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Abstract

Visual behavior recognition is currently a highly active research area. This is due both to

the scientific challenge posed by the complexity of the task, and to the growing interest in

its applications, such as automated visual surveillance, human-computer interaction, medi-

cal diagnosis or video indexing/retrieval. A large number of different approaches have been

developed, whose complexity and underlying models depend on the goals of the particular

application which is targeted. The general trend followed by these approaches is the sep-

aration of the behavior recognition task into two sequential processes. The first one is a

feature extraction process, where features which are considered relevant for the recognition

task are extracted from the input image sequence. The second one is the actual recognition

process, where the extracted features are classified in terms of the pre-defined behavior

classes. One problematic issue of such a two-pass procedure is that the recognition process

is highly dependent on the feature extraction process, and does not have the possibility to

influence it. Consequently, a failure of the feature extraction process may impair correct

recognition.

The focus of our thesis is on the recognition of single object behavior from monocular

image sequences. We propose a general framework where feature extraction and behavior

recognition are performed jointly, thereby allowing the two tasks to mutually improve their

results through collaboration and sharing of existing knowledge. The intended collabora-

tion is achieved by introducing a probabilistic temporal model based on a Hidden Markov

Model (HMM). In our formulation, behavior is decomposed into a sequence of simple ac-

tions and each action is associated with a different probability of observing a particular

set of object attributes within the image at a given time. Moreover, our model includes

a probabilistic formulation of attribute (feature) extraction in terms of image segmenta-

tion. Contrary to existing approaches, segmentation is achieved by taking into account the

relative probabilities of each action, which are provided by the underlying HMM.

In this context, we solve the joint problem of attribute extraction and behavior recog-

nition by developing a variation of the Viterbi decoding algorithm, adapted to our model.

Within the algorithm derivation, we translate the probabilistic attribute extraction formula-

tion into a variational segmentation model. The proposed model is defined as a combination

of typical image- and contour-dependent energy terms with a term which encapsulates pri-

or information, offered by the collaborating recognition process. This prior information is
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vi Abstract

introduced by means of a competition between multiple prior terms, corresponding to the

different action classes which may have generated the current image. As a result of our algo-

rithm, the recognized behavior is represented as a succession of action classes corresponding

to the images in the given sequence.

Furthermore, we develop an extension of our general framework, that allows us to deal

with a common situation encountered in applications. Namely, we treat the case where

behavior is specified in terms of a discrete set of behavior types, made up of different

successions of actions, which belong to a shared set of action classes. Therefore, the recog-

nition of behavior requires the estimation of the most probable behavior type and of the

corresponding most probable succession of action classes which explains the observed image

sequence. To this end, we modify our initial model and develop a corresponding Viterbi

decoding algorithm.

Both our initial framework and its extension are defined in general terms, involving

several free parameters which can be chosen so as to obtain suitable implementations for the

targeted applications. In this thesis, we demonstrate the viability of the proposed framework

by developing particular implementations for two applications. Both applications belong

to the field of gesture recognition and concern finger-counting and finger-spelling. For the

finger-counting application, we use our original framework, whereas for the finger-spelling

application, we use its proposed extension. For both applications, we instantiate the free

parameters of the respective frameworks with particular models and quantities. Then, we

explain the training of the obtained models from specific training data. Finally, we present

the results obtained by testing our trained models on new image sequences. The test results

show the robustness of our models in difficult cases, including noisy images, occlusions of the

gesturing hand and cluttered background. For the finger-spelling application, a comparison

with the traditional sequential approach to image segmentation and behavior recognition

illustrates the superiority of our collaborative model.

Keywords: behavior recognition, variational image segmentation, probabilistic tempo-

ral model, Hidden Markov Model, Viterbi decoding, gesture recognition.



Résumé

La reconnaissance visuelle du comportement est un domaine de recherche très actif. Cela

est dû à la fois au défi scientifique posé par la complexité de la tâche, et à l’intérêt croissant

de ses applications, telles que la surveillance visuelle automatisée, l’interaction homme-

machine, le diagnostic médical ou l’indexation / recherche automatique de vidéos. Un

grand nombre d’approches différentes ont été développées, dont la complexité et les mod-

èles sous-jacents dépendent des objectifs de l’application particulière envisagée. La ten-

dance générale suivie par ces approches est la séparation de la tâche de reconnaissance

du comportement en deux processus séquentiels. Le premier est un processus d’extraction

de caractéristiques, où les caractéristiques qui sont considérées comme pertinentes pour la

tâche de reconnaissance sont extraites de la séquence des images d’entrée. Le second est

le processus de reconnaissance, où les caractéristiques extraites sont classifiées en fonction

des classes de comportement prédéfinies. Un aspect problématique de ces procédures en

deux passes est que le processus de reconnaissance est fortement dépendent du processus

d’extraction de caractéristiques, et ne dispose pas de la possibilité de l’influencer. Par

conséquent, une performance médiocre du processus d’extraction de caractéristiques peut

empêcher la reconnaissance correcte de la séquence.

L’objectif de notre thèse porte sur la reconnaissance du comportement d’un objet unique

dans une séquence d’images monoculaire. Nous proposons un cadre général où l’extraction

de caractéristiques et la reconnaissance du comportement sont réalisées conjointement.

Cela permet aux deux tâches d’améliorer mutuellement leurs résultats grâce à une col-

laboration et un partage des connaissances existantes. Cette collaboration est atteinte par

l’introduction d’un modèle probabiliste temporel, basé sur un modèle de Markov caché

(MMC). Dans notre formulation, le comportement est décomposé en une série d’actions

simples et chaque action est associée à une probabilité différente d’observer un ensemble

particulier de caractéristiques de l’objet dans l’image à un moment donné. En outre, notre

modèle comprend une formulation probabiliste de l’extraction des attributs (caractéris-

tiques), en termes de segmentation d’images. Contrairement aux approches existantes, la

segmentation est obtenue en tenant compte du rapport des probabilités de chaque action,

qui sont fournis par le MMC.

Dans ce contexte, nous résolvons le problème conjoint d’extraction des attributs et

de reconnaissance du comportement par l’élaboration d’une variation de l’algorithme de
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viii Résumé

décodage de Viterbi, adaptée à notre modèle. Dans la dérivation de l’algorithme, nous

traduisons la formulation probabiliste d’extraction des attributs dans un modèle varia-

tionnel de segmentation. Le modèle proposé est défini comme une combinaison de termes

d’énergie typiques basés sur l’image et sur le contour avec un terme qui résume l’information

préalable, fournie par le processus de reconnaissance. Cette information préalable est intro-

duite par le biais d’une compétition entre plusieurs termes, correspondant aux différentes

catégories d’action qui auraient pu généré l’image courante. À la suite de notre algorithme,

le comportement reconnu est représenté comme une succession de classes d’actions, corre-

spondant aux images dans la séquence donnée.

En outre, nous développons une extension de notre cadre général, qui nous permet

de traiter une situation souvent rencontrée dans les applications. Plus précisement, nous

traitons les cas où le comportement est spécifié en termes d’un ensemble discret de types

de comportement, et un tel type est défini par une succession différente d’actions, qui

appartiennent à un ensemble de classes d’action. Par conséquent, la reconnaissance du

comportement exige l’estimation du type de comportement le plus probable et de la suc-

cession correspondante de classes d’action la plus probable, qui explique la séquence image

observée. À cette fin, nous modifions notre modèle initial et nous développons un algorithme

de décodage de Viterbi adéquat.

Notre cadre initial, ainsi que son extension, sont définis en termes généraux, impliquant

plusieurs paramètres libres qui peuvent être choisis de manière à obtenir l’implémentation

appropriée pour l’application visée. Dans cette thèse, nous démontrons la viabilité des

approches proposées en développant des implémentations particulières pour deux applica-

tions. Ces deux applications appartiennent au domaine de la reconnaissance de gestes et

concernent le comptage sur les doigts et la dactylologie, respectivement. Pour la tâche

de comptage sur les doigts, nous utilisons notre cadre initial, alors que pour l’application

en dactylologie, nous utilisons son extension. Pour les deux applications, nous choisissons

des modèles et des quantités particuliers pour les paramètres libres des deux cadres. En-

suite, nous expliquons l’entrâınement des modèles obtenus à partir de données spécifiques

d’entrâınement. Enfin, nous présentons les résultats obtenus en testant nos modèles en-

trâınés sur des nouvelles séquences d’images. Ces résultats montrent la robustesse de nos

modèles dans des cas difficiles, notamment des images bruités, des occlusions de la main

et des arrière-plans encombrés. Pour l’application en dactylologie, nous effectuons une

comparaison avec l’approche traditionnelle séquentielle pour la segmentation d’images et la

reconnaissance du comportement, qui montre la supériorité de notre modèle collaboratif.

Mots-clés: reconnaissance du comportement, segmentation variationnelle d’images,

modèle probabiliste temporel, modèle de Markov caché, décodage de Viterbi, reconnaissance

de gestes.
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Introduction 1
1.1 Image Segmentation and Behavior Recognition Towards

Computer Vision

Humans use their vision to recognize, understand or appreciate the surrounding world.

Computer vision aims at making computers see. It draws its roots from an ancient dream

of humankind, dating back to antiquity, that is the development of intelligent machines.

More concrete steps towards this dream have been initiated with the emergence of the

artificial intelligence field [128], in the middle of the 20th century. Its ultimate ambition

is to equip computers with capabilities to solve problems and achieve goals in the world

as well as (or even better than) humans do. One of the key ingredients for achieving this

would be enabling computers to sense the world. Computer vision is dealing with the sense

of sight. It is concerned with building tools that would allow computers to perceive and

understand the world using digital images.

Vision may seem a very natural thing for humans, but for a computer this task is

challenging due to several reasons. One of the main difficulties arises from the fact that

our surrounding world is three-dimensional (3D), whereas the images that are available to

the computer are generally two-dimensional (2D). The projection to two dimensions causes

great information loss. Another problem can be observed if we look at the image represented

in Fig. 1.1. The intensity values corresponding to each image location are represented on

the vertical axis. It is unlikely that we would understand what this image represents; at

least, not before looking at its equivalent — and more common — representation in Fig. 1.2.

This shows that without using our a priori knowledge about the world (which looks more

like Fig. 1.2 does to us), we wouldn’t be able to tell that this image represents a child. What

1
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Figure 1.1 — An image representation where the intensity values corresponding to each image
location are illustrated in terms of height (on the vertical axis).

we see in Fig. 1.1 is just the data that the computer receives about this image: a 2D array

of numbers. From such local information it is difficult to find a global interpretation in the

absence of supplementary knowledge. We can thus see that general purpose machine vision

is hard to achieve, since the necessary extra-knowledge differs depending on the particular

type of scenes/images that the machine needs to process.

Even though the dream of the ultimate intelligent (and seeing) machine is still quite

far from realization, the field of computer vision has been steadily expanding, both at the

theoretical level and through well-targeted applications in various fields. The automati-

zation of the vision task has been motivated by cases where the volume of data is too

large for a human to deal with in reasonable time (e.g. in medicine, for preliminary diag-

nosis, or in surveillance tasks, for event detection), where human attention and precision

would diminish during long, repetitive tasks (e.g. in industry, for visual inspection), where

the presence of a human operator would be impractical or dangerous (e.g. exploration by

autonomous vehicles) or simply when communication with the computer through visual

methods is desired (human-computer interaction).

To solve the vision problem, the first attempts tried to understand and reproduce bi-

ological vision. In particular, David Marr developed a general theory explaining vision

[98], based on the idea that an exhaustive reconstruction of the visual environment is need-

ed. This theory greatly influenced the computer vision field in its early years (1980s), but

subsequently the field evolved towards more pragmatic approaches, focusing on particular

vision subtasks, which were easier to model and solve using a computer. Nowadays, com-
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Figure 1.2 — Common image representation where the intensity values corresponding to each
image location are illustrated by brightness.

puter vision research and applications still benefit from biology-inspired techniques, while

incorporating various methods and models from disciplines such as mathematics, physics,

pattern recognition, artificial intelligence and computer science.

Typically, a complicated computer vision problem, which involves scene understanding

(such as event detection in a surveillance application) is divided into several tasks, which

are traditionally classified into two categories: low-level tasks and high-level tasks. Sup-

pose that an image of the world has been acquired using a sensor (e.g. a camera), then

digitized (for non-digital cameras), resulting in a 2D array of numbers which represent the

brightness levels at each scene location, as projected into the image. Of course, for color

cameras/images, three such arrays would result, corresponding to the three color channels:

red, green and blue (RGB). Towards the resolution of the vision problem, first the low-level

tasks would be performed. These are generally attributed to the image processing field and

do not use much knowledge about image content. A typical sequence of such tasks would

begin with image preprocessing, including steps such as noise removal, contrast enhancing,

edge extraction or other operations which should emphasize key features for the understand-

ing of the image (to be defined depending on the given application). The next task would be

image segmentation, aiming at extracting relevant objects from the image, that should help

its interpretation. This translates to outlining the image regions corresponding to these ob-

jects, either as groups of pixels or by their delimiting contours. Following segmentation, the

delineated objects would typically be described in terms of a few key characteristics, such
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as their area, position, shape or average brightness. Next, the high-level vision tasks would

be performed. These typically use techniques from the pattern recognition and artificial

intelligence fields, in order to obtain an interpretation of the image. This can include the

identification of the objects present in the image, of their current state or of the actions that

they are currently involved in. The defining characteristic of high-level vision tasks is the

use of a priori knowledge about the scene which is being visualized, such as the expected

number of objects, their relevant characteristics and/or their expected behavior. In this

way, image interpretation can be translated into a pattern recognition problem, where one

searches for the most likely explanation of the object configuration detected by low-level

vision, in terms of the set of a priori available hypotheses.

