the more likely it will 
become a prototype. However, some of these prototypes may become redundant when their decision boundary 
forming function is replaced by other prototypes, which enter into STORE later but are closer to the decision 
boundary. Therefore, the order of the training samples in GRABBAG can influence the final classification result 
significantly. Hereafter, the order of the training sample will be referred to as the TSS. In view of the importance 
of TSS, the MMNV method has been used to arrange the TSS for the CNN rule (Chidananda Gowda & Krishna, 
1979). This MMNV-based CNN rule will be tested in Section 4. 

2.2. The OI network 
In terms of architecture, the optimal interpolative (OI) network is essentially a one-hidden-layer feedforward 
network. In contrast to conventional multilayered feedforward networks which are typically trained by iterative 
gradient search methods, an OI network is trained by a noniterative least-squares (LS) algorithm called RLS-OI. 
Conceptually, the procedure of this RLS-OI is illustrated below. For simplicity, this work assumes that the 
activation function used by the hidden layer is the Gaussian function. 

1. Divide the training samples into active and inactive sets. Initially, the active training set is empty and the 
inactive training set contains all training samples. 
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2. Use the MMNV to set up the TSS. Essentially, this determines the order of the training samples in the 
inactive training set. 

3. Transfer the first misclassified inactive set training sample to the active training set. Initially, all training 
samples are considered to be classified incorrectly. 

4. Try to add a new hidden unit into the neural network using the input portion of the newly added active 
training set sample as the center of the new hidden neuron. 

5. Compute the weights between the hidden and output layers by trying to satisfy the constraints 
associated with the active training set in the LS sense. 

6. Compute the classification accuracy of the neural network for the entire training set. 
7. If the result of 6 is satisfactory, admit this newly appended hidden neuron, Otherwise, remove the newly 

added neuron from the neural network. 
8. Continue the training process from step 3 until termination. 

This training procedure can be terminated in several ways. Here, the training process is stopped when all 
training samples have been transferred to the active training set. In addition, during the training process, the 
validation error is computed and stored after admitting every new hidden unit. At the end of the training 
process, the network structure that yields the smallest validation error is recovered and employed for future 
classification tasks. For a detailed mathematical treatment of the OI network training process, readers are 
referred to a reference (Sin & deFigueiredo, 1993). 

One of the distinct features of this RLS-OI training algorithm is that in computing the connection weights, only 
the active training set samples are employed. In responding to unsatisfactory classification results, the RLS-OI 
training algorithm sends misclassified samples incrementally to the active training set. In general, the earlier a 
sample is sent to the active training set, the more likely it will become a prototype, which in this case is the 
center of a hidden unit. Therefore, by sending samples closer to the decision boundary earlier into the active 
training set, the OI network has a higher likelihood of finding an efficient set of prototypes. Again, this 
demonstrates the importance of a successful TSS planning method. 

3. Methodology 
As indicated in Section 1, one drawback of the MMNV method is that it is relatively ineffective in dealing with 
problems with overlapping. To resolve this problem, the proposed approach applies two filtering techniques to 
the training set before computing MMNVs. With the application of the 3-NN rule, the first phase of the 
proposed approach uses an edited NN rule for training sample screening (Ferri, Albert, & Vidal, 1999). In 
particular, samples whose actual class membership is different from the class membership determined by the 3-
NN rule are removed from the training set (Wilson, 1972). Henceforth, this technique will be referred to as the 
3-NN editing rule. 

To investigate the effect of this 3-NN editing rule, consider the following Bayes decision rule which assigns a 
training sample to class 𝐶𝐶𝑏𝑏 if 

(3) 𝑝𝑝(𝑿𝑿|𝐶𝐶𝑏𝑏)𝑃𝑃(𝐶𝐶𝑏𝑏) ⩾ 𝑝𝑝(𝑿𝑿|𝐶𝐶𝑙𝑙)𝑃𝑃(𝐶𝐶𝑙𝑙)forall𝑙𝑙 ≠ 𝑏𝑏, 
where 𝑝𝑝(𝑿𝑿|𝐶𝐶𝑏𝑏) and 𝑃𝑃(𝐶𝐶𝑏𝑏) are the class-conditional and a priori probability density functions (PDFs) of class 𝐶𝐶𝑏𝑏. 
In this work, the class membership 𝑏𝑏 determined by Eq. (3) is called the Bayes class membership. 

