3 research outputs found

    A collaborative approach to image segmentation and behavior recognition from image sequences

    Get PDF
    Visual behavior recognition is currently a highly active research area. This is due both to the scientific challenge posed by the complexity of the task, and to the growing interest in its applications, such as automated visual surveillance, human-computer interaction, medical diagnosis or video indexing/retrieval. A large number of different approaches have been developed, whose complexity and underlying models depend on the goals of the particular application which is targeted. The general trend followed by these approaches is the separation of the behavior recognition task into two sequential processes. The first one is a feature extraction process, where features which are considered relevant for the recognition task are extracted from the input image sequence. The second one is the actual recognition process, where the extracted features are classified in terms of the pre-defined behavior classes. One problematic issue of such a two-pass procedure is that the recognition process is highly dependent on the feature extraction process, and does not have the possibility to influence it. Consequently, a failure of the feature extraction process may impair correct recognition. The focus of our thesis is on the recognition of single object behavior from monocular image sequences. We propose a general framework where feature extraction and behavior recognition are performed jointly, thereby allowing the two tasks to mutually improve their results through collaboration and sharing of existing knowledge. The intended collaboration is achieved by introducing a probabilistic temporal model based on a Hidden Markov Model (HMM). In our formulation, behavior is decomposed into a sequence of simple actions and each action is associated with a different probability of observing a particular set of object attributes within the image at a given time. Moreover, our model includes a probabilistic formulation of attribute (feature) extraction in terms of image segmentation. Contrary to existing approaches, segmentation is achieved by taking into account the relative probabilities of each action, which are provided by the underlying HMM. In this context, we solve the joint problem of attribute extraction and behavior recognition by developing a variation of the Viterbi decoding algorithm, adapted to our model. Within the algorithm derivation, we translate the probabilistic attribute extraction formulation into a variational segmentation model. The proposed model is defined as a combination of typical image- and contour-dependent energy terms with a term which encapsulates prior information, offered by the collaborating recognition process. This prior information is introduced by means of a competition between multiple prior terms, corresponding to the different action classes which may have generated the current image. As a result of our algorithm, the recognized behavior is represented as a succession of action classes corresponding to the images in the given sequence. Furthermore, we develop an extension of our general framework, that allows us to deal with a common situation encountered in applications. Namely, we treat the case where behavior is specified in terms of a discrete set of behavior types, made up of different successions of actions, which belong to a shared set of action classes. Therefore, the recognition of behavior requires the estimation of the most probable behavior type and of the corresponding most probable succession of action classes which explains the observed image sequence. To this end, we modify our initial model and develop a corresponding Viterbi decoding algorithm. Both our initial framework and its extension are defined in general terms, involving several free parameters which can be chosen so as to obtain suitable implementations for the targeted applications. In this thesis, we demonstrate the viability of the proposed framework by developing particular implementations for two applications. Both applications belong to the field of gesture recognition and concern finger-counting and finger-spelling. For the finger-counting application, we use our original framework, whereas for the finger-spelling application, we use its proposed extension. For both applications, we instantiate the free parameters of the respective frameworks with particular models and quantities. Then, we explain the training of the obtained models from specific training data. Finally, we present the results obtained by testing our trained models on new image sequences. The test results show the robustness of our models in difficult cases, including noisy images, occlusions of the gesturing hand and cluttered background. For the finger-spelling application, a comparison with the traditional sequential approach to image segmentation and behavior recognition illustrates the superiority of our collaborative model

    Enriching unstructured media content about events to enable semi-automated summaries, compilations, and improved search by leveraging social networks

    Get PDF
    (i) Mobile devices and social networks are omnipresent Mobile devices such as smartphones, tablets, or digital cameras together with social networks enable people to create, share, and consume enormous amounts of media items like videos or photos both on the road or at home. Such mobile devices "by pure definition" accompany their owners almost wherever they may go. In consequence, mobile devices are omnipresent at all sorts of events to capture noteworthy moments. Exemplary events can be keynote speeches at conferences, music concerts in stadiums, or even natural catastrophes like earthquakes that affect whole areas or countries. At such events" given a stable network connection" part of the event-related media items are published on social networks both as the event happens or afterwards, once a stable network connection has been established again. (ii) Finding representative media items for an event is hard Common media item search operations, for example, searching for the official video clip for a certain hit record on an online video platform can in the simplest case be achieved based on potentially shallow human-generated metadata or based on more profound content analysis techniques like optical character recognition, automatic speech recognition, or acoustic fingerprinting. More advanced scenarios, however, like retrieving all (or just the most representative) media items that were created at a given event with the objective of creating event summaries or media item compilations covering the event in question are hard, if not impossible, to fulfill at large scale. The main research question of this thesis can be formulated as follows. (iii) Research question "Can user-customizable media galleries that summarize given events be created solely based on textual and multimedia data from social networks?" (iv) Contributions In the context of this thesis, we have developed and evaluated a novel interactive application and related methods for media item enrichment, leveraging social networks, utilizing the Web of Data, techniques known from Content-based Image Retrieval (CBIR) and Content-based Video Retrieval (CBVR), and fine-grained media item addressing schemes like Media Fragments URIs to provide a scalable and near realtime solution to realize the abovementioned scenario of event summarization and media item compilation. (v) Methodology For any event with given event title(s), (potentially vague) event location(s), and (arbitrarily fine-grained) event date(s), our approach can be divided in the following six steps. 1) Via the textual search APIs (Application Programming Interfaces) of different social networks, we retrieve a list of potentially event-relevant microposts that either contain media items directly, or that provide links to media items on external media item hosting platforms. 2) Using third-party Natural Language Processing (NLP) tools, we recognize and disambiguate named entities in microposts to predetermine their relevance. 3) We extract the binary media item data from social networks or media item hosting platforms and relate it to the originating microposts. 4) Using CBIR and CBVR techniques, we first deduplicate exact-duplicate and near-duplicate media items and then cluster similar media items. 5) We rank the deduplicated and clustered list of media items and their related microposts according to well-defined ranking criteria. 6) In order to generate interactive and user-customizable media galleries that visually and audially summarize the event in question, we compile the top-n ranked media items and microposts in aesthetically pleasing and functional ways
    corecore