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Abstract: Class overlap and class imbalance are two data complexities that challenge the design of
effective classifiers in Pattern Recognition and Data Mining as they may cause a significant loss in
performance. Several solutions have been proposed to face both data difficulties, but most of these
approaches tackle each problem separately. In this paper, we propose a two-stage under-sampling
technique that combines the DBSCAN clustering algorithm to remove noisy samples and clean the
decision boundary with a minimum spanning tree algorithm to face the class imbalance, thus handling
class overlap and imbalance simultaneously with the aim of improving the performance of classifiers.
An extensive experimental study shows a significantly better behavior of the new algorithm as compared
to 12 state-of-the-art under-sampling methods using three standard classification models (nearest
neighbor rule, J48 decision tree, and support vector machine with a linear kernel) on both real-life
and synthetic databases.
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1. Introduction

The class imbalance problem is a challenging situation common to many real-world applications
such as fraud detection [1], fault/failure diagnosis [2], face recognition [3], text classification [4], sentiment
analysis [5], and credit risk prediction [6], among others. A binary data set is said to be imbalanced when
one of the classes (the minority or positive class, C+) has a significantly lower number of instances in
comparison to the other class (the majority or negative class, C−) [7]. The disproportion between the
number of positive and negative instances leads to a bias towards the majority class that may imply an
important deterioration of the classification performance on the minority class.

Many authors have asserted that the class imbalance distribution by itself does not represent a
critical problem for classification, but when it is associated with other data complexity factors, then
it can significantly decrease the classification performance because traditional classifiers tend to err
on many positive instances [8]. García et al. [9] viewed that the combination of class imbalance and
highly overlapping class distributions results in a significant performance deterioration of instance-based
classifiers. Class overlap refers to ambiguous regions of the feature space where the prior probability of
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the classes are approximately equal (i.e., all classes have a similar amount of data), which makes most
classifiers more likely to produce a large number of misclassifications [10].

Class noise, which refers to mislabeled instances, can also lead to incorrect classification decisions,
especially when combined with class imbalance [11]. The presence of both noise and class imbalance can
significantly affect the classification process: mislabeling from the minority class to the majority class
increases the imbalance ratio in the data set, whereas mislabeling from the majority class to the minority
class produces an even higher difficulty to correctly classify the positive instances [12]. Both class overlap
and noise have been commonly tackled through the application of data filtering methods, which are
intended to identify and remove mislabeled and atypical data and also to clean possible overlapping
between classes [13,14].

The different strategies to address the class imbalance problem are usually categorized into four
groups [7,15]:

1. Algorithmic-level methods. These consist in internally biasing the discrimination-based process so as
to compensate for the class imbalance.

2. Data-level methods. These perform some sort of data preprocessing with the aim of reducing the
imbalance ratio.

3. Cost-sensitive methods. These incorporate distinct misclassification costs into the classification
process and assign higher misclassification costs to the errors on the minority class.

4. Ensemble-based techniques. These consist of a combination between an ensemble algorithm and
either the data-level or the cost-sensitive approaches. In the first one, data preprocessing is performed
before training the classifier, whereas in the second one, the low cost guides the use of the ensemble
algorithm.

Conclusions about what is the best solution for the class imbalance problem are divergent, but the
data-level methods are likely the most investigated because they are not classifier-dependent, do not
need any algorithmic adaptation to the data sets, and can be easily implemented for any problem [16].
Thus, focusing on the data-level approach, resampling methods consist of adjusting the data set
size with the aim of balancing the class distribution, either by decreasing the number of majority
class instances (under-sampling) or increasing the number of minority class instances (over-sampling).
A hybrid resampling approach consists of combining both over-sampling and under-sampling strategies.
As remarked by several authors, under-sampling methods may throw away many potentially useful data
as a result of ignoring most of majority class, whereas the over-sampling methods can lead to overfitting
on the minority class and an increase in complexity and execution time [17]. On the other hand, it is worth
pointing out that the resampling methods have been also used to face the imbalance problem together with
class overlap and/or the presence of noisy and borderline instances in the data set [8,18–21], a common
situation that has motivated the research presented in this paper.

Although most traditional resampling methods are based on the k nearest neighbor (kNN) rule [22–24],
clustering algorithms have been demonstrated to be even a more powerful strategy for addressing the
class imbalance problem [16,25,26] because they may reduce the risk of removing potentially useful data
and, therefore, they can achieve better results than the kNN-based resampling methods. On the other hand,
despite the fact that over-sampling has been shown to be apparently superior to under-sampling [27,28],
the under-sampling approach can be especially useful when dealing with big data applications [29] since
these algorithms will lead to a reduction of the data set size and also a decrease in the computational
requirements of the subsequent classification process. Bearing both these issues in mind, the present paper
introduces a new under-sampling technique (here called DBMIST-US) to face not only the class imbalance
but also the overlapping between classes. It deals with the noisy instances in the majority class via a noise
filter based on the DBSCAN clustering algorithm [30] combined with the use of a minimum spanning tree
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(MST) algorithm to reduce the size of the negative class. The reason to combine the DBSCAN clustering
with the MST approach is because DBSCAN has demonstrated to be a powerful tool for identifying and
removing noisy instances and cleaning the overlapping between classes [31], but it does not produce a
well-balanced class distribution. By viewing the data set as a weighted complete graph, the MST algorithm
allows for discovering the core of the majority class, which is further used to remove the amount of
redundant negative instances needed to balance both classes.

Hereafter, the remainder of this paper is organized as follows. Section 2 introduces several well-known
methods to tackle the class imbalance problem. Details of the DBMIST-US algorithm here proposed are
described in Section 3. The experimental setup is reported in Section 4. In Section 5, the results are
analyzed and discussed. Finally, Section 6 presents the main conclusions and outlines some open lines to
be addressed in the future.

2. Resampling Algorithms to Face Class Imbalance

In this section, a collection of both kNN-based and clustering-based algorithms for dealing with the
class imbalance problem is briefly described.

2.1. Neighborhood-Based Algorithms

Most kNN-based under-sampling algorithms are inherited from the literature on prototype selection.
These techniques exploit the analysis of the feature space, either by removing instances far from the
decision boundary of two classes to reduce redundancy (condensing or thinning) or removing those close
to the boundary for generalization (editing, cleaning, or filtering) [32]. Wilson’s editing [33] and Hart’s
condensing [22] are the most representative examples of these families of prototype selection methods.

Wilson’s editing (ENN) removes all instances that are misclassified by the kNN rule. The Hart’s
condensing (CNN) algorithm uses the concept of consistent subset to eliminate the majority class instances
that are sufficiently far away from the decision boundary because these are considered to be irrelevant for
learning. Analogously, the Tomek links (TL) [23,34] have also been employed to remove the majority class
instances since, if two instances form a Tomek link, then either one of these is noise or both instances are
borderline.

The one-sided selection (OSS) technique developed by Kubat and Matwin [35] eliminates only
the majority class instances that are redundant or noisy (i.e., those that are bordering the minority
class). The concept of Tomek links is used to discover the border instances, whereas the Hart’s
condensing algorithm is applied to discover the redundant cases (i.e., those that are far enough from the
decision boundary).