The focus area of this thesis is vision from image sequences. More concretely, given

an image sequence of an object exhibiting a certain behavior, our aim is to delineate the

object and to identify the respective behavior. In other words, we would like to perform

segmentation of the image sequence and to recognize the behavior of the delineated object.

As explained before, segmentation is typically regarded as a low-level vision task, whereas

behavior recognition is a high-level vision task. In this thesis, we introduce a general

framework which allows us to combine these two low- and, respectively, high-level tasks in

a cooperative effort throughout image sequences.

1.2 Goal and Motivation of This Thesis

The main goal of this thesis is to find a joint solution to the problems of segmentation and

behavior recognition from image sequences. Segmentation is a low-level task of computer

vision, which aims at extracting meaningful objects from images ∗. We intend to fuse this

task with a higher level vision task, which is the recognition of the behavior exhibited by

the object in each image, based on prior knowledge about typical object behavior.

Defining our terms, by “behavior” we mean the temporal evolution of the object, as

observed in the image sequence. Object behavior recognition refers to the interpretation of

behavior as a succession of basic actions, each belonging to one of several possible action

classes. Thus, the recognition of object behavior from an image sequence requires the

determination of the appropriate action class throughout the sequence, for each object

evolution instance. Behavior recognition can be used, for instance, to understand a sequence

of object motions (e.g., car turn directions at an intersection), motions and deformations

(e.g., hand gestures, body motions), or a sequence of intensity changes in a brain activation

map for diagnostic purposes.

Classically, behavior recognition is formulated as a classification problem in terms of a

series of relevant attributes (e.g., color histogram, object position, orientation, shape, size,

etc.), which have been extracted from the image sequence in a preceding phase. Thus,

the phase of attribute extraction, which may or may not involve image segmentation, is

conventionally performed separately from behavior recognition. This thesis pursues a joint,

∗Note that in this work we only consider the case of a single object of interest which evolves within an

image sequence. Nevertheless, extensions of our work to deal with several objects are conceivable.
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collaborative solution to the problems of image segmentation and object behavior recogni-

tion.

(a) (b)

Figure 1.3 — Examples of images that can be segmented based on intensity (a) and texture (b).

To motivate our thesis, we first explain why one would want to use high-level a priori

knowledge for image segmentation. Depending on the type of images targeted for segmen-

tation, the discrimination between the object of interest and the background can rely on

different image-based characteristics, such as edge information, intensity levels, color or

texture. For instance, to segment the image in Fig. 1.3(a), we would use the fact that the

aeroplane is darker than the background. The leopard in Fig. 1.3(b) would be segment-

ed based on its specific texture characteristics which distinguish it from the background.

But sometimes such low-level information is not sufficient to correctly delineate the de-

sired object. This is usually because the object and background do not (entirely) respect

the fundamental assumption of segmentation, that is, that object and background can be

correctly discriminated based on the chosen characteristics (intensity, color, texture, etc.).

For instance, even though it is an obvious task for a human observer, for a machine it is

quite challenging to segment the little girl in Fig. 1.4(a). This is because her appearance is

not uniform, but made up of patches of different colors, and therefore cannot be succinctly

described in terms of one characteristic. Moreover, the color of the girl’s blouse is similar to

that of the waves (background), which makes it difficult to accurately separate her from the

background. Another image which would be difficult to segment automatically is presented

in Fig. 1.4(b). Looking at the image, we can quite easily distinguish the two flatfish that

are camouflaged in the sand. To achieve this, our brain uses cues from the image (the eyes

of the fish, slight texture differences) and integrates them with prior knowledge about what

fish look like. Therefore, it is a sensible decision to perform segmentation by combining the

low-level information given by the image (intensity, color, texture) with higher level a priori

knowledge regarding the expected characteristics of the target object(s) in the image (e.g.

shape or defining landmarks).

Behavior recognition is a higher level task than segmentation. Nevertheless, it is en-
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(a) (b)

Figure 1.4 — Examples of images which pose challenges to automatic segmentation (a) The
appearance of the little girl is not uniform and partly confounds with the background. (b) The
two flatfish hiding in the sand are hard to identify based solely on colour/texture.

tirely dependent on the results of low-level processes (such as segmentation) which extract

relevant attributes from the images. Therefore, if these processes fail to capture the right

attributes, behavior recognition will also be prejudiced. However, in order to perform be-

havior recognition, one must possess some form of extra knowledge (acquired a priori),

regarding the possible types of exhibited behavior. Motivated by these considerations, in

this thesis we will use a priori knowledge about behavior types to guide image sequence

segmentation. Thus, we introduce a feedback loop between the two processes — image

segmentation and behavior recognition — which helps them collaborate towards commonly

improving their results. Our approach is derived by a natural analogy with the mecha-

nism of human vision. In order to realize visual perception and understanding, the human

brain blends prior knowledge, acquired through learning, with the immediate stimuli of the

surrounding world.

Our work is also motivated by previous promising results towards the same direction,

encountered in the literature. Many of these results belong to the field of variational image

segmentation, which is also at the basis of our thesis. Variational segmentation offers us

a principled, mathematically sound way of integrating different image-based segmentation

criteria (edges, intensity, color, texture) and also higher level prior knowledge about the

target object(s) (e.g. shape information, expected trajectory, etc). Significant contributions

to the field were made by the introduction of models such as the active contours (snakes)

[81], the Mumford-Shah model [103], geodesic active contours [28, 82, 95] and, more recently,
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versatile segmentation approaches such as [112, 149]. The use of prior shape information

for the segmentation of familiar objects has been thoroughly elaborated in works such as

[126], [44], [23], [48] and [49]. In particular, the use of shape priors has been successfully

advocated for single images, in single-class [126], [23] and multiple-class [49] scenarios. To

guide tracking over image sequences, [40] demonstrates the use of single-class dynamic

models of motion and deformation, based on auto-regressive modeling. The novelty of our

approach is that we fuse variational segmentation over image sequences with the problem

of behavior recognition, and solve it in a multi-class scenario, i.e., where the behavior class

of the tracked object changes over time.

Another incentive for our work is the fact that it provides a new outlook on the issue of

behavior recognition. The vast majority of approaches to behavior recognition regard it as

a problem of classification, formulated in terms of time-series of attributes a priori extracted

from image sequences. To give a few examples, Bobick and Davis [17] extract Hu moments

of motion history images and classify new movements based on the shortest Mahalanobis

distance to learned models of each action. Schüldt et al. [132] detect local features based on

space-time image gradients and recognize actions using Support Vector Machines (SVMs).

Gorelick et al. [70] obtain space-time shapes as concatenations of segmented 2D human

silhouettes and extract various shape properties, which they use for action representation

and classification. Many behavior recognition systems use tracking in some form, be it of

entire objects, object parts or of some relevant features ∗. Thus, we observe that most

existing behavior recognition methods consist of an initial phase, where relevant attributes

are extracted from the image sequences, based on various criteria, and of a second phase,

where the behavior reflected in the image sequence is classified using the extracted attributes

and knowledge gathered from training data. This means that in the first phase (attribute

extraction) some information is automatically discarded, without considering higher level

knowledge which could be obtained from the existing training data. Also, the retained

attributes could be affected by low image quality (noise, occlusions) or poor separation of

the target object(s) from the background. In this thesis, we propose a novel approach to

the behavior recognition problem, which relies on the collaboration between the low-level

attribute extraction process (performed through image segmentation) and the higher level

behavior recognition process. This allows the existing knowledge relevant to each of the

processes to aid in the resolution of the other. Therefore, the common information is better

exploited to the benefit of both processes and of their final result.

Last, but not least, our work is stimulated by the wealth of applications for both im-

age segmentation and behavior recognition. These cover a multitude of domains, such as

medicine (e.g., for automatic diagnostics), sports (e.g. for the improvement of athletic per-

formance), car industry (e.g. sleep detection, pedestrian detection), multimedia (e.g. video

annotation and compression), surveillance (e.g. unusual behavior detection, shopping be-

havior analysis) or human-computer interfaces. In particular, to demonstrate the feasibility

of our proposed general framework for segmentation and behavior recognition, we have fo-

∗ Comprehensive surveys of the work regarding tracking and recognition of human behavior can be found

in [64, 101].
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cused on two gesture recognition applications: finger-counting and finger-spelling. These

will be detailed in Chapter 4.

1.3 Main Contributions and Thesis Organization

The main contributions of our thesis can be summarized as follows:

1. A general collaborative framework for segmentation and behavior recogni-

tion from image sequences. Our framework relies on the collaboration between

the high-level behavior recognition process and a low-level attribute extraction pro-

cess, based on variational image segmentation. This collaboration is based on a mutual

exchange of information, which is beneficial for both tasks. Our framework is derived

by formulating the joint segmentation / recognition problem in terms of a Dynamic

Bayesian Network. Recognition and segmentation are naturally derived in terms of

probabilistic inference via a variation of the Viterbi decoding algorithm. This enables

the interleaving of the two processes along the image sequence, and the intended col-

laboration. In particular, classification offers dynamic probabilistic priors to guide

segmentation, while segmentation supplies its results to classification, ensuring that

they are consistent with prior knowledge. Our general framework can be employed

in solving a wide range of applications, by adapting its components and parameters

according to the specific need.

2. An extension of our framework to deal with the recognition of a predefined

behavior set. Our original framework from 1. yields the recognized behavior in

terms of its composing succession of action classes, that correspond to the frames of an

image sequence. We extend this framework to the recognition of behaviors belonging

to a predefined set of behavior types. These behavior types are characterized by

different successions of action classes.

3. A variational segmentation model based on dynamical statistical priors.

We develop a new variational segmentation model for image sequences. It is derived

from an initial probabilistic formulation, stemming from our collaborative approach

for segmentation and behavior recognition. It consists of the classical image- and

contour-based terms and of a term which encapsulates prior knowledge, offered by

the collaborative recognition process. The latter term guides the segmentation of

each image towards the most likely location of the target object, based on learning

from the training data and on reasoning about future behavior, on account of the

evidence gathered up to the present moment. Based on considerations flowing from

our probabilistic formulation, we search for the object belonging to the most probable

class at the moment and thus introduce the dynamical priors offered by each action

class in a competition approach. We show that our strategy for introducing this

competition outperforms a well-known method in the literature in terms of the fairness

with respect to all the priors involved.
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4. A concrete model for collaborative segmentation and behavior recognition,

based on Gaussian priors. With the purpose of solving a proposed finger-counting

recognition application, we instantiate our general framework from 1. with specific

segmentation and probabilistic models. In particular, we employ level-set-based active

contours [108] as the extracted image attributes and we use the piecewise-constant

Chan-Vese model [30] to fill in the image- and contour-based terms for segmentation.

Attribute probabilities for each action class are given by a local Gaussian model of

the level set function, motivated by [126]. Our resulting implementation offers robust

segmentation and recognition results, for cases of difficult images, affected by clutter,

noise and occlusions of the target object.

5. A concrete model for collaborative segmentation and behavior recognition,

using PCA-derived prior contours. We are targeting a finger-spelling recogni-

tion application. Finger-spelling is the part of sign language which consists of manual

representations of alphabet letters. In collaboration with the Swiss Federation for

the Hearing Impaired, we acquired a database of finger-spelt words, that we conse-

quently use to train and test our segmentation/behavior recognition framework. To

solve our application, we derive a concrete implementation of our extended framework

from 2.. It is based on the same attribute (the level set representation of the hand

contour) and image- and contour-based energy terms as the model at 4.. To allow

more flexibility in the modeling of prior information, we use prior contours based on

Principal Components Analysis (PCA) for each action class, in an approach motivat-

ed by [23]. The attribute probability for each action class is modeled in terms of a

distance function with respect to the prior contour of the respective action class. To

improve computational efficiency and convergence towards the correct action class,

we propose a pruning mechanism which reduces the number of priors competing for

the guiding of segmentation. The obtained segmentation and recognition results show

the ability of our approach to deal successfully with complicated backgrounds, as well

as its superiority with respect to the traditional sequential approach, which separates

segmentation and recognition.