As shown by the Bayes decision rule, there can be two reasons for a classification error. One reason is that the 
classifier cannot provide sufficiently accurate PDFs. A second reason is that the actual class membership of the 
sample is different from its Bayes class membership determined by Eq. (3). This occurs when 
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(4) 𝑝𝑝(𝑿𝑿|𝐶𝐶𝑏𝑏)𝑃𝑃(𝐶𝐶𝑏𝑏) > 𝑝𝑝(𝑿𝑿|𝐶𝐶𝑎𝑎)𝑃𝑃(𝐶𝐶𝑎𝑎) 

with a denoting the actual class membership of sample 𝑿𝑿. Such samples cannot be correctly classified by the 
Bayes decision rule. For convenience, these samples will be referred to as inconsistent membership samples in 
the remaining part of this paper. 

Since the PDFs are typically unknown, it is usually difficult, if not impossible, to identify inconsistent membership 
samples in the training set. To partially resolve this problem, the first phase of the proposed approach uses the 
3-NN rule to estimate the actual membership of the training samples. Fig. 1 graphically illustrates the influence 
of the 3-NN editing rule, depicting the PDFs of a two-class classification problem before and after the application 
of the rule (Ferri et al., 1999). As shown in Fig. 1, the 3-NN editing rule has a tendency to convert an overlapping 
problem into a problem with little or no overlapping. However, perfect conversion of the PDFs is difficult to 
achieve in practice, as described below. 

 
Fig. 1. Effect of the 3-NN editing rule for the PDF (top: before; bottom: after). 

The 3-NN rule estimates which class has the larger PDF value by finding the three closest neighbors for the 
tested sample. With the 𝐾𝐾-NN rule, the PDF 𝑝𝑝(𝑿𝑿) of a random variable 𝑿𝑿 can be estimated from 𝑁𝑁 observations 
of 𝑿𝑿 by using 

(5) 𝑝𝑝
^
𝐾𝐾(𝑿𝑿) = 𝐾𝐾−1

𝑁𝑁
1

𝑉𝑉(𝐾𝐾,𝑁𝑁,𝑿𝑿)
, 

where 𝑉𝑉(𝐾𝐾,𝑁𝑁,𝑿𝑿) is the smallest hyper-volume enclosing all points at least as near to 𝑿𝑿 as the 𝐾𝐾th NN 
of 𝑿𝑿 (Lofsgaarden & Quesenbery, 1965). It has been shown (Fukunaga & Hostetler, 1973) that, in the 
neighborhood of a sample point 𝑿𝑿, the expected value of the mean-square error of this estimation can be 
approximated by 

(6) 𝐸𝐸{(𝑝𝑝
⌢
𝐾𝐾(𝑿𝑿) − 𝑝𝑝(𝑿𝑿))2} ≈ 𝑝𝑝2(𝑿𝑿)

𝐾𝐾
+ 𝑐𝑐2(𝑿𝑿)𝑝𝑝−4/𝑁𝑁(𝑿𝑿) �𝐾𝐾

𝑁𝑁
�
4 𝑁𝑁⁄

, 

where 

(7) 𝑐𝑐(𝑿𝑿) = 1
2(𝑁𝑁+2)𝜋𝜋

𝛤𝛤2 𝑁𝑁⁄ �𝑁𝑁+2
2
� tr �∂

2𝑝𝑝(𝑿𝑿)
∂𝑿𝑿2

�, 

where 𝛤𝛤() denotes the gamma function. Based on this result, for asymptotic unbiasedness and consistency of 
the estimator, 𝐾𝐾 should go to infinity and 𝐾𝐾/𝑁𝑁 should go to zero. With a finite number of samples, a PDF 
estimation error is often inevitable for the 𝐾𝐾-NN rule. Thus, the 3-NN editing rule may not be able to remove all 
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inconsistent membership samples from the training set. This can significantly degrade the performance of a 
MMNV-based classifier since a single inconsistent membership sample can become the NN of many of its 
opposite class samples. 