Laurikkala [24] proposed the neighborhood cleaning rule (NCL) algorithm, which is quite similar
to the OSS technique. With NCL, the majority class instances whose class label differs from the class of
at least two of their three nearest neighbors are removed by means of Wilson’s editing [33]. In addition,
this algorithm also discards the neighbors that belong to the majority class if a minority class instance is
misclassified by its three nearest neighbors.

2.2. Clustering-Based Algorithms

Clustering-based under-sampling methods have become a well-grounded alternative to
neighborhood-based algorithms for handling class imbalance because they can mitigate the problem
of information loss caused by the removal of negative instances [16].

Yen and Lee introduced a cluster-based under-sampling algorithm named SBC (under-sampling
based on clustering) [17], which rests upon the idea that there may exist various clusters in a data set and
each cluster i may have a different ratio of majority class instances to minority class instances in the cluster
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i. Thus, all instances are initially grouped into K clusters; then, a number of negative instances will be
randomly selected from each cluster according to the ratio of majority class instances to minority class
instances. Finally, it combines the selected negative instances from the K clusters with all the instances
in the minority class. A similar under-sampling method corresponds to the algorithm proposed by
Longadge et al. [36], which firstly clusters the majority class instances into K groups using the K-means
algorithm and then selects |C+| × IRi majority class instances from each cluster i, where IRi denotes the
imbalance ratio in the cluster i. Note that the aim of this method is not to obtain a perfectly balanced class
distribution, but to reduce the disproportion between the size of the majority and minority classes.

The ClusterOSS algorithm introduced by Barella et al. [37] is an improvement of the OSS method.
It starts by using the K-means algorithm to cluster the majority class instances. Then, the closest instances
to the center of each cluster are used to start the application of OSS, removing borderline and noisy
negative instances using the Tomek links. Unlike OSS, this technique does not start the under-sampling
process at random, but defines how many and which instances should be chosen by applying the K-means
clustering.

Sowah et al. proposed an under-sampling technique named CUST [38] whose main objective is
to remove redundant and noisy instances along with outliers from the majority class. In a first stage,
the algorithm removes noisy negative instances using a techniques based on Tomek links. In a second
stage, outliers and redundant negative instances are eliminated by using the K-means algorithm to cluster
the remaining majority class instances.

Das et al. introduced the ClusBUS algorithm [39], which aims at discarding negative instances that
lie in class overlapping regions. First, it clusters the entire data set into K clusters using the DBSCAN
algorithm. Then, for those clusters that contain both positive and negative instances, the algorithm
removes a number of majority class instances necessary to create a vacuum around the minority class
instances. Tsai et al. presented the CBIS technique [40] based on clustering analysis and instance selection:
the affinity propagation algorithm groups similar negative instances into K clusters, and then an instance
selection process filters out instances in each cluster. Finally, all reduced K clusters together with the
instances of minority class form a balanced data set.

Ng et al. proposed the diversified sensitivity-based under-sampling (DSUS) method [41]. It selects
useful instances yielding high stochastic sensitivity with respect to the currently trained classifier.
To guarantee that only instances close to the decision boundary are selected and preserve the data
distribution, negative instances are clustered and only a representative instance of each cluster participates
in the selection process

Lin et al. developed two under-sampling strategies in which the K-means clustering technique is
used [26]. Unlike the algorithms described previously, the number of clusters with negative instances
is here defined to be equal to the size of the minority class. The first strategy uses the cluster centers to
represent the majority class, whereas the second strategy employs the nearest neighbors of the centers.
In the Fast-CBUS method introduced by Ofek et al. [16], the minority class is clustered into K clusters
by the K-means algorithm and, for each cluster, a similar number of majority class instances close to the
minority class instances are sampled.

It is also worth pointing out that some hybrid algorithms combine clustering with other techniques.
For instance, the clustering-based balancing (ClusterBal) method proposed by Sun et al. [42] combines
clustering with classifier ensembles: it divides the majority class instances into K subsets by clustering,
and then all the minority instances are added to each subset to train a focused classifier. On the other hand,
the cluster-based evolutionary under-sampling (CBEUS) [43] combines the K-means clustering applied to
the majority class with a genetic algorithm.
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3. The DBMIST-US Algorithm

In this section, we describe the new algorithm DBMIST-US for handling class overlap and imbalance
by under-sampling the data set. The purpose is to obtain a subset of representative instances from the
majority class and avoid the risk of removing instances that may contribute to generate knowledge.
The overall process of DBMIST-US is described in Algorithm 1, where IRmax is the unique free parameter
representing the maximum imbalance ratio allowed. It starts by dividing a two-class imbalanced data set
of n instances into a subset C− with the majority class instances and a subset C+ containing the minority
class instances. After this initial step, the algorithm consists of two stages:

1. Cleaning stage (lines 3–7). The DBSCAN clustering method [30] is applied to the set with the negative
instances to produce a noise-free subset.

2. Core stage (line 8). An MST is built to get a core representation from the majority class. The result is a
subset of the majority class with less dispersion than the set obtained in the previous stage.

Algorithm 1 DBMIST-US

Input: DS = {p1, p2, . . . , pn} , IRmax
Output: DS’

1: Split DS into two subsets C− and C+.
2: C′− ← C−
3: repeat

4: Compute ε and minPts.
5: C′− ←DBSCAN(C′−, ε, minPts).
6: until ε and minPts do not change
7: DS′ ← C+ ∪ C′−
8: C′′− ←MSTGraph(DS′, IRmax)
9: DS′ ← C+ ∪ C′′−

DBSCAN is a clustering algorithm that assumes that the clusters correspond to dense regions in the
feature space. It can discover groups without any prior knowledge about the number of clusters in the
data, and it works pretty well with noisy data sets. DBSCAN requires two input parameters: ε defines the
radius of the neighborhood region (i.e., how close instances should be to each other to be considered a
part of the same cluster) and minPts establishes the minimum number of instances that might be part of
the ε-neighborhood to form a cluster. Unlike the original proposal [44] where the input values of ε and
minPts are computed by clustering the data set with the K-means algorithm, our DBSCAN formulation
only takes care of |C−| and |C+| to compute ε and minPts, respectively.

DBSCAN begins by randomly selecting a negative instance p−i from the current set C′−. If the
analyzed instance p−i does not have at least minPts neighboring instances at a distance ε, it is considered
as noisy and removed from the set C′−. Note that the rationale behind this is to remove those instances
that are close enough to the decision boundary. This process is repeated until minPts and ε do not change.
After applying the DBSCAN algorithm on C′−, an MST is computed by the process MSTGraph described
in Algorithm 2.
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Algorithm 2 MSTGraph

Input: DS′, IRmax
Output: C′− ⊂ C−

1: Split DS′ into two subsets C− and C+.
2: Build Gw = (V, E) a weighted complete graph from C−.
3: S← |C−|
4: IR← S

|C+ |
5: C′− ← []
6: MG ←incidenceMatrix(Gw)
7: MST ←GetMST(Gw, MG)
8: while IR > IRmax do

9: S← S σ2Z2

e2(|C− |−1)+σ2Z2

10: IR← S
|C+ |

11: end while
12: for all {v, u} in E(MST) do

13: C′− ∪ u
14: C′− ∪ v
15: if |C′−| > S then

16: return C′−
17: end if
18: end for

3.1. Core Stage

After cleaning the majority class with DBSCAN, a graph-based approach is used to compute a
candidate core of the set C′−. A weighted complete graph Gw = (V(G), E(G)) is built from the set of
majority class instances C′− given by the DBSCAN-based stage as follows:

• V(G) = {i | pi ∈ C′−} a set of vertices.
• E(G) = {{v, u} | v, u ∈ V(G)} a set of edges.
• ∀e = {v, u} ∈ E(G), w(e) = d(pv, pu) where d(pv, pu) is the Euclidean distance between v and u.