This dissertation is organized as follows:

Chapter 2 presents the theoretical background of this thesis. In particular, the first sec-

tion of the chapter introduces the state-of-the-art models used for variational image

segmentation. We start by a general presentation of variational segmentation ap-

proaches and then describe edge-based active contours. Next, we present the level set

method for contour representation and continue with region-based active contours —

some of which will be employed in the concrete implementations of our framework,

in Chapter 4. Segmentation models which make use of prior knowledge regarding

the segmented objects are presented at the end of the first section. They prepare

the inclusion of dynamical prior information into our variational segmentation model

described in Chapter 3. The second part of Chapter 2 presents a few general consid-
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erations regarding behavior recognition and introduces some state-of-the-art models

in the literature.

Chapter 3 introduces our main contribution: the general framework for collaborative seg-

mentation and behavior recognition from image sequences, as well as its extension

dealing with a predefined behavior set. At first, we show the motivation behind our

framework and give its general description. Then, we present the Dynamic Bayesian

Network which enables our joint treatment of the segmentation and recognition prob-

lems. We develop a probabilistic inference scheme based on Viterbi decoding, which

results in the interleaved, collaborative resolution of segmentation and recognition

along the image sequence. In particular, from our probabilistic model, we derive a

variational segmentation method based on the competition between multiple priors,

offered by the recognition process. Then, we extend our framework to deal with

the case of a set of predefined behavior types, each decomposable into a succession

of action classes. Finally, we summarize our approach by a concrete step-by-step

description.

Chapter 4 illustrates the potential of our general framework through two applications,

regarding finger-counting and finger-spelling recognition, respectively. For each appli-

cation, we explain the task and describe the available data. Then, use we our general

framework and its extension for a predefined behavior set (described in Chapter 3)

to derive concrete implementations aimed at the respective applications. Finally, we

present the segmentation and recognition results that we have obtained by our collab-

orative approach and compare them with results obtained by the traditional approach,

which separates the two phases of segmentation and recognition.

Chapter 5 concludes our thesis by summarizing our achievements and discussing direc-

tions for future work.
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the Art 2
In this chapter, we set the theoretical background of our thesis. In the first part of the

chapter, we introduce the variational approach to image segmentation and present the

state of the art in the field. First, we consider the earliest models, based on the detection

of image edges. Then, we present a valuable tool, extensively used in recent variational

segmentation approaches and also in our thesis: the level set method for contour repre-

sentation. We continue by presenting variational segmentation formulations which employ

region-homogeneity criteria, including the Mumford-Shah functional and its cartoon sim-

plification, that we utilize in our work. Next, we review a few representative models which

introduce prior shape knowledge into variational segmentation, and finally we report on

the use of variational segmentation for object tracking. We thus set the basis for one of

our own contributions, consisting of a variational segmentation model which incorporates

dynamical attribute priors and is used for tracking the target object over image sequences.

In the second part of the chapter, we treat computer vision approaches to behavior

recognition. In particular, we outline a few significant directions adopted in the field,

together with associated publications. At the same time, we explain where our own work

stands with respect to these approaches and emphasize our original contributions.

2.1 Image Segmentation Using Variational Methods

Image segmentation is one of the most basic yet most challenging problems of computer

vision. Segmentation requires finding in an image semantically salient regions (or their

bounding contours), which correspond to objects or areas of the real world captured in

the image. More formally, the problem can be described as the process of partitioning the

image plane Ω ⊂ R
2 into a set of non-overlapping regions {Ωi}i=1..N , corresponding to the

11
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meaningful image structures:

N⋃

i=1

Ωi = Ω, Ωi ∩ Ωj = ∅ if i 6= j.

This kind of segmentation is know as “strong segmentation” [102]. Alternatively, one can

aim solely for the separation of one or several objects of interest from the image background.

Segmentation is a long standing problem in computer vision and numerous different

approaches have been developed. A review of the whole field is beyond the scope of our

thesis. The interested reader is referred to the book of Sonka et al. [138], which offers a broad

overview of the segmentation techniques, including the thresholding approach, methods

based on edge detection, region growing and the watershed approach. In the following,

we will focus on variational methods for image segmentation, which are a fundamental

component of our thesis.

Variational methods underlie the mathematical formulation of numerous computer vi-

sion problems. In a variational approach, the solution to these problems is obtained as

an optimizer of an energy functional, which encapsulates a number of relevant constraints

for the given problem. To give an example, let us consider the problem of noise removal

from an image. Intuitively, noise is made up of small artifacts in an image, which impair

the observation of the interesting objects. In general, the scale of these artifacts is smaller

than that of the interesting objects and this is one important criterion for their elimination.

The other one is that technically they are manifested as fluctuations of pixel intensity with

respect to the surrounding locations. Denoting the noisy image by I0 : Ω → R
+, in a

variational approach a de-noised image I : Ω → R
+ can be obtained by minimizing the

following energy functional:

E(I) =

∫

Ω
(I(x, y) − I0(x, y))

2dx dy + λ2

∫

Ω
|∇I(x, y)|2dx dy. (2.1)

This functional is a simple example from a general class of variational formulations that

can be used to solve a variety of image processing problems, as shown by Terzopoulos in

[140]. Such functionals are made up of two terms: a fidelity term (in our case
∫

Ω(I(x, y) −
I0(x, y))

2dx dy), which measures how faithful the approximation I is to the original data I0,

and a regularization term (in our case
∫

Ω |∇I(x, y)|2dx dy), which measures how smooth the

approximation I is. For our de-noising problem, the smoothness is measured by integrating

the square magnitude of the intensity gradient over the image domain. The balance between

the two terms is dictated by the weighing parameter λ2, also called a scale parameter, since

it controls the amount of smoothing of I and thus the minimum scale of details that will

be kept in the smoothed image I.

To obtain our de-noised image I∗ = minI E(I), with E(I) defined by (2.1), we use the

calculus of variations and gradient descent, yielding the following evolution equation for I:

∂I(x, y, t)

∂t
= I(x, y, t) − I0(x, y) + λ2∆I(x, y, t).∗ (2.2)

∗For better readability, from now on we will omit the image coordinates (x, y) and artificial time t from
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Here t is an artificial time-marching parameter and ∆f stands for the Laplacian of the

function f : ∆f(x, y) = fxx(x, y)+fyy(x, y)
∗. Starting with the initial condition I(x, y, 0) =

I0(x, y), the evolution equation (2.2) is iterated until a steady state is reached, and thus

the solution I∗ is obtained. The minimization of functionals by the calculus of variations

and gradient descent is briefly presented in the Appendix of this thesis, Section A.1. The

obtained partial differential equation (PDE) (2.2) is known as the linear diffusion equation,

which, as shown by Koenderink [83], is equivalent to convolving the image with a Gaussian

function at a certain scale. As a result, all image structures at the respective scale will be

smoothed, including the edges of the target objects. In order to eliminate noise without

perturbing the relevant image structures, one can turn to nonlinear diffusion (for more

details see for instance [102, 154]).

There are several advantages to using variational formulations for image segmentation,

compared to the use of other existing algorithms [102, 130]. First of all, contrary to most

other methods, which treat images in a discrete setting (i.e., as 2D arrays of numbers),

variational methods model images as functions defined on a continuous domain (as you can

notice in our example above). In this way, the formalism becomes grid-independent and

isotropic, and is amenable to study and development via continuous mathematics, which

are better developed than discrete mathematics. Concrete implementations of variational

methods, applicable to digital images, can be obtained by discretizing the resulting PDEs

using efficient tools from numerical analysis.

Another advantage of variational methods is the fact that they condensate all the cri-

teria regarding the desired segmentation into a single functional. This functional has a real

value, which allows the evaluation of the quality of a specific segmentation (with respect

to the defined criteria) and also the comparison of different segmentations. In other words,

there is a single quantity which needs to be optimized, which can incorporate a multitude

of different criteria in a mathematically sound way. This will allow us to perform segmen-

tation in a principled way by integrating dynamical attribute priors offered by the behavior

recognition process. This elegance and ease of use make the variational approach more ap-

pealing than many heuristic segmentation methods, which are usually sequences of different

steps, dependent on one another and involving the empirical choice of many parameters.

Moreover, as shown in [102], most existing segmentation methods can be formulated within

a variational approach, i.e., as a functional whose optimization yields the desired solution.

This enables a clear expression of the involved parameters and also possible reductions of

their number.

Image segmentation using variational approaches is usually performed by deforming one

or more contours (also known as active contours) within the image domain, in order to min-

imize a given energy functional. This functional can incorporate several criteria/objectives

which guide the active contour towards the desired segmentation. The first generation of

our equations, whenever this does not impair understanding. For instance, I(x, y, t) will be denoted simply

as I .
∗ We use the subscript notation to denote partial derivatives with respect to spatial coordinates, whenever

it doesn’t hinder clarity.
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variational methods for segmentation relied on attracting the contour towards regions of

high intensity gradient in the image (image edges). Since they depend on gradients, these

methods are very sensitive to noise and poor image contrast. The robustness of these

methods was increased by the introduction of more global information into the segmenta-

tion functional, concerning region homogeneity, which was modeled statistically. Moreover,

segmentation in difficult cases, including occlusions of the target object(s) and cluttered

background, was improved by the integration of more specific a priori information about

the target object(s), regarding its shape or predicted position.

In the following, we will present a few representative models from all three categories

of variational segmentation models: edge-based, region-based and including a priori infor-

mation. This will support the development of our own variational segmentation model in

Chapter 3 and will help us differentiate our approach with respect to the existing ones. Ad-

ditionally, we will present the level set method for contour representation, that we employ

in the resolution of two applications in Chapter 4. A classical method for functional mini-

mization, which supports the implementation of many variational segmentation approaches

developed in the literature, is succinctly described in the Appendix of this thesis.

2.1.1 Edge-Based Active Contours

Edges are locations of intensity discontinuity within an image. Their importance for vi-

sion lies in the fact that they normally correspond to discontinuities in scene geometry or

reflectance, therefore indicating the separation between different objects or areas. Edge

detection is an essential component of biological vision, as first demonstrated by R. von der

Heydt et al. [152].

By analogy with biological vision, many low-level computer vision algorithms aim at

the extraction of edges from images. Technically, edges in an image correspond to locations

of high intensity gradient, or alternatively to zero-crossing locations of the Laplacian of

image intensity. The fact that edge-detectors are local operators, based on image gradients,

makes them very sensitive to noise. Moreover, the definition of edges involves a scale

factor: intensity discontinuities can only be detected at a certain spatial scale. Both issues

are addressed by the theory of multiscale filtering and multiscale edge detection, thoroughly

studied in the literature (see for example [26, 79, 83, 90, 99, 118, 154, 156]). Basically, the

image targeted for edge detection is first smoothed at different scales, using for instance the

linear diffusion exemplified at the beginning of this section, or a suitable nonlinear filter

[154]. This creates a fine-to-coarse family of images, known as the scale space of the original

image. Afterwards, edges are detected as maximum locations of the gradient (or Laplacian

zero-crossings), measured on the image smoothed at a certain scale, which gives the scale

of edge detection.

Once the edges of an image have been detected, the remaining task for segmentation is

to link them into a coherent representation (usually by line-drawing) of the objects/regions

present in the image. Early segmentation methods attempted to perform edge linking by

using heuristics which relied on edge strength, length and alignment, involving the empirical
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setting of different parameters [125, 155].

An elegant solution, which simultaneously addresses the two problems of edge detection

and edge linking, was the original variational formulation of active contours (also known as

“snakes”), introduced by Kass, Witkin and Terzopoulos [81]. This formulation is based on

deforming an initial contour towards locations of interest within the image (such as lines or

edges). The deformation is obtained by the minimization of an energy functional, which is

designed so that its local minima matches these locations of interest.

The snake is defined as a parameterized planar curve C(p) = (x(p), y(p)) ∈ Ω, where

x(p) and y(p) are the x, y coordinates along the contour and p ∈ [0, 1]. It deforms in order

to minimize the energy functional

E(C) =

∫ 1

0
Eint(C(p)) +Eimage(C(p)) + Econ(C(p))dp, (2.3)

where Eint represents the internal energy of the curve, Eimage designates image forces and

Econ imposes external constraints, dictated by the user or by another high-level process.

Usually, the snake is represented as a spline, in order to ensure continuity properties. Based

on this original formulation of Kass et al. [81], the most popular choice of snake model,

which also lies at the basis of future approaches, is given by:

E(C) = −
∫ 1

0
|∇I(C(p))|2 + α

∫ 1

0
|Cp(p)|2 + β

∫ 1

0
|Cpp(p)|2. (2.4)

The first term is an edge-based term, which drives the snake towards locations of high

image gradient (edges). The next two terms introduce a smoothness constraint: the first

of them makes the snake resist stretching (its integral gives the contour length), while

the second makes it resist bending. These properties can be controlled by adjusting the

weighing factors α and β. The minimization of energy (2.4) via the calculus of variations

and gradient descent yields the curve evolution equation

∂C

∂t
(p) = ∇|∇I(C(p))|2 + αCpp(p) − βCpppp(p). (2.5)

The fourth order derivative in this equation is difficult to approximate in a discrete setting

and is the source for numerical instability. Therefore, in practice, β is often set to zero.