A possible approach to improve the accuracy of the 𝐾𝐾-NN-based PDF estimation is to use the following 
average 𝐾𝐾-NN rule: 

(8) 𝑝𝑝
¯
𝐾𝐾 = 1

𝐾𝐾
∑  𝐾𝐾
𝑖𝑖=1 𝑝𝑝

⌢
𝑖𝑖(𝑿𝑿), 

where 𝑝𝑝
⌢
𝑖𝑖(𝑿𝑿) denotes the 𝑖𝑖-NN estimates of 𝑝𝑝(𝑿𝑿) (Parthasarathy & Chattarji, 1990). Statistically, this method is 

expected to provide a more reliable PDF estimate than one involving any individual 𝐾𝐾-NN rule since it has been 
shown that 

(9) 𝐸𝐸{(𝑝𝑝
¯
𝐾𝐾(𝑿𝑿)− 𝑝𝑝(𝑿𝑿))2} = 1

𝐾𝐾2
∑  𝐾𝐾
𝑖𝑖=1 𝐸𝐸{(𝑝𝑝

⌢
𝑖𝑖(𝑿𝑿)− 𝑝𝑝(𝑿𝑿))2}. 

Based on this improvement, the weighted average 𝐾𝐾-NN rule (Parthasarathy & Chattarji, 1990) is adopted here 
to estimate the PDF 

(10) 𝑝𝑝
¯
𝐾𝐾 = ∑  𝐾𝐾

𝑖𝑖=1 𝑊𝑊𝑖𝑖 · 𝑝𝑝
⌢
𝑖𝑖(𝑿𝑿)/∑  𝐾𝐾

𝑖𝑖=1 𝑊𝑊𝑖𝑖 , 
where the weighting coefficients are determined by the following rule: 

(11) 𝑊𝑊𝑖𝑖 = sin(𝜋𝜋𝜋𝜋/2𝑘𝑘0)for1 ⩽ 𝑖𝑖 ⩽ 2𝑘𝑘0. 
Otherwise, 𝑊𝑊𝑖𝑖 is set to zero. Note that with n denoting the dimensionality of the sample space, 𝑘𝑘0 is specified as 

(12) 𝑘𝑘0 = 𝑁𝑁4/(𝑛𝑛+4). 
With this average 𝐾𝐾-NN rule for PDF estimation, after the application of the 3-NN editing rule, the second phase 
of the proposed approach applies the following procedure to every remaining training sample: 

1. For 𝑘𝑘 = 1, … ,𝐾𝐾, use the estimation rule of Eq. (10) to compute 𝑝𝑝
¯
𝑘𝑘
1 and 𝑝𝑝

¯
𝑘𝑘
2, which represent the PDF 

estimates for classes 1 and 2, respectively. 
2. Define 𝑑𝑑𝑘𝑘 as 

(13) 𝑑𝑑𝑘𝑘 = 𝑃𝑃(𝐶𝐶1)𝑝𝑝
¯
𝑘𝑘
1 − 𝑃𝑃(𝐶𝐶2)𝑝𝑝

¯
𝑘𝑘
2for𝑘𝑘 = 1, … ,𝐾𝐾, 

where 𝑃𝑃(𝐶𝐶1) and 𝑃𝑃(𝐶𝐶2) are the a priori PDFs of 𝐶𝐶1 and 𝐶𝐶2, respectively. If not all 𝑑𝑑𝑘𝑘 values for the given 
sample are of the same sign, the proposed approach removes this sample from the training set before 
the computation of the MMNV. 

The idea behind this procedure can be explained as follows. As shown by the Bayes rule of Eq. (3), the sign 
of 𝑑𝑑𝑘𝑘 can be used as a criterion for class membership determination. Compared with the conventional NN rule, 
requiring all 𝑑𝑑𝑘𝑘 values of a sample to have the same sign is a much more conservative criterion for sample 
classification. By using such a conservative measure for ensuring samples to have identical actual and Bayes 
class memberships, the second phase of the proposed approach can remove more inconsistent membership 
samples than the 3-NN edited rule. For convenience, the MMNV computed after filtering the training set with 
the proposed approach is called EMMNV (edited MMNV) henceforth. 
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A trade-off of using this average 𝐾𝐾-NN rule-based filtering technique is that it increases the risk of incorrectly 
removing samples whose actual membership and Bayes membership are the same. The training set may thus 
have fewer samples than necessary. This can degrade the accuracy of the classification result especially for 
problems with few samples. Therefore, in applying the proposed approach, special attention should be given to 
the number of training samples after using the proposed techniques to filter the training set. 