The purpose of computing an MST is to build a subgraph that connects all vertices in GW without
forming cycles, that is, there is not a path from a vertex x to a vertex y such that x = y and whose sum
of edge weights is the smallest. Figure 1 shows an illustrative example of an MST (b) computed from a
weighted graph (a).
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Figure 1. Illustration of weighted graphs. The graph on the right depicts an MST of the graph on the left.
(a) weighted graph; (b) MST.
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To build an MST, an incidence matrix MG (line 6) computed by means of Prim’s algorithm [45] is
used. This process is as follows:

1. Choose an initial vertex v at random.
2. Select the edge e = {v, u} with the lowest weight in MG and mark v as visited. Now, the next vertex

to be analyzed is u.
3. Repeat Step 2 now taking u as the initial vertex of the edge e and while there exists a vertex z such

that z has not been visited yet, e={u,z}.
4. The MST will be built doing backtracking on the already marked vertices until each vertex has

been marked.

By definition, an MST contains each vertex of the graph. Our proposal takes only a subset of the
MST: the first S-vertices to build the new majority class C′−, where S denotes the maximum imbalance
ratio required (lines 8–10). To validate the 95% of confidence in the imbalance ratio, the values chosen are
Z = 1.96, σ = 0.5, and e = 0.05 according to the procedure given by Torres et al. [46].

3.2. Time Complexity

The time complexity of an algorithm is estimated by counting the number of operations
performed [47]. Thus, the time complexity of the DBMIST-US algorithm depends on its two stages:
the run time complexity of DBSCAN isO(n2) in the worst-case [48] and the time complexity of MSTGraph
is also O(n2), which depends on the time complexity of the following processes:

• The computation of the incidence matrix from Gw takes n2 steps.
• The computation of an MST based on the Prim’s algorithm takes n2 steps.

Therefore, as the three procedures are independent, the complexity of DBMIST-US is given by O(n2)

in the worst-case.

3.3. Differences between DBMIST-US and Related Works

The algorithm proposed in this work differs from other related methods in several aspects. First, most
developments focus on handling either class imbalance or class overlap separately, while DBMIST-US faces
both intrinsic data complexities together. Although one can find a few works addressing both problems,
in general, they consist of the application of different techniques in a sequential manner. For instance,
Chen et al. designed a methodology based on the use of the NCL algorithm to remove the overlapping
majority class instances followed by an ensemble to randomly under-sample the majority class [49].
Similarly, Koziarski and Wożniak proposed an energy-based approach to clean the neighborhoods of
minority class instances combined with an over-sampling procedure [50]. Other methods have been also
proposed to handle imbalanced data sets with noisy and borderline instances together, but they are mostly
based on modifying some previous resampling algorithm; in this line, for instance, Sáez et al. proposed
an extension of the well-known SMOTE over-sampling algorithm through the inclusion of an iterative
ensemble-based noise filter [8].

Regarding the differences between DBMIST-US and the existing clustering-based methods, it is
worth pointing out that most under-sampling techniques rely upon the K-means and the fuzzy K-means
algorithms [16,26,36–38,40,41,43,51]. However, it is well-known that K-means may not be sufficiently
effective when applied to imbalanced data because it always generates clusters with similar sizes [52].
Another weakness of these clustering algorithms is that they assume some prior knowledge of the number
of clusters to face the imbalance problem. To overcome these shortcomings, our proposal employs the
DBSCAN algorithm in the filtering stage. Some of the advantages of using DBSCAN are: (i) it can identify
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arbitrarily shaped clusters and detect noise, and (ii) the number of clusters is not a user-specified parameter.
In addition, an MST-based approach is used to under-sample the majority class, which, to the best of our
knowledge, this is the first development using the MST to face the imbalance problem. A related approach
employs the Gabriel graph and the relative neighborhood graph to search for neighbors in SMOTE [53],
which are supergraphs of the Euclidean MST.

Finally, differences between DBMIST-US and other resampling methods that use DBSCAN can also be
remarked. Sanguanmak and Hanskunatai proposed the hybrid DBSM algorithm, which employs DBSCAN
for under-sampling and the SMOTE technique for over-sampling[54]; here, DBSCAN is used to create
clusters from the whole training set, and then 50% of the majority class instances are eliminated from
each cluster. Another approach is the DBSMOTE algorithm [55], which integrates DBSCAN and SMOTE;
DBSCAN is applied to discover arbitrarily shaped clusters and SMOTE generates more synthetic positive
instances around the core of the minority class rather than at the border. The main difference between
our proposal and both these methods is that, unlike DBMIST-US, these are for over-sampling. On the
other hand, the DBMUTE technique combines DBSCAN with the under-sampling MUTE algorithm [56] to
discover and remove majority class instances from the overlapping region [57], but this is not intended to
identify and remove noisy instances.

4. Experimental Set-Up

Extensive experiments were conducted to evaluate the usefulness of the DBMIST-US method when
compared to a pool of state-of-the-art under-sampling techniques. In summary, the research questions to
investigate in this experimental study were:

Q1. What is the classification performance of DBMIST-US in comparison to several state-of-the-art
under-sampling algorithms?

Q2. How robust is DBMIST-US across the use of different classification models?
Q3. What is the impact of each under-sampling algorithm on the imbalance ratio?

4.1. Data Sets

We conducted the experiments on 20 real-life data sets (Table 1) and 12 synthetic data sets taken from
the KEEL Data Set Repository (https://sci2s.ugr.es/keel/imbalanced.php#subA). All data sets have two
classes and various levels of imbalance (the imbalance ratio ranges from 9.35 to 82).

The experiments on the synthetic data were carried out on three databases with different shapes of
the minority class (subclus, clover, and paw) whose instances are randomly and uniformly distributed
in a two-dimensional feature space. In all cases, the positive instances are uniformly surrounded by the
majority class. Each database comprises 800 instances with an imbalance ratio of 7 and different levels of
random noise (0%, 30%, 50%, and 70%) on both classes: data from both the majority and minority classes
were randomly mislabeled and some single feature-values were randomly changed.

In subclus, the positive instances are located inside rectangles that form small disjuncts.
Clover represents a more complex, nonlinear problem, where the minority class resembles a flower
with elliptic petals. In a paw database, the minority class is decomposed into three elliptic sub-regions of
varying cardinalities, where two sub-regions are located close to each other, and the remaining smaller
sub-region is separated. Figure 2 illustrates two examples of these data sets: 0% and 70% of noise.

https://sci2s.ugr.es/keel/imbalanced.php#subA
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Table 1. Summary of the real-life data sets.