One important weakness of the snake model is its local character: it is only driven by

image features which lie in its near vicinity, and therefore can fail to capture the desired

object if initialized too far from it. An improvement with respect to this issue is brought

by the introduction of the so-called “balloon” model [33]. This model applies an additional

force to the contour, which makes it behave like a balloon which is inflated/deflated. In

this way, the contour becomes more dynamic, being able to escape spurious local minima

and thus locate image features further away from its initial position. The disadvantage of

this approach is that the snake looses generality: one has to know a priori the direction of

the applied force, i.e. whether the snake needs to shrink or to expand in order to reach the

desired object.
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Another limitation of the snake model is the fact that the functional (2.3) depends

on the curve parametrization p. This parametrization is only related to the velocity at

which the curve is traveled, and not to the intrinsic geometry of the curve. A change

in the parametrization p can change the resulting energy. Thus, one can obtain different

minimization results for one and the same initial contour, which is an undesirable effect. The

solution to this problem was offered by the model of geodesic active contours [27, 28, 82]. To

develop this model, Caselles et al. [28] start from the original snake model (2.4), excluding

the second-order smoothness term (β = 0):

E(C) = −
∫ 1

0
|∇I(C(p))|2 + α

∫ 1

0
|Cp(p)|2. (2.6)

The edge-detection term, depending on the intensity gradient |∇I(C(p))|, is generalized by

the introduction of an edge-detecting function g : [0,+∞[→ R
+, strictly decreasing and

vanishing at infinity: g(x) → 0 when x → ∞. Thus, −|∇I|2 is replaced with g(|∇I|)2,
resulting in:

E(C) =

∫ 1

0
g(|∇I(C(p))|)2 + α

∫ 1

0
|Cp(p)|2. (2.7)

The role of the function g is to stop contour evolution on object edges. A popular variant

of such function is:

g(|∇I|) =
1

1 + γ|∇Is|p , (2.8)

where Is is a Gaussian-smoothed version of the original image I, γ is a positive constant

and p ∈ [1, 2]. A detailed analysis regarding the selection of g(|∇I|) can be found in [55].

Following the introduction of the generalized edge-detecting function, the authors of

[28] show that the minimization of (2.7) is equivalent to the minimization of the functional:

E(C) =

∫ L(C)

0
g(|∇I(C(s))|) ds =

∫ 1

0
g(|∇I(C(p))|) |Cp(p)| dp. (2.9)

Here ds = |Cp(p)|dp is the Euclidian arc length and L(C) =
∮
|Cp(p)|dp =

∮
ds is the

Euclidian length of the curve C, hence the last equality of equation (2.9). We notice that

energy (2.9) is obtained from the Euclidian curve length, by weighing the Euclidian arc

length ds by g(|∇I(C(s))|), which indicates edge locations in the image. Caselles et al.

[28] show that the minimization of this new length is equivalent to finding a geodesic curve

(a curve of minimum distance) in a Riemannian space, whose metric tensor is determined

by the image I. This property led to the appellation of the model (2.9) as geodesic active

contours.

The minimization of (2.9) via the calculus of variations and gradient descent leads to

the curve evolution equation [28]

∂C

∂t
= g(|∇I(C)|)κN − (∇g(|∇I(C)|) · N )N . (2.10)
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Here κ is the Euclidian curvature ∗ and N is the unit inward normal to the curve. The

first term of the right-hand side represents a curve shortening flow, weighed by the edge-

detecting function g. The curve shortening flow (also known as the mean curvature motion)

is the curve evolution ∂C
∂t = κN = Css, which achieves the minimization of the curve length

functional: L(C) =
∮
|Cs(s)|ds =

∮
ds. This flow has the double effect of smoothing the

curve and of reducing its length. The weighing by g(|∇I(C)|) slows down curve evolution

on object boundaries. The second term of (2.25) has the role of attracting and fixing the

curve to the middle of object boundaries (due to ∇g, which points from both sides of the

boundary towards its central section). Therefore, the function g does not need to be equal

to zero (the case of an ideal edge) to stop the curve evolution on object boundaries.

As we have seen, the geodesic active contours offer an elegant solution to the parametriza-

tion problem of the original snake model. Another important drawback of the latter for-

mulation is the fact that it cannot deal naturally with topological changes of the contour

(such as splitting or merging). This means that if an initial contour is surrounding several

objects, the segmentation will not be able to capture these objects separately, since the

contour topology is fixed. Partial relief to this problem was brought by methods which

explicitly deal with contour merging/splitting, at the cost of additional complications (e.g.

[86, 88, 100]). A definite answer to the problem was provided by the introduction of the

level set method for curve representation and evolution, which will be presented in the

following section.

2.1.2 The Level Set Method

The level set method is a technique for tracking moving interfaces, i.e. boundaries between

two regions. Such interfaces exist in many different settings, including physical phenomena

such as waves breaking, flames burning or different liquids blending, but can also be used

to model various problems, such as optimal path planning or image segmentation. The

main merits of the level set method result from the implicit representation of the inter-

face geometry. This allows the automatic handling of topological transformations, such

as region splitting or merging, as well the development of efficient and accurate numerical

methods for practical implementations. Its versatility, together with its intrinsic qualities,

have made the level set method a very popular theoretical and numerical tool in many

fields, including physics, chemistry, fluid mechanics, materials sciences, combustion, seis-

mology, computer graphics, image processing and computer vision. The level set method

was originally proposed by Osher and Sethian in [108]. A light introduction to the topic is

offered in [135], while detailed descriptions of the theoretical and numerical aspects can be

found in [95, 106, 107, 136]. In the following, we will provide a brief outline of the level set

method, in the context of curve/surface evolution.

∗Intuitively, the curvature measures the bending speed of a curve. Technically, there exist several equiv-

alent definitions for the curvature [130]. In terms of the parametric representation C(p) = (x(p), y(p)), the

curvature is defined as κ(p) =
xpypp − ypxpp

(x2
p + y2

p)3/2
, which in the case of the arc length parametrization becomes

κ(s) = xsyss − ysxss.



18 Chapter 2. Background and State of the Art

We start by explaining the motivation for introducing the level set approach, arising

from the difficulties posed by the existing curve evolution methods. If we consider a closed

planar curve which is deforming in time, such a process would generate a family of curves

C(p, t) : [0, 1] × [0, T ) → R
2, where t parameterizes the family and p parameterizes the

curve. The general curve evolution equation is [130]:

∂C

∂t
(p, t) = α(p, t)T (p, t) + β(p, t)N (p, t), (2.11)

where C(p, t = 0) = C0(p) is the initial condition. Here T stands for the unit tangent to the

curve and N for the unit inward/outward normal (its direction can be arbitrarily chosen).

The equation states that the curve is deforming with α velocity in the tangential direction

and with β velocity in the normal direction. The tangential velocity does not affect the

geometry of the deformation (i.e., how the curve looks), but only its parametrization (i.e.,

the speed at which one travels along the curve, by changing the parameter p) [60]. Since we

are only interested in changing the geometry of the curve, the general evolution equation

can be simplified to
∂C

∂t
(p, t) = β(p, t)N (p, t), (2.12)

by eliminating the term which contains the tangential velocity. This result is also valid for

the general case of interfaces between two regions, such as surfaces in R
3 or hyper-surfaces

in R
n.

Now let us suppose that we would like to deform a curve so that each of its points

moves in the normal direction, with a velocity dictated by its curvature (motion by mean

curvature), according to the equation:

∂C

∂t
(p, t) = κ(p, t)N (p, t). (2.13)

Such motion produces a relaxation of the curve, which becomes smoother and decreases its

length, gradually becoming circular, before collapsing into a single point [71].

If we are to use a parametric representation as the basis for our numerical implemen-

tation, we would approximate the curve using a set of marker particles placed around the

curve, tied together by continuity constraints (e.g., via a B-spline curve representation).

Figure 2.1 presents a symbolic example of such a curve representation, where the red dots

correspond to marker particles and the green arrows stand for normal direction velocities

given by the motion by mean curvature (2.13). Of course, in practice more particles would

be used for a more accurate curve description. This figure reflects some inconveniences of

such a curve representation with respect to the intended curve motion. The marker particles

have a tendency to cross each other’s path, which makes it difficult to maintain their orig-

inal organization. Moreover, as the curve continues to shrink, the particles crowd together

along the diminished curve length, causing growing errors in the numerical approximation

of the derivatives. A cumbersome solution would be to advance the curve by small steps

and periodically re-sample the curve, setting new marker positions and decreasing their

number according to the need.
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Figure 2.1 — Example of marker particle curve representation. The red dots stand for the marker
particles. The green vectors represent the velocity in the normal direction obtained through motion
by mean curvature.

Another problem becomes apparent when the deforming boundary needs to change its

topology. For instance, imagine that we would like to simulate the reunion of two water

droplets in an emulsion (Fig. 2.2 (a)). At some point, their boundaries touch and they

merge into a single larger droplet (Fig. 2.2 (b)). If we use our parametric approach to

track their boundaries, we end up in a situation such as the one illustrated in Fig. 2.2 (c).

In order to correctly follow the intended evolution, we need to find a way to detect and

eliminate the marker particles lying inside the merged region. Defining a general algorithm

for removing such particles is a daunting task. As we will see in the following, all these

problems are elegantly solved by using the level set method for curve representation.

(a) (b) (c)

Figure 2.2 — Simulation of water droplet reunion in an emulsion. (a) Droplets before reunion.
(b) Droplets during reunion. (c) Marker particle model of reuniting droplets’ boundaries.

The main idea of the level set approach is that instead of following the curve itself, one

adds an extra dimension to the problem and follows the resulting surface. More formally,

a closed interface Γ ∈ R
n (e.g. a curve in R

2, a surface in R
3 or a hyper-surface in R

n

is represented as a level set of a higher dimensional function, called level set function.

For example, in the case of a 2D curve, the embedding function would be a 3D surface

z = φ(x, y) and the curve would be given by the set of points (x, y) which are at the same
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height (level) of φ: φ(x, y) = c, with c a given constant ∗. Considering that the interface Γ

is evolving in time, its level set representation φ is a scalar Lipschitz continuous function

φ : Ω ⊂ R
n × [0, T ) → R, which respects the conditions [107]:







φ(x, t) > 0 for x ∈ ω,

φ(x, t) < 0 for x ∈ Ω \ ω,
φ(x, t) = 0 for x ∈ ∂ω,

(2.14)

where ω ⊂ Ω denotes the region enclosed by the interface Γ and ∂ω denotes the boundary

of ω. For example, to represent a planar curve, a common choice for the level set function

is the signed distance function to the curve d(x, y), with a positive sign in the interior of

the curve and a negative sign in its exterior.

In this way, the evolution of a curve can be modeled through the evolution of its level

set function. The position of the curve at any time can be retrieved as the (zero) level set

of the embedding function φ: C(t) = {(x, y)|φ(x, y, t) = 0}. The geometric properties of

the curve can be directly obtained from the level set function. The unit normal to a level

set is given by

N = − ∇φ
|∇φ| (2.15)

(the sign depends on the assumed direction of the normal). The curvature can be calculated

as †

κ = −divN = −div

( ∇φ
|∇φ|

)

, (2.16)

which is equivalent [130] to

κ =
φxxφ

2
y − 2φxyφxφy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

. (2.17)

Moreover, the length of the curve and its enclosed area can be expressed by defining δε,Hε :

R → R as suitable smooth functions which, as ε → 0, approximate the Dirac distribution

and the Heaviside function

H(z) =

{

1 if z ≥ 0,

0 if z < 0
, (2.18)

respectively, while having δε = H ′
ε. Then, the length of the curve is given by

Lε(φ) =

∫∫

Ω
|∇Hε(φ)|dxdy =

∫∫

Ω
δε(φ) |∇φ| dx dy, (2.19)

and the area of its enclosed region ω by

Aε(φ) =

∫∫

Ω
Hε(φ) dx dy. (2.20)

∗ For convenience, one usually chooses to embed the interface as the zero level set of the hyper-surface.
†We denote by div the divergence of a vector v = (v1, v2): divv = dv1

dx
+ dv2

dy
.
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Furthermore, from the condition that the level set function must be equal to a constant

along the embedded curve C(t), i.e.,

φ(C(t), t) = c, (2.21)

we can derive the evolution equation for the level set function φ which matches the evolution

of C(t) given by (2.12). Differentiating this condition with respect to the time t yields (by

the chain rule):
∂φ

∂t
(C(t), t) + ∇φ(C(t), t) · ∂C

∂t
(t) = 0. (2.22)

Since
∂C

∂t
= βN and N = − ∇φ

|∇φ| , we obtain the following evolution equation for φ

∂φ

∂t
= β |∇φ|, (2.23)

with the initial condition φ(t = 0) = φ0, where φ0 is the level set function of the given

initial curve C0. Note that when the level set function is evolving according to equation

(2.23), the level set corresponding to the embedded curve, as well as all the other level sets,

deform according to the curve evolution equation (2.12).