An important practical issue for a classification method is its computational complexity. In the development 
stage of the proposed approach, the 𝐾𝐾-NN-based training set filtering technique is used which adds a 
computational demand. In particular, since locating the NNs for every training sample involves computing the 
distances between all training samples, this part of the computational cost increases quadratically with the 
number of training samples. However, with a smaller training set, the proposed approach can find the 
prototypes more efficiently, offsetting the additional computational cost required by the training set filtering 
process. Thus, for the development stage, the overall computational requirement depends on the actual content 
of the original training set and the classification method under development. 

For a classifier, the development stage is basically a one-time process and is typically performed off-line. As 
such, the focus of the computational burden is on the implementation stage in which the classifier is often 
required to perform on-line classifications repeatedly. For this application, the number of computations is 
proportional to the number of prototypes of the classifier. With the proposed TSS planning method, the number 
of prototypes can be reduced significantly, as is demonstrated by the experimental results presented in the 
following section. Consequently, the real-time application of the classifier can be implemented efficiently. 

4. Experimental results 
The goal of this section is to test the proposed approach and compare it with MMNV-based TSS planning 
methods. Based on the nature of the training data, this section is divided into two parts. In the first part, a set of 
artificial data is used to represent problems with different degrees of overlapping. The second part tests the 
proposed approach in solving real-world problems. 

4.1. Artificial data 
One of the motivations of this work is to investigate the difficulty of the MMNV-based TSS method to solve 
problems with overlapping. Therefore, the objective here is to compare the performance of the classification 
methods in addressing problems with different degrees of overlapping. In particular, a series of two-class, two-
dimensional, Gaussian-distributed classification problems are considered. The means of the PDFs 
of 𝐶𝐶1 and 𝐶𝐶2 are [0, 0] and [𝑚𝑚𝑥𝑥 , 0], respectively, with mx being a parameter used to adjust the degree of 
overlapping. Both classes have a unit covariance matrix. With an increment of Δ𝑚𝑚𝑥𝑥 = 0.2, problems with 𝑚𝑚𝑥𝑥 =
0.4,0.6, … ,6.0 are solved by the MMNV- and EMMNV-based OI network training methods. 

For each 𝑚𝑚𝑥𝑥 value, 500 training, 500 validation and 10,000 test samples were randomly generated for each class 
of the training samples. For the sake of reliability, each of the tested problems was solved ten times using ten 
different training sets. The differences between the optimal classification error (obtained by the analytically 
derived Bayes rule) and the test sample classification error obtained by the OI networks are plotted in Fig. 2 as 
functions of 𝑚𝑚𝑥𝑥. Also as functions of mx, the averages of the number of prototypes required by the OI networks 
are plotted in Fig. 3. 
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Fig. 2. Accuracy differences for the two tested methods of example. 

 
Fig. 3. Number of prototypes for the two tested methods of example. 

The results of Fig. 2 show two general trends. The first trend is that the inaccuracy of the two methods increases 
with the degree of overlapping. Hence, as the value of 𝑚𝑚𝑥𝑥 becomes smaller, the differences between the 
optimal classification error and the error obtained by the OI networks become larger. This indicates that higher 
degrees of overlapping can increase the complexity of the classification problem. The second trend is that the 
proposed approach improves the classification results for problems with more overlapping. In contrast, as the 
value of 𝑚𝑚𝑥𝑥 becomes larger, the classification accuracy improvement achieved by the EMMNV becomes less 
significant. This is expected since the proposed approach is designed specifically to overcome the weakness of 
the MMNV in dealing with problems with overlapping. 

Fig. 3 indicates an additional advantage of the proposed approach in that it requires fewer prototypes in most 
cases. As expected, this reduction in the number of prototypes becomes less significant as the degree of 
overlapping becomes smaller. Fig. 3 verifies the effectiveness of the proposed approach in remedying the 
weakness of the MMNV in dealing with classification problems with overlapping. 