Data Set Class Distribution #Instances IR

1 yeast-0-5-6-7-9_vs_4 51–477 528 9.35
2 glass-0-1-6_vs_2 17–175 192 10.29
3 glass2 17–197 214 11.59
4 shuttle-c0-vs-c4 123–1706 1829 13.87
5 yeast-1_vs_7 30–429 459 14.30
6 glass4 13–201 214 15.47
7 ecoli4 20–316 336 15.80
8 page-blocks-1-3_vs_4 28–444 472 15.86
9 glass-0-1-6_vs_5 9–175 184 19.44
10 yeast-1-4-5-8_vs_7 30–663 693 22.10
11 glass5 9–205 214 22.78
12 yeast-2_vs_8 20–462 482 23.10
13 flare-F 43–1023 1066 23.79
14 yeast4 51–1433 1484 28.10
15 yeast-1-2-8-9_vs_7 30–917 947 30.57
16 yeast5 44–1440 1484 32.73
17 ecoli-0-1-3-7_vs_2-6 7–274 281 39.14
18 abalone-17_vs_7-8-9-10 58–2280 2338 39.31
19 yeast6 35–1449 1484 41.40
20 poker-8-9_vs_5 25–2050 2075 82.00

(a) (b) (c)

(d) (e) (f)

Figure 2. Scatter plots of the synthetic data sets with 0% and 70% of noise (points in gray color are for noisy
data). (a) subclus-0; (b) clover-0; (c) paw-0; (d) subclus-70; (e) clover-70; (f) paw-70.

4.2. Reference Under-Sampling Algorithms and Classifiers

Besides the DBMIST-US method with a maximum imbalanced ratio set to 2, we also implemented
some state-of-the-art under-sampling algorithms already described in Section 2: CNN, ENN, TL, NCL,
OSS, SBC, and ClusterOSS. In addition, the experiments also included a collection of methods that are
popular in the literature related to class imbalance (see Table 2).
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Table 2. Other under-sampling methods included in the experiments.

Method Description

Random under-sampling (RUS) It balances the data set through the random elimination of instances
that belong to the over-sized class.

Evolutionary under-sampling (EUS) It consists of removing instances in the majority class by using the
guide of a genetic-based algorithm [58].

Easy ensemble (EE) The data set is divided into several subsets by random resampling
with replacement, and each subset is then used to train a base classifier
of the ensemble with AdaBoost [59].

Balance cascade (BC) It performs bagging and removes negative instances that can be
classified correctly with high confidence from future selections [59].

Random under-sampling boosting (RUSBOOST) It combines RUS with the AdaBoost algorithm [60].

To investigate the robustness of the experimental results and obtain fair comparisons between the
under-sampling algorithms, we evaluated the performance across three popular classification models
of different nature: an instance-based learner (nearest neighbor, 1NN), a decision tree (non-pruned J48)
and a linear classifier (support vector machine with a linear kernel, SVM). The parameters of these
classifiers throughout the experiments were the default values of the WEKA open source machine learning
software [61].

The evaluation of the under-sampling algorithms was estimated by 10-fold cross-validation in order
to avoid biased results [62]. Each original data set was randomly divided into 10 stratified parts: for each
fold, nine blocks were used as a training set, and the remaining portion was used for testing each of the
three classifiers that were trained by the different under-sampling strategies. Finally, the performance
measures of each method were averaged over the 10 trials.

4.3. Evaluation Metrics

For a two-class problem, Table 3 shows a 2× 2 confusion matrix where each entry contains the number
of correct/incorrect classifications [63]. Thus, the true-positive (TP) and the true-negative (TN) values
represent the amount of instances from each class that were correctly classified, whereas the false-positive
(FP) and false-negative (FN) indicate the amount of positive and negative instances misclassified.

Table 3. Confusion matrix.

Predicted as Positive Predicted as Negative

Actually positive TP FN
Actually negative FP TN

From this confusion matrix, two plain performance evaluation indices can be easily calculated:

• True-positive rate (or sensitivity). It measures the proportion of positive instances correctly classified,
TPR = TP/(TP + FN).

• True-negative rate (or specificity). It measures the proportion of negative examples correctly classified,
TNR = TN/(TN + FP).

The assessment of classification performance is often carried out using more powerful measures that
can be derived from straightforward indices such as the true-positive and true-negative rates. The most
popular measure is the overall accuracy, but it is not appropriate when the prior class probabilities are
very different because it does not consider misclassification costs and is strongly biased towards the
majority class [64]. Thus, the performance of classifiers in the context of class imbalance has commonly
been evaluated using other metrics, such as the geometric mean, the F-measure, and the area under the
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ROC curve. For the present experimental study, the geometric mean was chosen since it represents a good
trade-off between the accuracy rates measured on each class:

Gmean =
√

TPR · TNR (1)

5. Results

In this section, we report the experimental results obtained by DBMIST-US and several state-of-the-art
under-sampling algorithms, pursuing to answer the three research questions stated in Section 4.

5.1. Classification Performance Comparison with State-of-the-Art Methods

The aim of the first block of this experimental study was to compare the performance of DBMIST-US
with that of reference methods to assess its competitiveness (Q1), and also to analyze its robustness across
classification models (Q2). Tables A1–A3 in Appendix A report the geometric mean (averaged across the
10 runs) of each under-sampling algorithm using the three classifiers on all the data sets. The classification
results on the original (non-preprocessed) data sets were also included as a baseline for performance
assessment and usefulness testing.

Figure 3 displays the average Friedman rank of the under-sampling algorithm for each classifier.
From these graphs, one can observe that DBMIST-US achieved the lowest average ranks regardless of the
classifier used, which means that this method performed the best on both the real-life data sets and the
synthetic data sets. In addition, as expected, under-sampling the data leads to an improvement in the
classification performance, except when using the CNN algorithm; in general, this showed the highest
average Friedman ranks (i.e., the worst performance as measured by the geometric mean), especially with
the 1NN and J48 classifiers.
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Figure 3. Comparison of average Friedman ranks. (a) real data sets; (b) synthetic data sets.

It is also interesting to draw attention to the behavior of CNN, NCL, TL, ENN, OSS, RUSBOOST, and
SBC with the SVM classification model since the geometric mean obtained by these algorithms was 0 for
many of the experimental data sets, as can be seen in Table A3. Taking into account that the geometric mean
on the respective non-preprocessed data sets was also 0, this behavior indicates that those under-sampling
algorithms could not handle either the class overlap or the class imbalance or even both correctly. To gain
some insight into this situation, Figure 4 shows the TPR (red triangles) and TNR (black squares) obtained
by using SVM on each under-sampled synthetic data set. From these spider plots, one can observe that the
bad performance of most of those methods comes from a true-positive rate equal to 0, which means that
the SVM model misclassified all instances in the minority class.
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Figure 4. True-positive and true-negative rates using SVM on the synthetic data sets. (a) RUS; (b) CNN;
(c) NCL; (d) TL; (e) ENN; (f) OSS; (g) EUS; (h) EE; (i) BC; (j) RUSBOOST; (k) SBC; (l) ClusterOSS;
(m) DBMIST-US.
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To shed some light onto why the true-positive rate given by those under-sampling algorithms
was 0, Figure 5 plots the original paw-50 data set and the under-sampled sets when using either a
neighborhood-based method (TL) or a clustering-based method (SBC). One can observe that these
algorithms could not solve the class imbalance problem and, consequently, classification by SVM remained
biased towards the majority class. On the other hand, the plots show that there still exists some overlapping
between classes, indicating that not all noisy negative instances could be removed from the data sets.