Let us now look at the advantages offered by the level set method. First of all, this

approach for curve representation is parameter-free, since it is written in a fixed coordinate

system (x, y), as opposed to the parametric approach, which relies on a geometric, mobile

coordinate representation. This means that we no longer need to adjust the parametrization

to suit the curve configuration, as was the case for the parametric approach, where marker

particles had to be managed and redistributed along the curve to accurately follow its

evolution. Instead, with level sets we can track a curve simply by adjusting the height of

the level set function in each point (x, y) of our domain. In particular, this also brings a

great relief from the problem of topological changes, which are naturally handled in the level

set framework, or, as Osher [107] would put it, with “no emotional involvement”. There is

no need for developing intricate algorithms to track topological changes, since the topology

of the level set function does not change. The merging or splitting of the underlying curves

occur automatically with the evolution of the level set function and are discovered when the

corresponding level set is computed. This property is illustrated in Fig. 2.3, which depicts

the curve evolution for the segmentation of an image containing two triangles (right column).

The initial contour is a circle (the red contour in the first image of the right column), which

deforms to capture the shapes of the two triangles. This deformation naturally leads to

its splitting (last row), which does not necessitate any additional effort and is produced by

updating the level set function values according to the corresponding PDE.

Another problem which is well addressed in the context of level set methods is the devel-

opment of sharp corners and discontinuities in the evolving interface. Such discontinuities

can arise simply by deforming a curve via a PDE like (2.12), using a constant velocity in

the normal direction β = 1. Taking the example of a concave initial curve, two solutions

to such a propagation are illustrated in Fig. 2.4. These solutions are similar up to the ap-

pearance of a corner in the propagating interface. After that moment, one solution crosses
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Figure 2.3 — Demonstration of a topological change during contour evolution modeled via the
level set method. The evolution corresponds to the segmentation of the top image in the right
column. The initial contour position is illustrated as the red contour in the top figure of the right
column. Left column: evolution of the level set function, with the zero level set marked as the
red contour. Right column: associated curve evolution (red contour), superimposed over the image
targeted for segmentation.
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(a) (b)

Figure 2.4 — Illustration of two solutions for the propagation of a concave curve with normal
speed β = 1. (a) Swallowtail solution. (b) Leading front solution. This figure is reproduced from
[136].

over itself, whereas the other selects only the leading front. Intuitively, the leading front

solution seems like the physically correct one.

The reason why several solutions to this problem are possible is the fact that once a

corner develops in the solution, the normal to the interface is ambiguously defined and it

is not obvious how to proceed with the evolution. Therefore, the only possibility is the

calculation of a “weak solution”, i.e. a solution which only weakly satisfies the definition of

differentiability (see [135] for more details). Both illustrated solutions are weak solutions.

The first one is obtained by continuing the motion of each individual point. The second one

respects our intuition that all the points of the interface at a certain evolution step should be

located at an equal distance from the interface position at the previous time step, since they

advance with equal normal velocities. As shown in [133–135], the second solution, which

is the physically correct one, can be obtained by imposing an “entropy condition”, similar

to the one used for hyperbolic conservation laws. The theoretical framework which allows

us to obtain this entropy-satisfying weak solution is the mathematical theory of viscosity

solutions, pioneered by Crandall et al. [36–38].

Returning to the level set evolution equation (2.23), we note that if the velocity β

depends only on the position x and on first-order derivatives of φ, this is a particular case

of the general Hamilton-Jacobi equation

ut +H(Du,x) = 0, (2.24)

where Du designates the partial first-order derivatives of u in each variable and the Hamil-

tonian H(Du,x) = −β|∇u|. The property of the level set evolution equation of being

a Hamilton-Jacobi equation (in certain conditions) allows the use of the theory of vis-

cosity solutions in order to obtain non-smooth solutions that allow corners (thus being

non-differentiable), as in the previous example.

Regarding the numerical implementation of the resulting PDEs, the key idea is to borrow

existing technologies for the numerical solution of hyperbolic conservation laws and apply

them to the Hamilton-Jacobi setting. The principle behind the utilized numerical schemes

is that “the numerical domain of dependence should contain the mathematical domain of
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dependence”[135]. This gives rise to the so-called“upwind schemes”, where the computation

of function values at the current grid point uses values upwind of the direction of information

propagation. As a result, one can develop accurate and stable numerical algorithms, which

yield physically reasonable, entropy-satisfying (and possibly discontinuous) solutions to the

employed PDEs. For more details regarding numerical schemes, see [135].

In contrast to the level set approach, curve evolution methods based on the parametric

representation, implemented by marker-particle techniques, are incapable to account for

the proper entropy condition [135] and are affected by stability problems, being unable to

cope with discontinuous solutions. In such methods, small errors due to the imprecision of

marker positions accumulate and amplify uncontrollably through a feedback loop involving

the computation of derivatives. Therefore, the use of impractically small time steps for curve

evolution is required, together with mechanisms intended to keep the particles apart from

each other. Apart from being complicated, such techniques modify the motion equations

in non-definite ways, which is not desirable.

Summing up, all the presented theoretical and practical tools create a rigorous mathe-

matical framework for the study and development of level-set-based curve evolution equa-

tions. This has encouraged the use of the level set method in many variational image

segmentation approaches, including our own implementations for gesture recognition appli-

cations, presented in Chapter 4. For example, Caselles et al. [28] embedded the geodesic

active contour evolution equation (2.25) into the evolution of a level set function φ, with

velocity β = g(|∇I|)κ − (∇g(|∇I|) · N ) for each level set, yielding (by (2.23)):

∂φ

∂t
= g(|∇I|)κ |∇φ| − (∇g(|∇I|) · ∇φ). (2.25)

2.1.3 Region-Based Active Contours

In Section 2.1.1, we presented edge-based variational segmentation approaches, where the

contour is attracted to the closest positions of locally maximum image gradient (edges).

The main disadvantage of these approaches is their local character, which means that

they cannot reach beyond the nearest energy minimum, and thus can become trapped

into undesirable local minima caused by spurious edges/noise formations in the image.

To encourage the convergence of these methods over larger distances and also make them

more robust against insignificant local intensity variations, an image smoothing step was

introduced prior to the edge detection via the function g (2.8). In turn, this creates a new

inconvenient: the smoothing has the effect of smearing image edges and therefore exact

information about their location is lost. Desirably, one would like a smoothing method

which only eliminates noise artifacts and leaves object boundaries intact. However, prior

to segmentation, we do not know where these boundaries are. This circular problem was

addressed by the variational segmentation model of Mumford and Shah [103, 104].

The goal of the presented edge-based segmentation methods was the segmentation of a

particular object of interest within an image. From a different perspective, the Mumford-

Shah model aims at finding a strong segmentation of an image, by partitioning it into a

set of disjoint homogenous regions. To this end, and in response to the problem explained
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above, it defines the segmentation problem as a coupled smoothing/edge detection problem:

given an observed image I0, find a piecewise smooth approximation I of I0, featuring a set

C of discontinuities, corresponding to the edges of I0. These conditions are encapsulated

by the Mumford-Shah energy functional:

E(I, C) =

∫∫

Ω
(I − I0)

2 dx dy + µ

∫∫

Ω\C
|∇I|2 dx dy + ν|C|, (2.26)

where |C| stands for the one-dimensional Hausdorff measure of the length of C and µ > 0,

ν > 0 are fixed parameters, weighting the energy terms. The first term is a fidelity term,

imposing the similarity of the approximation I with the original image I0. The second

term constrains the image I to be smooth, with the exception of the set of discontinuities

C. The last term is a regularization term which demands that the set C be of minimal

length, and thus in particular as smooth as possible. Obviously, this simple functional

cannot offer an accurate description of the complex structures encountered in most natural

images. The approximated image I, together with the set of edges C, can only provide

a simplified, cartoon-like representation of a scene. However, the better the target image

matches the model assumption (i.e. is composed of piecewise-smooth object regions), the

more satisfactory the segmentation result will be.

Since its apparition, the Mumford-Shah model has been the focus of attention of many

theoretic studies and practical implementation efforts. Its importance is demonstrated

(among others) in the book of Morel and Solimini [102], which shows that it can be con-

sidered the “general model of image segmentation, and all the other ones are variants, or

algorithms tending to minimize these variants”. Detailed analyses of the model can be

found in the books of Morel and Solimini [102] and Aubert and Kornprobst [9]. Generally,

theoretical studies of the model have been revolving around the question of existence of

segmentations which minimize the Mumford-Shah functional, of their uniqueness and of

the smoothness of the resulting boundaries. The theoretical minimization problem belongs

to the class of free discontinuity problems ∗ and is difficult due to the interaction of the

two-dimensional terms in I and the one-dimensional length term. The existence of mini-

mizers (generally not unique) was proved by De Giorgi and Ambrosio [4–6, 67, 68], while

the regularity of the minimizing boundaries was demonstrated in [8, 18]. From a prac-

tical viewpoint, solutions for the direct computation of minimizers of the Mumford-Shah

functional are not available. Nevertheless, a lot of research effort has been dedicated to

approximating the functional with formulations that are feasible for numerical implemen-

tations [7, 15, 20, 29]. Level set implementations of the Mumford-Shah functional were

proposed by Chan and Vese [30, 149] and by Tsai et al. [143].

The parameter µ of the Mumford-Shah functional (2.26) controls the amount of smooth-

ing of the approximated image I. Increasing this parameter to the limit µ → ∞ results in

the approximation I being piecewise-constant, i.e. constant in each region Ωi ⊂ Ω induced

∗The term of “free discontinuity problem” was introduced by De Giorgi [66] and designates a variational

problem involving a competition between volume energies, concentrated on N-dimensional sets, and surface

energies, concentrated on (N − 1)-dimensional sets, whose supports are not fixed a priori.
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by the set of edges C:

I(x, y) = ci for (x, y) ∈ Ωi. (2.27)

In this case, the functional (2.26) is simplified to its “cartoon limit” [103]:

E({ci}, C) =
∑

i

∫∫

Ωi

(I0(x, y) − ci)
2 dx dy + ν|C|. (2.28)

The minimization of this functional leads to a piecewise-constant approximation of the

original image I0 within the regions Ωi determined by the boundaries C. For given C, the

constants ci are equal to the mean intensity values in each region Ωi, as implied by imposing

the minimum condition
dE

dci
= 0:

ci =

∫∫

Ωi
I0(x, y) dx dy
∫∫

Ωi
dx dy

. (2.29)

Since these values are implied by the boundaries C, the functional (2.28) is only dependent

on C, which simplifies its theoretical analysis and also its practical implementation.

One important merit of the piecewise-constant Mumford-Shah model (2.28) is that of

opening the way for the introduction of probabilistic modeling into region-based variational

segmentation approaches. In this context, we would like to mention the work of Zhu and

Yuille on “region competition” [166]. Their approach combines region growing techniques

with a variational approach, which is an extension of the piecewise-constant Mumford-Shah

model to probabilistic region modeling. In the piecewise-constant Mumford-Shah model

(2.28), the intensity value of each region Ωi is approximated by the mean intensity value

of the region. Zhu and Yuille propose a generalization of this representation: they describe

the intensity of each region via a probabilistic model P (I0(x, y)|αi), where αi denotes the

parameters of the model. Then, the energy of each region Ωi is given by the negative log-

likelihood of observing an intensity value I(x, y) at pixel (x, y), given the region model with

parameters αi:

E({αi}, C) =
∑

i

(

−
∫∫

Ωi

log(I0(x, y)|αi) dx dy +
ν

2

∫

∂Ωi

ds

)

. (2.30)

Here C = ∪i∂Ωi are the segmentation boundaries and the second term of the energy stands

for the length of these boundaries. The piecewise-constant Mumford-Shah model can be

regarded as a particularization of this formulation, by modeling the regions Ωi with Gaussian

probabilities of means ci and constant variances.

The advantage of the Zhu-Yuille formulation is that it allows several useful extensions

of the piecewise-constant Mumford-Shah functional. For instance, the authors themselves

demonstrate the use of Gaussian probabilities, which allows the modeling of the regions Ωi

in terms of different means µi and variances σi:

P (I0(x, y)|αi) =
1√
2πσi

exp

(

−(I0(x, y) − µi)
2

2σ2
i

)

, (2.31)
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with αi = {µi, σi}. This makes possible the segmentation of regions with similar means, but

different variances. Furthermore, the Gaussian model permits straightforward extensions to

vector-valued functions I0 : Ω → R
n. In particular, this allows the segmentation of images

using color and texture information, as demonstrated in [166].