4.2. Real-world data 
Three real-world problems are considered. They have all been studied in the Statlog project (Hichie, 
Spiegelhalter, & Taylor, 1994) and solved by different classification methods, including a backpropagation (BP) 
method, a NN classifier, a learning vector quantization (LVQ) classifier, a support vector machine (SVM) method 
as well as a conventional RBF network. In addition, a 10-fold cross-validation technique was employed to 
evaluate the accuracy of the tested classification methods. Specifically, by dividing samples into 10 subsets, 
classifiers were designed on 9 subsets and tested on the subset left out. By using every subset once as the test 
subset, this procedure was repeated 10 times and the averages of the classification errors for the test subsets 
and the prototype number were reported for comparison. The problems selected here are: 

1) Wisconsin breast cancer data: This database was obtained from the UCI repository of Machine Learning 
Databases and Domain Theories. It includes 699 samples, each of which has nine features of a breast 
tumor. The output indicates whether the tumor is benign or malignant. After testing 34 classification 
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methods, the best 10-fold cross-validation classification accuracy obtained by the Statlog project was 
97.2% (www.phys.uni.torun.pl/kmk/projects/datasets.html). 

2) Australian credit card data: This data set was used by the Statlog project to assess applications for credit 
cards based on 14 attributes. This problem, with 690 samples in total, was solved using 27 classification 
methods. The best 10-fold cross-validation classification accuracy obtained by the Statlog project was 
86.9% (www.phys.uni.torun.pl/kmk/projects/datasets-stat.html). 

3) Diabetic data: Based on eight features, the objective of this problem obtained from the UCI repository 
was to determine whether a person is diabetic. This problem, with 768 examples, was tested with 25 
classification methods. The best 10-fold cross-validation classification accuracy obtained by the Statlog 
project was 77.7% (www.phys.uni.torun.pl/kmk/projects/datasets.html). 

By employing the same 10-fold cross-validation technique as the Statlog project, this part of the experiment 
integrates the MMNV- and EMMNV-based TSS planning methods with the CNN rule and the OI network. The 
results are summarized in Tables 1 and 2 for the CNN rule and the OI network, respectively. The results indicate 
that the EMMNV-based method outperforms the MMNV-based methods in both classification accuracy and 
prototype requirements. The only exception is the breast cancer OI network result where the MMNV provides 
slightly higher classification accuracy than the EMMNV (0.971 versus 0.965). Judging from the high classification 
accuracy, this problem has relatively small overlapping and the MMNV should therefore be reasonably accurate 
in characterizing the relative nearness of the samples to the decision boundary. Even in this case, the proposed 
approach reduces the average prototype number from 12.9 to 3.6. 

Table 1. Summary of results for real-world data classified by the CNN rule 

Problem Classification accuracy  Number of prototypes   
MMNV EMMNV MMNV EMMNV 

Breast cancer 0.937 0.954 58 14 
Credit card 0.746 0.846 192.1 17.1 
Diabetes 0.649 0.736 310.2 63.8 

 

Table 2. Summary of results for real-world data classified by the OI network 

Problem Classification accuracy  Number of prototypes   
MMNV EMMNV MMNV EMMNV 

Breast cancer 0.971 0.965 12.9 3.6 
Credit card 0.841 0.875 54.9 13.6 
Diabetes 0.760 0.783 100.8 26 

 

Since the focus of this work is on TSS planning, no effort has been made to improve the training method itself. 
However, as shown in Table 2, with the EMMNV-based TSS, the OI network provides higher classification 
accuracy than the best Statlog project results for the credit card assessment (0.875 versus 0.869) and the 
diabetes determination (0.783 versus 0.777). For the breast cancer data, due to the small overlapping nature of 
the problem, the classification accuracy of the proposed approach is slightly inferior to the best Statlog project 
result (0.965 versus 0.972). However, with the MMNV, the 0.971 classification accuracy obtained by the OI 
network is very close to the best Statlog project result. 
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5. Conclusions 
The classification power of many classifiers comes partially from their prototypes, which are often chosen as a 
subset of the training samples. Compared with a randomly determined training sample sequence, it has been 
shown that planning the training sample sequence in accordance with the relative nearness of the training 
samples to the decision boundary can assist a classifier in finding a better set of prototypes and thus enabling a 
higher classification accuracy to be achieved. However, the conventional training sequence planning method has 
difficulty in dealing with problems with overlapping. With the introduction of two training set filtering 
techniques, this paper develops a new criterion to characterize the relative nearness of the training samples to 
the decision boundary and proposes a new training sample sequence planning method. Experimental results 
demonstrate that the proposed approach can achieve higher classification accuracy with fewer prototypes than 
conventional methods. It is hoped that this approach can be integrated with more prototype-based classifiers. A 
future research direction is to develop new training methods specifically for the proposed training sample 
sequence planning method. Another area of future research is to investigate the influence of training set size on 
the proposed approach. 
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