A particularly interesting problem emerges with the ClusterOSS method where the performance
on the minority class improved significantly, but at the cost of causing a severe degradation of the
true-negative rate. In Figure 4, the spider plot for the paw-50 data set brings up an especially dramatic
case since the TNR was equal to 0. For a deeper understanding of why such a loss of performance in
the true-negative rate arose, the scatter plots in Figure 6 display the under-sampled sets when using
ClusterOSS and DBMIST-US. As can be viewed, both methods eliminated the problem of class overlap
by cleaning the decision boundary completely. However, the removal of many negative instances with
the ClusterOSS algorithm interchanged the role of classes (i.e., the majority class became the minority
one) and placed the negative instances further from each other than from the positive instances, whereas
DBMIST-US behaved appropriately by producing a perfectly balanced data set and keeping a sufficient
number of useful negative instances in well-defined clusters.

(a) (b) (c)

Figure 5. Scatter plots of the paw-50 database for the non-preprocessed set and the sets yielded by TL and
SBC. (a) original; (b) TL; (c) SBC.

(a) (b) (c)

Figure 6. Scatter plots of the paw-50 database for the non-preprocessed set and the sets yielded by
ClusterOSS and DBMIST-US. (a) Original; (b) ClusterOSS; (c) DBMIST-US.

For further confirmation of the behavior of DBMIST-US just discussed, the scatter plots in Figure 7
depict the three synthetic databases with 70% of noise in their original class distribution and also after
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being under-sampled by the DBMIST-US algorithm. Despite all these corresponding to problems with
high overlapping between classes, the under-sampling method was able to properly eliminate the noisy
and borderline instances in the majority class and clean the decision boundary. In addition, DBMIST-US
reduced the disproportion between positive and negative instances very importantly.

Figure 7. Scatter plots of the synthetic data sets (70% of noise) for the non-preprocessed sets and the sets
yielded by DBMIST-US (points in gray color correspond to the instances that were removed).

5.2. Statistical Significance Analysis

The Wilcoxon’s paired signed-rank test to find out statistically significant differences between each
pair of under-sampling algorithms for a significance level of α = 0.05. In Figure 8, we present the results
of a wins-ties-losses analysis, showing the number of data sets on which DBMIST-US obtained statistically
significantly better, equal, or worse performance than the reference algorithms on a pairwise basis, for the
three classifiers considered in this experimental study.

As can be seen, DBMIST-US significantly outperformed the state-of-the-art under-sampling methods
on a majority of databases, independently of the classifier used. This result suggests that the DBMIST-US
algorithm is robust against the classification models of different nature.

Figure 9 summarizes the Wilcoxon’s test to show whether or not there exists any significance difference
between DBMIST-US and the reference methods for the three classifiers. In this case, the bars represent
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how many times an algorithm was significantly better, equal to, or worse than the remaining techniques.
The most important finding is that the DBMIST-US method was significantly the best under-sampling
algorithm for all classifiers, which highlights the robustness of this method once again.
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Figure 8. Comparison of DBMIST-US with reference methods with respect to the number of data sets on
which DBMIST-US was statistically significantly better (green), equal (yellow), or worse (red). (a) 1NN;
(b) J48; (c) SVM.
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Figure 9. Summary of the Wilcoxon’s test. (a) 1NN; (b) J48; (c) SVM.

5.3. Evaluation of the Impact on the Imbalance Ratio

This block of the experimental study aimed to investigate the impact of each under-sampling
algorithm on the imbalance ratio (Q3), that is, to check the ability of each method to provide well-balanced
data sets.

Table 4 reports the imbalance ratio of each under-sampled data set. Initially, the imbalance ratio of
the 20 real-life data sets was between 9.35 and 82, whereas the imbalance ratio of the synthetic databases
was 7. After under-sampling the original sets, RUS, EUS, EE, and BC gave perfectly-balanced data sets
with an imbalance ratio equal to 1; conversely, most data sets that were resampled by NCL, TL, ENN,
OSS, and SBC are still heavily class-imbalanced, thus leading to an imbalance ratio really close to the
original one. Regarding the DBMIST-US algorithm, the imbalance ratios equal or close to 1 indicate that
the resulting data sets were well-balanced, demonstrating the effectiveness of the method proposed here.
Finally, the ClusterOSS method produced many data sets with an imbalance ratio less than 1, which means
that the huge amount of negative instances removed made the majority class smaller than the minority
class, as already pointed out in Section 5.1.
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Table 4. Imbalance ratio of the resampled data sets.

Original RUS CNN NCL TL ENN OSS EUS EE BC RUSBOOST SBC ClusterOSS DBMIST-US

yeast-0-5-6-7-9_vs_4 9.4 1.0 1.7 8.0 9.1 8.2 7.3 1.0 1.0 1.0 1.6 7.5 0.4 1.0
glass-0-1-6_vs_2 19.3 1.0 2.2 8.7 10.1 8.4 9.6 1.0 1.0 1.0 1.0 8.9 4.2 1.1
glass2 11.6 1.0 2.0 10.1 11.4 9.8 10.5 1.0 1.0 1.0 1.5 9.9 1.8 1.1
shuttle-c0-vs-c4 7 13.9 1.0 0.1 13.8 13.9 13.8 0.3 1.0 1.0 1.0 1.5 13.8 0.4 1.2
yeast-1_vs_7 14.3 1.0 2.8 12.1 14.0 12.5 12.1 1.0 1.0 1.0 1.5 11.4 2.0 1.0
glass4 15.5 1.0 1.0 14.5 15.5 14.9 4.2 1.0 1.0 1.0 1.5 15.6 5.0 1.1
ecoli4 15.8 1.0 1.0 15.2 15.8 15.4 10.3 1.0 1.0 1.0 1.5 14.9 0.9 1.1
page-blocks-1-3_vs_4 15.9 1.0 1.0 15.3 15.8 15.2 4.5 1.0 1.0 1.0 1.5 14.7 3.0 1.0
glass-0-1-6_vs_5 19.4 1.0 1.2 18.3 19.3 18.7 5.9 1.0 1.0 1.0 1.4 18.7 2.0 1.1
yeast-1-4-5-8_vs_7 22.1 1.0 4.1 19.6 21.8 19.8 21.8 1.0 1.0 1.0 1.5 16.9 2.3 1.0
glass5 22.8 1.0 1.2 21.6 22.7 22.0 7.6 1.0 1.0 1.0 1.4 22.0 3.8 1.1
yeast-2_vs_8 23.1 1.0 2.4 21.9 22.9 22.0 21.2 1.0 1.0 1.0 1.5 21.0 0.8 1.0
flare-F 23.8 1.0 3.1 22.0 23.7 21.8 23.7 1.0 1.0 1.0 1.5 23.2 0.1 1.1
yeast4 28.1 1.0 2.5 26.4 27.8 26.6 24.7 1.0 1.0 1.0 1.5 22.1 0.3 1.1
yeast-1-2-8-9_vs_7 30.6 1.0 4.3 28.3 30.2 28.4 30.1 1.0 1.0 1.0 1.5 29.6 0.4 1.0
yeast5 32.7 1.0 1.1 32.0 32.6 32.0 25.0 1.0 1.0 1.0 1.5 32.0 0.3 1.1
ecoli-0-1-3-7_vs_2-6 39.1 1.0 2.1 38.1 38.9 38.0 17.3 1.0 1.0 1.0 1.4 37.6 2.2 1.3
abalone-17_vs_7-8-9-10 39.3 1.0 2.5 37.5 39.1 38.2 37.3 1.1 1.0 1.0 1.5 31.0 0.3 1.1
yeast6 41.4 1.0 2.9 40.0 41.1 39.9 35.5 1.0 1.0 1.0 1.5 40.2 0.4 1.1
poker-8-9_vs_5 82.0 1.0 5.1 79.4 81.7 80.5 80.6 1.0 1.0 1.0 1.5 69.2 0.7 1.1