An implementation of the piecewise-constant Mumford-Shah model in the context of

active contours represented by level sets is proposed by Chan-Vese in [30]. Their model is

entirely region-based, hence the name of “active contours without edges”. Starting from the

assumption that the image is composed of two pixel classes (two phases), grouped into an

inside region ω and an outside one Ω \ ω, Chan-Vese propose the energy functional

E(c1, c2, ω) = λ1

∫∫

ω
(I0(x, y) − c1)

2 dx dy + λ2

∫∫

Ω\ω
(I0(x, y) − c2)

2 dx dy + νLength(∂ω),

(2.32)

with λ1, λ2, ν fixed positive constants, c1, c2 ∈ R and ∂ω representing the boundary of

the region ω. The minimization of this functional yields the (locally optimal) L2-norm

approximation of the original image in terms of two region categories, characterized by

two intensity values c1 and c2, under a length constraint over the regions’ boundaries. As

shown for the piecewise-constant Mumford-Shah model [103], for a fixed segmentation ω,

the values c1, c2 minimizing (2.32) are given by the mean intensity values of the two regions

ω and Ω \ ω.

For the implementation of their model, Chan-Vese use a level set formulation of (2.32):

E(c1, c2, φ) =λ1

∫∫

Ω
(I0(x, y) − c1)

2Hε(φ(x, y)) dx dy

+ λ2

∫∫

Ω
(I0(x, y) − c2)

2Hε(−φ(x, y)) dx dy

+ ν

∫∫

Ω
|∇Hε(φ(x, y))| dx dy.

(2.33)

Here φ is the level set function embedding the boundary ∂ω and Hε is a suitable smooth

approximation of the Heaviside function (2.18), permitting differentiation. The Heaviside

function is used as a characteristic function, allowing the discrimination of the two regions

ω and Ω\ω, which correspond to the positive and, respectively, negative regions of the level

set function φ. The minimization of (2.33) is typically performed in two phases. First, φ is

considered fixed and the energy is minimized with respect to c1 and c2, yielding:

c1 =

∫∫

Ω I0(x, y)Hε(φ(x, y)) dx dy
∫∫

ΩHε(φ(x, y)) dx dy
, c2 =

∫∫

Ω I0(x, y)Hε(−φ(x, y)) dx dy
∫∫

ΩHε(−φ(x, y)) dx dy
. (2.34)

Then, c1 and c2 are considered fixed and the energy is minimized with respect to φ, yielding

(by the Euler-Lagrange equation and gradient descent) the evolution equation

∂φ

∂t
= δε(φ)

(

−λ1(I0(x, y) − c1)
2 + λ2(I0(x, y) − c2)

2 + div

( ∇φ
|∇φ|

))

. (2.35)

Here the δε(φ) designates the derivative of the Heaviside function δε(φ) = H ′
ε(φ) and is

an approximation of the Dirac distribution, thus delimiting the zero-level set of φ. The
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(a)

(b)

Figure 2.5 — Illustration of the capabilities of the “active contours without edges”model proposed
by Chan-Vese [30]. (a) Segmentation of a simulated minefield, having a contour without edges. (b)
Piecewise-constant image approximation resulting from the segmentation at (a). These images are
reproduced from [30].

piecewise-constant approximation of the original image resulting from the segmentation

can be computed as:

I(x, y) = c1Hε(φ(x, y)) + c2Hε(−φ(x, y)). (2.36)

An example of segmentation which justifies the model name —“active contours without

edges”— is illustrated in Fig. 2.5. The target image represents a simulated minefield where

the regions cannot be distinguished based on edges, but rather in terms of their different

dark-pixel density, which is reflected as a difference in mean intensity. The success of the

Chan-Vese model is due to the use of a global segmentation criterion, which is evaluated by

using information from the whole image (the mean intensity level), as opposed to the local

gradient information, used by the edge-based methods.

A piecewise-smooth approximation of the original Mumford-Shah model (2.26) was pro-

posed by Vese and Chan in [149]. Its main advantage with respect to the piecewise-constant

model is the more faithful approximation of the input image (as a piecewise-smooth func-

tion). This translates to more accurate segmentations for classes of images that do not

respect the piecewise-constant assumption, at the cost of increased complexity (and time

costs) of the segmentation model. Considering a binary image partition (two pixel classes),

the unknowns of the model are I — the piecewise-smooth approximation of the original

image I0 — and the set of boundaries ∂ω delimiting the two regions. The relation between

these two unknowns can be expressed by introducing two functions I+ and I−, designat-

ing I on the inside and on the outside, respectively, of the boundaries ∂ω. Formally, the
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following holds:

I(x, y) =

{

I+(x, y) if (x, y) ∈ ω,
I−(x, y) if (x, y) ∈ Ω \ ω. (2.37)

Using I+ and I−, the Mumford-Shah functional can be approximated as:

E(I+, I−, ω) =

∫∫

ω
(I0(x, y) − I+(x, y))2 dx dy +

∫∫

Ω\ω
(I0(x, y) − I−(x, y))2 dx dy

+ µ

∫∫

ω
|∇I+(x, y)|2 dx dy + µ

∫∫

Ω\ω
|∇I−(x, y)|2 dx dy + νLength(∂ω).

(2.38)

In a level set formulation, (2.39) can be written as

E(I+, I−, φ) =

∫∫

Ω
(I0(x, y) − I+(x, y))2Hε(φ(x, y)) dx dy

+

∫∫

Ω
(I0(x, y) − I−(x, y))2Hε(−φ(x, y)) dx dy

+ µ

∫∫

Ω
|∇I+(x, y)|2Hε(φ(x, y)) dx dy

+ µ

∫∫

Ω\ω
|∇I−(x, y)|2Hε(−φ(x, y)) dx dy

+ ν

∫∫

Ω
|∇Hε(φ(x, y))| dx dy.

(2.39)

The minimization of this energy with respect to I+, I− and φ is achieved via the cor-

responding evolution equations, derived through the calculus of variations and gradient

descent. The equations for the computation of the approximations I+ and I− lead to the

smoothing and denoising of the original image I0, in particular inside homogenous regions

and avoiding the edges. The piecewise-smooth approximation of I0 can be calculated as:

I(x, y) = I+(x, y)Hε(φ(x, y)) + I−(x, y)Hε(−φ(x, y)). (2.40)

Figure 2.6 shows an example of segmentation which demonstrates the denoising capabilities

of the piecewise-smooth Vese-Chan model. An advantage of using the level set implemen-

tation is that the contour splits automatically to capture all three objects present in the

image.

The piecewise-constant and piecewise-smooth segmentation models described above are

based on the assumption of a binary image partition (two pixel classes), which implies that

the edges of the image can be described using a level set of a single level set function. The

general case of an image partition which allows structures such as triple junctions, as well as

the representation of multiple phases (classes) was treated by Zhao et al. [165], Vese-Chan

[149] and Tsai et al. [143].

A variational segmentation framework which integrates edge- and region-based ap-

proaches is proposed by Paragios and Deriche in [110–113]. The proposed model, named

“geodesic active regions”, builds upon the geodesic active contours model by incorporating
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(a)

(b)

Figure 2.6 — An example of segmentation using the piecewise-smooth model proposed by Vese-
Chan [149]. As a result, the original image is denoised and the contour splits to correctly delineate
the three objects captured in the image. (a) Evolution of the segmenting contour superimposed on
the original image. (b) Piecewise-smooth image approximation resulting from the segmentation at
(a). These images are reproduced from [149].

statistical region-based information. This contributes to overcoming the main weakness of

the geodesic active contours, which is their local character, implying convergence to the

closest (possibly inconvenient) local minimum and thus strong dependence on initial condi-

tions. Moreover, the model is implemented using the level set method, which eliminates the

problems related to topological changes, inherent to the parametric representation of the

geodesic active contours. The authors also augmented their model to incorporate texture

[113] and motion information [111] in the segmentation.

The general geodesic active regions formulation considers the problem of an image com-

posed of N different regions/phases Ωi, i = 1..N , each delimited by its own contour ∂Ωi.

The proposed energy functional is

E({Ωi}) =

N∑

i=1

(

α

∫∫

Ωi

ri(I0(x, y)) dx dy + (1 − α)

∫ 1

0
gi(I0(∂Ωi(pi)))

∣
∣
∣
∣

∂Ωi

∂pi
(pi)

∣
∣
∣
∣
dpi

)

.

(2.41)

Here ri and gi are two functions which represent the (negative log) likelihood that a par-

ticular pixel intensity is observed in region Ωi, and on the boundary ∂Ωi, respectively.

Moreover, pi is the parametrization of the curve ∂Ωi and α ∈ [0, 1] is a constant weighing

the contributions of the two terms. In previous models such as [30, 149], the number of

phases was considered as given prior to segmentation and the parameters of the different

phases were considered among the unknowns of the variational problem, thus being evaluat-

ed and updated during contour evolution. In contrast to these approaches, in the geodesic

active regions model the number of phases/regions, as well as the parameters of the likeli-
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hoods ri and gi, are estimated prior to segmentation from image data ∗ and remain fixed

throughout segmentation. This makes the segmentation process more stable and can help

avoid unwanted local minima, while introducing dependence on the accuracy of the prior

parameter-estimation phase. An example of segmentation using the geodesic active regions

models is presented in Fig. 2.7.

(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 2.7 — Segmentation using the geodesic active regions model proposed by Paragios [110].
(a) Original image. (b) Image histogram and its approximation with a Gaussian mixture model.
(c) The four Gaussian mixture components. (d) Initial contour position. (e)–(g) Final contours
corresponding to the four types of regions/components: (e) black pants, (f) skin, (g) background
and (h) hair and T-shirt. All images are reproduced from [110].

A further generalization of combined edge- and region-based segmentation approaches

is brought by Aubert et al. [10] et Jehan-Besson et al. [80]. They study functionals of the

form:

E(Ωin,Ωout,Γ) =

∫∫

Ωin

kin(x, y,Ωin) dx dy +

∫∫

Ωout

kout(x, y,Ωout) dx dy +

∫

Γ
gb(x, y) ds.

(2.42)

∗To obtain the number of regions and the region statistics, the image histogram is modeled as a mixture

of Gaussian distributions, each representing one of the regions present in the image. The number of mix-

ture components, as well as their parameters, are then estimated by simultaneously using the “minimum

description length” criterion (constraining the number of mixture components) and the maximum likeli-

hood principle (constraining the approximation error of the resulting model). The estimation of boundary

probabilities for each pixel is then performed on the basis of the pixel’s neighborhood region probabilities.
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Here Γ is the contour delineating the object of interest, Ωin and Ωout are the regions lying

inside and, respectively, outside the contour Γ, kin and kout are the descriptors of regions

Ωin and Ωout, and gb is the boundary descriptor. The region descriptor is a function which

measures the homogeneity of a region. Many of the relevant descriptors are globally at-

tached to the region (region-dependent descriptors), as it is the case with the mean, variance

or histogram of a region ∗. In the case of unsupervised segmentation (i.e. where the region

statistics are not learned a priori), these descriptors are updated at each evolution step of

the active contour. Their variation during segmentation introduces additional forces into

the contour evolution, aspect which has not been considered in previous work. In order to

minimize such generalized region-based functionals, the authors introduce a novel approach

based on shape-derivation tools [53]. The classical approach for the minimization of com-

bined edge- and region-based functionals was to transform region integrals into boundary

integrals, followed by the use of Euler-Lagrange equations and gradient descent to obtain

the contour evolution equations (e.g. [110, 166]). This approach becomes complicated in

the case of region-dependent descriptors. Aubert et al. [10] show the equivalence of region-

and edge-based functionals, which allows the problem to be formulated solely in terms of

region functionals, followed by minimization via shape-derivation tools. This facilitates the

implementation of new variational region-based formulations, based on region histograms

[10] and information-theoretic criteria [76], [21].

The main problem with edge-based segmentation approaches (such as the geodesic active

contours), is their susceptibility to become trapped in one of the many local minima in

their energy landscape, which implies the sensitivity of the segmentation result to initial

conditions. This problem was addressed by Bresson et al. [24], who demonstrate the

determination of a global minimum for three proposed active contour models. The models

rely on the association of the image segmentation and denoising tasks. All three models are

derived from the geodesic active contours, by unification with the total-variation denoising

model of Rudin, Osher and Fatemi [127], and with the models developed by Chan and

Vese [30, 149] for the approximation of the Mumford-Shah functional in the piecewise-

constant and piecewise-smooth case, respectively. Moreover, the authors propose a fast

numerical method for the minimization of their models, based on a dual formulation of the

minimization. This method avoids the time-consuming operation of re-initializing the level

set function to a signed distance function, encountered in most level-set-based variational

formulations. An illustration of the denoising and segmentation capabilities of the first

model proposed by Bresson et al. is offered in Fig. 2.8.

Summarizing, we have seen that there are several merits of using region-based seg-

mentation approaches over purely edge-based ones. Principally, the introduction of region

homogeneity criteria, which are globally defined over the image, renders the segmentation

∗For example, choosing the variance as the descriptor for Ωin, we have:

k
in(x, y,Ωin) =

∫∫

Ωin

(I0 − µin)
2 dx dy

∫∫

Ωin

dx dy
,

where µin is the mean intensity of Ωin (also dependent on Ωin).
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(a) (b)

(c) (d)

Figure 2.8 — Segmentation using the global minimization of the active contour model proposed by
Bresson et al. [24]. (a) Original image. (b) Final segmentation contour. (c) Approximated denoised
version of the original image. (d) Dual of the approximation at (c). All images are reproduced from
[24].

more robust with respect to spurious intensity variations than the locally defined edges.

This means that the contour is less susceptible to become trapped into local energy min-

ima, which makes it less sensitive to its initial conditions and capable of converging over

larger distances than edge-based contours. Moreover, the region-based segmentation for-

mulations can incorporate a large variety of probabilistic models of the image information

in the target regions. This provides an elegant, unitary framework for treating different

kinds of features such as image intensity, color, texture or motion.

2.1.4 Introducing Prior Knowledge into Active Contours

All the variational segmentation models presented so far, either edge-based or region-based,

rely solely on image information to achieve the segmentation task. However, there are many

cases where such information is missing or is corrupted, impairing the attainment of the

desired segmentation. Such cases include images with a cluttered background, which do

not respect the assumption of homogeneity for the background region, or images where the

object of interest is partially occluded by other objects, and thus it cannot be recovered

neither based on homogeneity assumptions, nor based on edge information. Finally, other

difficult cases are the ones where the image is corrupted by large amounts of noise or

blurring, and thus image-based cues are not sufficient to guide the contour towards the

desired segmentation. For human perception, such images would cause no problems, since
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the human visual system would use its a priori knowledge about the world to correct

or complete the missing information. Analogously, in computer vision, many variational

segmentation approaches deal with such difficult images by introducing a form of a priori

knowledge about the objects expected to be found in these images.

Most models use information about the expected shape of object(s) of interest in the

image. The classical procedure consists in gathering a set of training shapes of the tar-

get object, followed by their alignment with respect to similarity transformations (scale,

rotation and translation). Then, the aligned shapes are used to derive a form of statistic

knowledge about the target object, which is incorporated into the segmentation model.

Cootes and Taylor [34] are the first to introduce shape knowledge into active contours.

They use principal components analysis (PCA) to extract the main modes of variation

(principal components) of a set of aligned training shapes represented by points. Then they

perform parametric active contour segmentation by restricting contour deformation within

the space spanned by the principal components. Their model is shown to cope with cases

of missing boundary information and occlusion.

Along the same direction, Leventon et al. [89] perform active contour segmentation

in a level set framework, including prior shape information extracted by PCA from a set

of aligned training shapes. These training shapes are represented via level set functions,

given by the signed distance to their contours. The use of the level set representation

eliminates the problem of point management and manual annotation of the training samples

to ensure their correspondence, present in [34]. Moreover, the authors motivate their choice

by showing that the use of signed distance functions (SDF) provides tolerance with respect

to slight misalignments of the training shapes. This is because nearby points of the SDF

are highly correlated and thus shape variations are redundantly represented and robustly

captured by the PCA.

The segmentation model [89] is not defined by the minimization of a certain energy

functional, but rather by the addition of a supplementary term in the evolution of geodesic

active contours, which models shape information:

φ(t+ 1) = φ(t) + λ1 (g (c+ κ)|∇φ(t)| + ∇φ(t) · ∇g) + λ2(φ
∗(t) − φ(t)), (2.43)

where λ1 and λ2 are two positive constants. We recognize the term weighed by λ1 as

being the geodesic active contour evolution term, which imposes contour smoothness and

gradient attraction. The term weighed by λ2 introduces the shape information via an

attraction force towards the prior contour φ∗(t). This contour is represented in the PCA

space (extracted from the training set) and is derived in a separate optimization step, by

searching for the maximum a posteriori (MAP) estimates of the position and shape (via

PCA coefficients), given the input image and the current contour φ. Figure 2.9 presents an

example of segmentation using this model in the case of a medical image featuring diffuse

object boundaries, which prove to be misleading for purely image-based segmentation.

Tsai et al. [142, 143] follow up on Leventon’s model and introduce PCA-derived shape

knowledge into region-based segmentation. Their contour is given by a level set function,

represented implicitly in terms of a set of shape parameters w (the PCA coefficients) and
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Figure 2.9 — Segmentation of two corpus callosum images using the model of Leventon et al.
[89]. The black curve is the segmentation contour at the current evolution step. The gray curve
represents the next evolution step. The white contour is the MAP-estimated prior contour. The
dotted contour of the final image is the result of standard active contour evolution, which fails to
segment the desired structure in the absence of shape influence. All images are reproduced from
[89].

pose parameters p (of a similarity transformation). They propose the following energy

functional, which is equivalent (up to a term independent of the contour) with the Chan-

Vese piecewise-constant approximation of the Mumford-Shah functional [30]:

E(w,p) = −
(

(S+)2

A+
+

(S−)2

A−

)

. (2.44)

Here A± =
∫∫

ΩH(±φ(w,p)) dx dy and S± =
∫∫

Ω I0H(±φ(w,p)) dx dy are the area and in-

tensity sum of the interior and, respectively, exterior region of the zero-level set of φ(w,p).

The minimization of energy (2.44) with respect to the parameters w and p is performed via

gradient descent. Along the same lines, the authors proposed two other energy functionals

inspired from [159], which segment an image by maximizing the distance between the inten-

sity means and, respectively, variances, of the object and background regions. Figure 2.10

shows an example of segmentation using (2.44), which demonstrates the model’s ability to

deal with noisy, cluttered images.

(a) (b) (c) (d) (e)

Figure 2.10 — Segmentation of an airplane image with missing edges using the model of Tsai et
al. [143]. (a) Original image. (b) Original image surrounded by line clutter. (c) Image at (b) with
additive Gaussian noise. (d) Initializing contour. (e) Final contour. All images are reproduced from
[143].

Another approach following the spirit of Leventon’s model is the one proposed by Chen

et al. [31, 32]. The authors also introduce prior shape information within geodesic active

contours, but the nature of this shape information is different: it consists only of the mean
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of the set of training shapes, whereas Leventon et al. model more complex shape variations

via a PCA model. The advantage of Chen’s approach consists in the formulation of a unified

segmentation model given by an energy functional. This functional is minimized via the

calculus of variations and the authors offer a proof of existence for its minimum, which is

not feasible in the case of Leventon’s two-phase model. The model formulation in terms of

parametric contours is

E(C,µ,R, T ) =

∫ 1

0

{

g(|∇I0(C(p))|) +
λ

2
d2(µRC(p) + T,C∗)

}

|Cp(p)|dp. (2.45)

In this equation, λ > 0 is a fixed parameter, C∗ is the mean contour of the training set

(i.e. the prior contour), µ,R, T are the parameters of a similarity transformation (scale,

rotation and translation) aiming to align the evolving contour C with C∗, and d((x, y), C∗)

is the distance from the point (x, y) to contour C∗. The first term of the energy is the

classic geodesic active contour and the second one creates the attraction of the (aligned)

contour C towards the prior contour C∗. The contour alignment parameters are part

of the problem unknowns and are calculated simultaneously with the contour evolution

by gradient descent. This parametric contour formulation is extended by the authors to

the level set contour representation in a straightforward manner. Figure 2.11 presents an

example of segmentation of an epicardium image using Chen’s model. As can be seen, the

shape prior plays a crucial role in the segmentation, in the absence of well-defined edge or

region information.

(a) (b)

Figure 2.11 — Segmentation of an ultrasound image of the epicardium using the model of Chen
et al. [32]. (a) Original image with the initial contour. (b) Final segmentation (solid curve) and
ground truth outlined by the expert (dotted line). All images are reproduced from [32].

The use of a new shape model in conjugation with the geodesic active regions framework

[112] was proposed by Rousson and Paragios in [126]. Their shape model is formulated in

terms of the level set representation and accounts both for a global shape φM , estimated as

the mean shape of a training set, and for local shape variability, given by the local variance

σM(x, y). Formally, shape knowledge is encapsulated as a pixel-wise Gaussian probability

model of the level set function:

pM
(x,y)(φ) =

1√
2πσM ((x, y))

e
−

(φ(x, y) − φM (x, y))2

2σ2
M (x, y) . (2.46)



2.1. Image Segmentation Using Variational Methods 37

The model parameters φM and σM are estimated by maximizing the model likelihood with

respect to the training data, under a smoothness constraint for σM and while performing

periodic reinitialization of φM to a signed distance function. The resulting shape prior is

then introduced into the geodesic active regions model [112] as a supplementary energy

term of the form:

E(φ,A) = −
∫∫

Ω
Hε(φ(x, y)) log

(

pM
A(x,y)(sφ(x, y))

)

dx dy

=

∫∫

Ω
Hε(φ(x, y))

(

log σM (A(x, y)) +
(sφ(x, y) − φM (A(x, y)))2

2σ2
M (A(x, y))

)

dx dy.

(2.47)

Here A = (s, a1, a2, . . . aN ) are the parameters of a linear transformation, out of which s is

the scale parameter. The introduction of the Heaviside function Hε restricts integration to

the inside of the region of interest, thus making level set function comparison independent

with respect to the size of the domain Ω. The minimization of energy (2.47) amounts

to maximizing the likelihood of the aligned level set function φ(A(x, y)), given the prior

model, under the assumption that the probability densities (2.46) are independent across

pixels. The optimization with respect to the alignment parameters A is performed through

gradient descent. An example of segmentation using energy (2.47) in association with the

geodesic active region model is presented in Fig. 2.12.

Figure 2.12 — Segmentation of a low-quality image of a football player using the model of Rousson
and Paragios [126]. The shape prior helps capture the whole silhouette of the player, despite it being
composed of regions of different gray-value (head, body, legs). All images are reproduced from [126].

The integration of a statistical shape prior into the Mumford-Shah functional and its

cartoon limit was proposed by Cremers et al. in [39, 43]. They use a parametric contour

representation based on B-spline curves and introduce a shape model given by the Gaussian

distribution of the shape parameters, which are the spline control points:

P (C) ∝ exp

(

−1

2
(C − µ)TΣ−1

⊥ (C − µ)

)

. (2.48)

Here C = (x1, y1, . . . xN , yN )> is the vector of control points and µ, σ⊥ are the mean

and, respectively, regularized covariance matrix, estimated from the aligned control-point

vectors of a set of training contours representing the object of interest. The proposed energy

functional combines an image-based energy derived from the Mumford-Shah functional with
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a term corresponding to the prior shape information:

E(I, C) =Eimage(I, C) + αEprior(C),

Eimage(I, C) =
1

2

∫∫

Ω
(I − I0)

2 dx dy +
λ2

2

∫∫

Ω
wC(x, y)|∇I|2 dx dy + ν

∫ 1

0
C2

s (s)ds,

Eprior(C) = − log P (C) = −1

2
(C − µ)TΣ−1

⊥ (C − µ).

(2.49)

Here I is the piecewise-smooth approximation of the original image I, wC is a contour

indicator function such that wC(x, y) = 0 if (x, y) ∈ C and wC(x, y) = 1 otherwise. The

last term of Eimage(I, C) is a modification of the classical length term L(C) =
∫ 1
0 |Cs(s)|,

which prevents the control points from clustering together and causing numerical instability

problems, as is the case with typical parametric active contours. Furthermore, the authors

render their energy functional invariant with respect to similarity transformations (scaling,

rotation and translation), by replacing the control-point vector C with an analytic expres-

sion which aligns it with respect to the mean control-point vector µ. This bypasses the need

for optimization with respect to the alignment parameters, which can fail to converge to

the desired minimum. Figure 2.13 shows a segmentation example which demonstrates the

model’s ability to cope with clutter, unlike its variant without shape prior or the classical

geodesic active contour.

(a) (b) (c) (d)

Figure 2.13 — Segmentation of an image affected by clutter using the model of Cremers et al.
[43]. (a) Initial contour on cluttered image. (b) Segmentation using model (2.49), without the shape
prior term. (c) Segmentation using geodesic active contours. (d) Segmentation using prior shape
information (2.49). All images are reproduced from [43].

The presented approaches for introducing prior shape information into the segmentation

framework used the assumption of a Gaussian distribution of the permissible shapes. This

means that any such shape can only be represented as a linear combination of a set of

eigenmodes, such as the ones obtained by PCA. This assumption is quite limiting in many

realistic situations where the shapes undergo more complex transformations. For instance,

different 2D views of a 3D object will not belong to a Gaussian distribution. In this context,

Cremers et al. [42, 44] extend their formulation [39, 43] to a nonlinear shape model. They

use a novel method of density estimation which can be considered as an extension of kernel-

PCA to a probabilistic framework. In particular, the authors apply a nonlinear mapping

to the training data, resulting in a higher-dimensional representation that is considered

to be Gaussian-distributed. This makes the distribution in the original space highly non-

Gaussian and permits the encoding of complex shape deformations. Figure 2.14 presents
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such an example, where the shape prior models different views of a rotating rabbit and

allows its accurate tracking through clutter and occlusion.