subcl-0 7.0 1.0 1.3 6.6 6.9 6.5 6.3 1.0 1.0 1.0 1.5 5.7 0.5 1.0
subcl-30 7.0 1.0 1.3 6.4 6.8 5.9 6.7 1.0 1.0 1.0 1.5 4.7 0.6 0.9
subcl-50 7.0 1.0 1.4 6.3 6.6 5.7 6.5 1.0 1.0 1.0 1.5 4.6 1.5 1.0
subcl-70 7.0 1.0 1.4 6.2 6.6 5.6 6.6 1.0 1.0 1.0 1.5 4.6 0.5 1.1
clover-0 7.0 1.0 1.4 6.6 6.9 6.6 6.5 1.0 1.0 1.0 1.5 5.5 1.4 0.9
clover-30 7.0 1.0 1.1 6.5 6.8 6.2 6.5 1.0 1.0 1.0 1.5 5.1 0.7 1.2
clover-50 7.0 1.0 1.3 6.3 6.7 5.8 6.2 1.0 1.0 1.0 1.5 5.1 0.4 1.0
clover-70 7.0 1.0 1.3 6.2 6.6 5.6 6.0 1.0 1.0 1.0 1.5 4.7 1.2 1.1
paw-0 7.0 1.0 2.2 6.8 7.0 6.7 7.0 1.0 1.0 1.0 1.5 6.3 0.1 0.9
paw-30 7.0 1.0 1.1 6.6 6.8 6.2 6.3 1.0 1.0 1.0 1.5 5.2 0.7 0.8
paw-50 7.0 1.0 1.0 6.5 6.7 6.0 6.1 1.0 1.0 1.0 1.5 5.4 0.2 1.0
paw-70 7.0 1.0 1.1 6.3 6.6 5.8 5.8 1.0 1.0 1.0 1.5 5.2 1.2 1.1

% Avg. reduction 91.55 86.98 8.55 3.28 10.18 23.24 91.51 91.55 91.55 87.34 17.33 90.26 91.29
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Another way of evaluating the impact of each under-sampling algorithm on the imbalance ratio is
looking at the percentage of average reduction of the imbalance ratio given in the last row of Table 4.
Results reveal that the top-4 methods were RUS, EUS, EE, and BC with an average reduction of 91.55%,
which correspond to the algorithms that produced perfectly-balanced data sets (imbalance ratio equal to
1). However, DBMIST-US with an average reduction of 91.29% was clearly very close to the top-4 methods.
On the other hand, the average reductions achieved with NCL, TL, ENN, OSS, and SBC were extremely
low, which suggests that these algorithms are not the most appropriate for under-sampling.

6. Conclusions

In this work, we have proposed a new under-sampling method called DBMIST-US to face class overlap
and class imbalance through the combination of the DBSCAN clustering algorithm with the generation
of an MST. The goal of the technique proposed here is to handle both data complexities simultaneously
using a two-stage algorithm. In the first stage, the decision boundary is cleaned by removing negative
instances that have been considered as noise, whereas the second stage is in charge of balancing the classes
by selecting representative instances from the majority class according to a maximum imbalance ratio
predefined by the user.

As already introduced in Section 3.3, several differences between DBMIST-US and some recent related
under-sampling algorithms can be highlighted: (i) DBMIST-US faces class overlap and class imbalance
simultaneously, whereas other methods are designed to tackle these data complexities separately or by
applying a series of techniques in a sequential manner, (ii) the baseline clustering-based under-sampling
approaches are based on the classical K-means algorithm, whereas our proposal combines DBSCAN with
MST, and (iii) the algorithms that rest upon the use of DBSCAN are primarily developed for over-sampling
the minority class instead of under-sampling the majority class.

We carried out a set of experiments to validate the performance of the DBMIST-US method against 12
state-of-the-art under-sampling algorithms using three supervised classifiers (1NN, J48, and SVM), tested
on both real-life data sets and synthetic data sets with an imbalance ratio ranging from 7 to 82. The results
have shown that the method here proposed performs well with noisy and borderline problems and better
than the remaining algorithms when applied on heavily imbalanced data sets, especially using the SVM
classification model. Another research question that has properly been answered in the experimental
study refers to robustness, showing that DBMIST-US is high robust to the use of classifiers of different
nature. It is also worth noting the percentage of average reduction of the imbalance ratio achieved by
DBMIST-US, which was comparable to the reduction produced by the best reference algorithms.

The promising results of the DBMIST-US algorithm encourage us to examine some directions for
future research. The most immediate issue relates to the generalization of DBMIST-US for handling
the multi-class imbalance problem, which emerges as a more challenging situation in many practical
applications. A second subject that deserves further research is the multi-label classification of imbalanced
data where the classes are not mutually exclusive, which represents a much more complex classification
task because an instance may belong to more than one class. However, another avenue for investigation is
to analyze how the DBMIST-US algorithm can be used on large-scale data and data streams.
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Abbreviations

The following abbreviations are used in this manuscript:

DBSCAN Density Based Spatial Clustering of Applications with Noise
MST Minimum Spanning Tree
DBMIST-US DBSCAN and MST - Under-Sampling
IR Imbalance ratio
kNN k Nearest Neighbor
SVM Support Vector Machine
SMOTE Synthetic Minority Over-sampling Technique

Appendix A. Classification Results

This appendix summarizes the classification performance of each under-sampling algorithm using
1NN, J48, and SVM. Values in boldface highlight the best result for each database.

Table A1. Geometric mean results obtained with 1NN.

Original RUS CNN NCL TL ENN OSS EUS EE BC RUSBOOST SBC ClusterOSS DBMIST-US

yeast-0-5-6-7-9_vs_4 61.2 73.5 50.7 83.0 69.0 78.9 72.2 78.4 73.2 73.5 76.7 77.1 58.9 75.4
glass-0-1-6_vs_2 47.0 74.4 51.0 66.9 52.6 67.9 52.9 68.3 76.2 73.5 64.1 53.1 33.0 76.3
glass2 40.7 76.2 51.6 53.1 41.0 67.1 47.4 64.7 60.0 67.6 68.7 53.1 66.9 76.9
shuttle-c0-vs-c4 7 99.6 99.6 100.0 99.6 99.6 99.6 100.0 99.6 99.6 99.6 99.6 99.6 98.5 99.6
yeast-1_vs_7 62.3 74.8 46.2 76.8 67.6 70.4 69.9 66.6 59.6 58.1 65.9 67.2 62.4 69.2
glass4 86.6 79.9 65.3 91.3 86.6 87.7 83.6 80.7 84.3 84.3 87.4 86.6 56.9 92.1
ecoli4 86.3 95.0 81.4 89.4 86.3 92.2 86.2 92.5 100.0 100.0 92.2 91.9 98.9 100.0
page-blocks-1-3_vs_4 98.2 98.2 94.5 98.2 98.2 98.2 98.2 94.5 94.6 96.4 96.6 99.9 92.2 98.2
glass-0-1-6_vs_5 80.9 77.0 65.1 100.0 80.9 100.0 79.3 94.3 94.3 94.3 91.0 94.0 78.1 95.4
yeast-1-4-5-8_vs_7 44.1 64.5 39.7 62.7 47.9 48.0 54.2 69.7 69.3 60.0 65.1 57.0 64.9 61.3
glass5 81.1 94.3 75.2 93.8 81.2 94.0 79.8 88.2 72.0 72.0 91.2 93.3 44.3 92.7
yeast-2_vs_8 77.0 59.8 58.3 80.6 77.3 80.5 77.4 54.8 77.5 72.5 75.1 80.2 71.5 74.5
flare-F 30.3 81.4 30.6 65.9 33.7 72.6 26.2 78.9 76.6 68.5 77.3 26.1 0.0 87.3
yeast4 58.8 83.3 43.7 80.1 62.2 71.3 58.9 84.3 77.4 82.4 77.1 78.6 75.4 79.8
yeast-1-2-8-9_vs_7 47.6 56.6 42.5 65.4 54.2 60.4 60.0 64.5 63.2 69.9 65.0 47.6 69.2 66.1
yeast5 82.1 100.0 65.5 96.3 87.6 94.1 88.7 93.2 92.0 96.5 94.6 82.1 92.5 97.1
ecoli-0-1-3-7_vs_2-6 83.7 78.2 48.8 84.4 84.0 84.4 84.2 92.6 71.4 71.4 81.9 84.2 83.7 87.3
abalone-17_vs_7-8-9-10 50.6 77.6 44.8 66.7 45.3 61.4 50.7 73.9 78.2 73.2 78.6 58.3 44.8 78.9
yeast6 71.1 69.9 54.8 86.1 79.0 82.7 80.6 81.0 75.1 81.4 83.7 71.2 88.0 81.1
poker-8-9_vs_5 19.9 53.1 14.8 20.0 20.0 20.0 20.0 61.2 45.3 63.5 65.1 34.5 64.0 80.0

subcl-0 86.2 89.9 66.1 91.1 90.4 95.1 87.8 94.5 90.4 92.5 89.5 91.7 88.6 98.1
subcl-30 72.0 72.5 58.0 78.9 75.3 83.4 75.5 74.5 83.5 77.0 77.3 83.3 87.2 90.6
subcl-50 60.5 69.0 46.0 73.6 68.2 81.9 68.3 74.0 71.5 81.0 74.5 80.6 86.6 89.3
subcl-70 52.5 70.5 35.9 72.3 62.7 82.4 62.0 79.8 72.5 73.5 71.6 74.0 85.5 93.0
clover-0 89.1 90.4 59.5 98.7 94.8 96.8 95.1 89.9 89.4 93.4 91.6 98.1 87.6 100.0
clover-30 80.4 78.0 50.3 86.8 81.6 88.0 81.9 78.5 80.9 76.9 82.6 87.6 80.4 96.3
clover-50 70.0 74.5 48.6 83.1 75.9 87.5 75.6 75.8 75.4 76.9 76.3 85.9 81.6 98.5
clover-70 62.5 73.9 41.1 80.4 71.9 87.4 75.3 77.5 74.9 77.0 73.4 78.7 85.0 99.1
paw-0 93.5 94.9 60.3 98.4 96.7 98.5 95.6 97.0 93.0 92.4 95.1 98.7 71.9 97.3
paw-30 78.3 77.5 51.9 86.7 83.5 91.8 83.7 83.0 83.5 77.9 83.0 87.5 79.4 94.0
paw-50 74.1 81.5 46.3 86.0 81.8 89.4 83.1 82.8 83.0 87.0 79.9 86.1 45.9 98.1
paw-70 64.0 77.0 45.0 78.3 74.7 89.8 75.8 74.6 79.0 77.5 76.8 82.1 86.2 98.5
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Table A2. Geometric mean results obtained with J48.

Original RUS CNN NCL TL ENN OSS EUS EE BC RUSBOOST SBC ClusterOSS DBMIST-US

yeast-0-5-6-7-9_vs_4 65.1 70.6 60.2 70.6 65.8 74.5 64.3 73.2 70.5 68.6 77.0 74.3 71.3 76.7
glass-0-1-6_vs_2 52.3 60.0 43.8 66.7 53.1 53.3 58.3 46.7 57.6 45.6 63.5 52.0 4.6 64.8
glass2 53.1 90.7 22.4 57.6 33.2 58.0 52.4 55.2 73.0 61.1 65.2 58.2 65.0 72.5
shuttle-c0-vs-c4 7 100.0 100.0 99.6 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 97.0 100.0
yeast-1_vs_7 54.3 64.5 57.2 57.2 65.2 62.6 54.2 71.6 58.3 81.5 67.4 62.8 68.4 69.7
glass4 82.2 73.0 73.0 82.1 82.2 86.6 79.3 88.4 92.3 92.3 89.1 72.4 9.0 92.3
ecoli4 82.9 87.5 92.3 80.1 82.9 80.1 86.0 76.5 87.5 92.5 86.3 77.1 93.5 82.8
page-blocks-1-3_vs_4 96.1 100.0 94.5 99.8 99.8 96.1 97.4 98.2 96.4 94.5 97.5 97.1 93.8 98.2
glass-0-1-6_vs_5 99.4 88.2 95.3 99.7 93.7 99.7 97.1 100.0 94.3 94.3 92.5 99.7 79.0 92.3
yeast-1-4-5-8_vs_7 0.0 59.6 0.0 0.0 0.0 0.0 0.0 66.6 60.6 44.7 53.1 25.8 64.3 55.0
glass5 98.8 100.0 85.3 99.7 99.5 99.7 98.5 94.3 94.3 94.3 93.9 100.0 49.5 95.8
yeast-2_vs_8 22.4 61.2 69.2 22.3 0.0 31.6 22.4 74.8 71.4 76.5 72.1 31.6 67.1 73.0
flare-F 15.2 85.9 32.7 62.4 0.0 56.8 0.0 84.8 86.0 79.5 84.2 0.0 0.0 90.5
yeast4 53.9 78.3 0.0 60.7 57.4 65.4 53.9 83.3 80.3 84.1 78.2 68.4 80.9 79.3
yeast-1-2-8-9_vs_7 48.2 53.7 47.9 44.6 44.6 44.6 44.6 59.9 54.2 69.7 67.3 40.8 68.4 62.8
yeast5 86.3 96.6 77.8 96.4 89.0 93.9 88.9 87.4 94.1 89.8 94.2 88.9 90.2 96.6
ecoli-0-1-3-7_vs_2-6 84.4 71.4 70.4 84.5 84.4 84.5 83.5 70.0 78.2 78.2 74.5 84.4 72.4 94.3
abalone-17_vs_7-8-9-10 34.7 75.0 0.0 43.3 34.6 39.3 32.1 78.8 75.0 74.0 75.5 57.0 45.9 76.0
yeast6 73.3 72.8 70.2 77.2 73.3 73.5 67.3 82.6 71.4 88.6 81.9 71.4 80.4 84.6
poker-8-9_vs_5 0.0 47.8 0.0 0.0 0.0 0.0 0.0 44.0 40.0 42.3 44.6 0.0 52.5 59.6

subcl-0 97.8 92.3 77.9 97.8 97.8 98.3 97.2 95.5 93.9 88.6 92.3 96.6 87.3 94.4
subcl-30 66.7 75.9 74.0 71.4 70.2 87.5 68.5 75.3 83.2 79.7 83.5 87.3 89.4 85.2
subcl-50 26.4 78.0 31.3 74.8 53.4 84.8 68.2 74.7 80.8 82.0 80.9 83.2 83.7 82.6
subcl-70 0.0 76.5 0.0 32.6 24.4 72.6 14.1 77.8 80.7 73.0 79.9 80.1 83.5 86.7
clover-0 63.3 85.6 11.6 65.1 66.7 66.9 66.6 83.4 77.5 78.2 81.5 92.7 82.1 83.9
clover-30 26.4 74.6 59.2 42.9 45.1 71.5 28.2 68.9 79.1 79.6 81.7 84.0 52.7 97.4
clover-50 0.0 71.8 0.0 59.1 47.9 64.3 10.0 77.7 82.1 75.5 75.8 84.2 78.4 94.7
clover-70 0.0 68.2 27.2 22.3 0.0 67.7 0.0 71.4 80.1 62.6 75.3 82.2 80.4 97.4
paw-0 80.4 93.9 39.0 65.9 65.1 71.6 80.1 91.2 89.0 90.3 92.2 97.2 35.1 94.6
paw-30 19.9 83.4 60.1 79.7 72.5 87.5 60.7 79.2 83.2 82.8 82.3 87.6 76.0 91.1
paw-50 28.2 80.6 52.0 82.5 51.8 87.5 51.5 86.7 86.9 85.6 82.0 89.0 30.0 94.4
paw-70 0.0 78.4 0.0 63.9 32.9 88.4 34.2 77.3 82.1 78.2 82.0 90.8 76.8 92.8

Table A3. Geometric mean results obtained with SVM.

Original RUS CNN NCL TL ENN OSS EUS EE BC RUSBOOST SBC ClusterOSS DBMIST-US

yeast-0-5-6-7-9_vs_4 0.0 78.3 55.0 42.0 0.0 37.0 0.0 78.4 75.3 74.5 77.7 44.2 30.1 79.5
glass-0-1-6_vs_2 0.0 55.2 0.0 0.0 0.0 0.0 0.0 45.6 47.8 44.0 32.1 0.0 0.0 57.4
glass2 0.0 68.6 0.0 0.0 0.0 0.0 0.0 47.1 59.4 54.2 21.8 0.0 29.5 71.7
shuttle-c0-vs-c4 7 99.6 100.0 99.6 100.0 99.6 99.6 99.6 100.0 100.0 100.0 100.0 99.6 99.9 100.0
yeast-1_vs_7 0.0 81.2 0.0 0.0 0.0 0.0 0.0 83.3 74.1 74.8 64.5 0.0 12.7 76.6
glass4 39.2 68.8 40.7 39.2 39.2 39.2 39.2 84.3 84.3 84.3 87.6 39.2 0.0 92.0
ecoli4 63.2 92.5 92.3 74.2 63.2 74.2 70.7 97.5 97.5 100.0 94.9 74.2 99.0 100.0
page-blocks-1-3_vs_4 65.4 71.9 74.5 65.4 65.4 65.4 65.5 79.4 79.9 75.1 73.1 65.4 25.6 84.5
glass-0-1-6_vs_5 0.0 81.6 73.9 0.0 0.0 0.0 0.0 94.3 81.6 81.6 86.4 0.0 42.3 90.2
yeast-1-4-5-8_vs_7 0.0 60.6 0.0 0.0 0.0 0.0 0.0 58.9 67.8 49.4 47.3 0.0 60.5 62.0
glass5 0.0 88.2 75.2 0.0 0.0 0.0 0.0 88.2 81.6 81.6 81.8 0.0 43.1 91.2
yeast-2_vs_8 74.1 72.3 73.4 74.2 74.2 74.2 74.2 74.2 74.2 77.5 73.3 74.2 70.6 73.0
flare-F 0.0 78.2 36.2 42.9 15.2 50.4 0.0 76.8 78.5 76.2 81.7 0.0 0.0 88.7
yeast4 0.0 82.4 0.0 0.0 0.0 0.0 0.0 85.2 82.3 84.3 80.9 0.0 24.6 82.3
yeast-1-2-8-9_vs_7 0.0 52.4 0.0 0.0 0.0 0.0 0.0 69.7 74.5 74.8 56.4 0.0 43.1 70.9
yeast5 0.0 98.9 70.9 33.7 0.0 39.9 30.2 92.9 94.1 94.1 95.8 0.0 92.6 96.3
ecoli-0-1-3-7_vs_2-6 84.1 78.2 78.7 84.2 84.0 84.2 83.5 92.6 84.5 84.5 84.1 84.0 82.8 92.6
abalone-17_vs_7-8-9-10 0.0 74.1 0.0 0.0 0.0 0.0 0.0 69.8 75.0 69.8 69.6 0.0 0.0 72.1
yeast6 0.0 78.5 0.0 0.0 0.0 0.0 0.0 88.4 81.3 87.1 87.7 0.0 86.1 86.3
poker-8-9_vs_5 0.0 51.8 0.0 0.0 0.0 0.0 0.0 44.9 37.9 35.8 30.1 0.0 2.5 62.1

subcl-0 0.0 51.3 0.0 0.0 0.0 0.0 0.0 54.5 47.0 56.8 0.0 0.0 0.0 67.5
subcl-30 0.0 41.8 0.0 0.0 0.0 0.0 0.0 54.0 41.9 50.4 0.0 0.0 76.3 59.4
subcl-50 0.0 47.6 0.0 0.0 0.0 0.0 0.0 50.3 48.5 52.6 0.0 0.0 77.3 62.3
subcl-70 0.0 52.5 0.0 0.0 0.0 0.0 0.0 53.2 43.0 54.8 0.0 0.0 67.6 50.3
clover-0 0.0 54.5 0.0 0.0 0.0 0.0 0.0 47.1 52.0 48.4 0.0 0.0 29.5 93.5
clover-30 0.0 55.8 27.2 0.0 0.0 0.0 0.0 50.5 58.9 58.6 0.0 0.0 2.2 54.0
clover-50 0.0 51.2 0.0 0.0 0.0 0.0 0.0 58.6 51.4 56.8 0.0 0.0 74.5 53.3
clover-70 0.0 57.5 0.0 0.0 0.0 0.0 0.0 57.4 57.4 41.4 0.0 0.0 80.0 61.2
paw-0 0.0 64.2 0.0 0.0 0.0 0.0 0.0 47.4 39.4 57.6 0.0 0.0 0.0 85.8
paw-30 0.0 57.5 49.6 0.0 0.0 0.0 0.0 59.8 43.0 45.0 0.0 0.0 32.4 50.6
paw-50 0.0 61.4 51.3 0.0 0.0 0.0 0.0 62.0 54.1 56.7 0.0 0.0 0.0 61.9
paw-70 0.0 49.4 17.0 0.0 0.0 0.0 0.0 55.9 55.3 49.6 0.0 0.0 77.0 27.1
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