(a) (b) (c) (d) (e) (f)

Figure 2.14 — Tracking of a rotating rabbit through clutter and occlusion, using the model of
Cremers et al. [42, 44]. (a) Initial contour. (b) Segmentation without prior. (c)–(e) Segmentation
of different views with nonlinear prior. (f) Training data (black dots), estimated energy density
and contour evolution (white curve) in appropriate 2D projections (onto 1st and 2nd principal
components). Evolution is following the valleys of low energy created by the training data. All
images are reproduced from [44].

In the context of integrating prior shape knowledge into level set based segmentation,

Cremers and Soatto [41] investigate dissimilarity measures for shapes encoded by the signed

distance function. They advocate the use of symmetry in the construction of dissimilarity

measures. Furthermore, they propose a new dissimilarity measure, which is symmetric, not

biased towards small areas and constitutes a pseudo-distance (since it does not satisfy the

triangle inequality). Given two shapes φ1, φ2, represented via the signed distance function,

this measure is defined as

d2(φ1, φ2) =

∫∫

Ω
(φ1 − φ2)

2 h(φ1) + h(φ2)

2
dx dy. (2.50)

The use of the normalized Heaviside function h(φ) =
H(φ)

∫∫

ΩH(φ) dx dy
prevents the bias

towards small areas. Figure 2.15 offers a comparison of using this measure and its asym-

metric or un-normalized versions, for encoding the attraction towards the shape prior in

the context of segmentation with the piecewise-constant Chan-Vese model.

(a) (b) (c) (d)

Figure 2.15 — Comparison of different dissimilarity measures. (a) Initial contour. (b)–(d) Seg-
mentation using a prior which encodes the entire word “shape”, based on an un-normalized and
asymmetric dissimilarity measure — (b), its normalized version — (c) and the symmetric normal-
ized measure given by (2.50) — (d). Neither of the two asymmetric measures is able to propagate
the shape prior outside the initial interior shape area. All images are reproduced from [41].
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Another approach for introducing shape prior information into level-set-based segmen-

tation was presented by Cremers et al. in [45, 48]. The main innovation is the introduction

of a multi-modal statistical shape prior, which allows the encoding of multiple, fairly dif-

ferent training shapes (see Fig. 2.16). This prior is obtained by applying the classical

Parzen-Rosenblatt density estimator [116, 124] to the level set representation:

P (φ) ∝ 1

N

N∑

i=1

exp

(

− 1

2σ2
d2(Hφ,Hφi)

)

. (2.51)

Here {φi}i=1..N is the set of training shapes, Hφ is the Heaviside function applied to the level

set function φ, σ is the kernel width of the Parzen-Rosenblatt estimator and the distance d

is given by:

d2(Hφ1,Hφ2) =

∫∫

Ω
(H(φ1(x, y)) −H(φ2(x, y)))

2 dx dy. (2.52)

The authors render their distance function invariant to shape translation by evaluating

the level set function in relative coordinates with respect to its gravity center. Then they

introduce the shape prior into a segmentation scheme based on the Chan-Vese piecewise-

constant model:

E(φ) =
1

α
ECV(φ) + Eshape(φ), (2.53)

where ECV is the Chan-Vese energy (2.33) and Eshape = − log P (φ) is the shape prior

energy. Using (2.51) the authors encode various poses of a walking person (Fig. 2.16, first

row). The resulting shape prior enables them to successfully track a partially occluded

person, as can be seen in Fig. 2.16, second row.

Figure 2.16 — Segmentation of a partially occluded walking person with the model of Cremers et
al. [45, 48]. First row: sample training shapes. Second row: Examples of segmented frames using
the proposed shape prior model. All images are reproduced from [45].

A unified segmentation framework which integrates edge- and region-based information

with a geometric shape prior was proposed by Bresson et al. in [21, 23]. The proposed

model consists of an energy functional composed of three complementary terms:

E(C,xpca,xT , Iin, Iout) =βs Eshape(C,xpca,xT ) + βbEboundary(C)

+ βr Eregion(xpca,xT , Iin, Iout).
(2.54)

The prior shape information is obtained similarly to Leventon et al. [89], by performing

PCA on a set of signed-distance functions to the aligned training shape contours. This
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serves the representation of a prior shape function, embedding the prior shape contour, in

terms of the coefficients xpca of its projection onto the PCA eigenvectors. This prior shape

function is close to a signed-distance function and is given by:

φ̂ = φ+ Wp xpca, (2.55)

where φ stands for the mean of the training data and Wp is the matrix of the PCA eigen-

vectors. The vector xT from (2.54) contains the parameters of a geometric (similarity or

affine) transformation, acting on the planar coordinates (x, y) of the prior contour. During

the minimization of (2.54), the prior shape function is updated at the same time as the

contour C, by gradient descent equations for the parameters xpca and xT .

The first term of the energy (2.54) is a functional introduced by Bresson et al. in [22],

which evaluates the shape difference between the contour C and the zero level set of the

prior shape function φ̂ provided by the PCA:

Eshape(C,xpca,xT ) =

∮ 1

0
φ̂2(xpca, hxT

(C(q))) |Cq(q)| dq. (2.56)

We recognize here the classic contour length term
∮ 1
0 |Cq(q)|dq, where the integration along

the contour is weighed at each point by the factor φ̂2(xpca, hxT
(C(q))). Since φ̂ approxi-

mates a signed-distance function, this factor approximates the shortest distance between

current integration point C(q) and the prior contour, given by the zero level set of φ̂. The

transformation hxT
is meant to align contour C with the prior contour. The second term of

the energy (2.54) is the edge-attraction term of the geodesic active contours model, which

allows the segmentation to capture local structure variations:

Eboundary(C) =

∮ 1

0
g(|∇I0(C(q))|) |Cq(q)| dq. (2.57)

The third term of the energy (2.54) drives the shape prior φ̂ globally towards a homogenous

intensity region, via the piecewise-smooth Mumford-Shah functional:

Eregion(xpca,xT , Iin, Iout) =

∫∫

Ω
((I0 − Iin)

2 + µ|∇Iin|2)H(φ̂(xpca,xT )) dx dy

+

∫∫

Ω
((I0 − Iout)

2 + µ|∇Iout|2)H(−φ̂(xpca,xT )) dx dy.

(2.58)

Here Iin and Iout designate the piecewise-smooth approximations of the original image I0
inside and, respectively, outside the zero level set of the prior shape function φ̂ and H is

the Heaviside function. The authors also provide a level set representation of their model

and offer a proof of existence of its minimizer. Figure 2.17 shows an example of medical

image segmentation, outlining the merit of the model in accurately guiding the segmenting

contour towards the object of interest, despite locally misleading information.

The simultaneous segmentation of multiple familiar objects, using multiple competing

shape priors, was treated by Cremers et al. in [46, 49]. They introduce a labeling function,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.17 — Segmentation of the left brain ventricle in a MRI image with the method proposed
by Bresson et al. [23]. First row: original image segmentation. Second row: segmentation of the
original image featuring an occlusion. (a)–(c), (e)–(g) Segmentation with the model of Bresson et
al. [23]: contour as the white curve, prior contour as the magenta curve. (d),(h) Segmentations
using geodesic active contours [28] and, respectively, the piecewise-smooth model of Vese and Chan
[149], both failing to capture the object of interest. All images are reproduced from [23].

defined over the image domain, which indicates where to apply certain priors. By optimizing

this function simultaneously with the level set function, the authors jointly generate a

segmentation and a partition of the image domain among the objects of interest. For the

case of two competing priors, embedded in level set functions φ1 and φ2, the associated

energy is:

Eshape(φ,L) =

∫∫

Ω

(φ− φ1)
2

σ2
1

(L+ 1)2 dx dy +

∫∫

Ω

(φ− φ2)
2

σ2
2

(L− 1)2 dx dy

+ γ

∫∫

Ω
|∇L| dx dy.

(2.59)

Here σ2
i =

∫∫

Ω φ
2
i dx dy − (

∫∫

Ω φi dx dy)
2 represents the variance of φi and L : Ω → R is the

labeling function, which enforces the prior which is most similar to the level set φ at each

image location. For fixed φ, the first two terms of the energy induce the following qualitative

behavior of the labeling: L → 1 if |φ − φ1|/σ1 < |φ − φ2|/σ2 and L → −1 if |φ − φ1|/σ1 >

|φ − φ2|/σ2. Moreover, in (2.59), γ > 0 and the last term imposes smoothness of the

labeling function. The authors extend this formulation to multiple priors, by considering

a vector-valued labeling function L : Ω → R
n, L(x, y) = (L1(x, y), . . . Ln(x, y)). Using this

function, the authors employ the m = 2n vertices of the polytope [−1, 1]n to encode m

different regions, denoted by their respective indicator functions χi, i = 1..m (depending
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on the vector L). This results into an energy of the form

Eshape(φ,L) =

m−1∑

i=1

∫∫

Ω

(φ− φi)
2

σ2
i

χi(L) dx dy + λ2

∫∫

Ω
χm(L) dx dy

+ γ

n∑

i=1

∫∫

Ω
|∇Li| dx dy.

(2.60)

Here λ > 0 and the second energy term corresponds to a region where no prior is imposed,

since the resemblance between φ and any of the priors falls bellow a threshold dictated by

λ. This allows pure image-based segmentation of objects for which no prior is available.

An example of segmentation of three familiar objects with missing parts and of a fourth

unknown object (in the center) is presented in Fig. 2.18. The results were obtained by

combining the shape prior energy (2.60) with the piecewise-constant Chan-Vese model, as

in (2.53).

(a) (b) (c) (d) (e) (f)

Figure 2.18 — Segmentation of multiple familiar objects using multiple competing shape priors,
using the model of Cremers et al. [45, 49]. (a) Initial contour. (b)–(d) Segmentation with multiple
competing priors. (e) Zero-level contours of the two labeling functions which designate the influence
regions of the priors (blue and green curves). (f) Segmentation without shape priors. All images
are reproduced from [45].

2.1.5 Object Tracking with Variational Segmentation Methods

Variational segmentation methods can also be applied to perform object tracking through

image sequences. The goal of object tracking is to recover the position and deformation of

the object throughout the image sequence. To this end, a suitable approach is to follow

the object contour evolution within the image sequence, task for which, as we have seen, a

wealth of versatile variational methods have been developed.

In this context, Kass et al. [81] directly apply their original snakes formulation to track

a person’s lips. The approach consists of simply segmenting each image in turn, using as

initial contour the final segmentation contour of the previous image. This method is suc-

cessful within the known limitations of the snakes approach and given that the motion is

slow with respect to the frame rate. Similarly, Cremers et al. [44, 48] report tracking by

direct frame-by-frame segmentation, where segmentation is performed via more sophisti-

cated models that include statistical shape priors. However, the use of static shape prior

models (i.e., constant throughout the image sequence) restricts the possible tracked shape

deformations to the probabilistic distributions which are considered. The consistency be-

tween consecutive frames is exploited by Paragios and Deriche in [111]. They incorporate
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the typical assumption used in tracking scenarios — the constant brightness of the target

object [78, 92] — within a variational framework which includes a boundary-attraction term

and a background-substraction probabilistic term. This enables them to perform simulta-

neous tracking and motion estimation (by the recovery of optical flow vectors). The same

constant brightness assumption is integrated into a region-based segmentation energy used

for tracking in [97]. Based on the same constant brightness principle, Yilmaz et al. [163]

propose an energy functional combining region-based color and texture cues with an online

shape model, learned from contour deformation during the course of tracking.

More elaborated tracking techniques incorporate prediction mechanisms such as Kalman

filtering [119, 141] or particle filtering [121, 122]. Generally, prediction relies on learning a

model of object displacement based on prior observations. Such a model is used to provide

an initial guess of the object position in a subsequent frame, which is further refined based on

image data. The final position of the detected object is then used to improve the prediction

model.

Addressing the limitations of tracking by segmentation with static prior shape models,

Cremers [40] proposes the use of dynamical statistical shape priors for level-set-based seg-

mentation and tracking. The author distinguishes shape, represented by the embedding

function φ, from shape transformation Tθ, which acts on the grid and implicitly transforms

the shape into φ(Tθ(x, y)) (e.g. similarity transformation). Considering a set of consecutive

images from an image sequence I1:t = {I1, . . . It}, Cremers formulates the segmentation

of It as a problem of Bayesian inference, where one wants to maximize the conditional

probability:

P (φt, θt|I1:t) =
P (It|φt, θt, I1:t−1)P (φt, θt|I1:t−1)

P (It|I1:t−1)
(2.61)

with respect to the embedding function φt and the transformation parameters θt. After a

few assumptions, the problem is simplified to the maximization of:

P (φt, θt|It, φ̂1:t−1, θ̂1:t−1) ∝ P (It|φt, θt)P (φt, θt|φ̂1:t−1, θ̂1:t−1) (2.62)

with respect to φt and θt, where φ̂1:t−1 and θ̂1:t−1 are the estimated segmentations and

transformations for the previous images I1:t−1. Towards reliable statistical estimation, data

dimensionality is reduced by PCA, which results in the level set function φ being represented

by its projection α ∈ R
n onto the set of principal components, learned from training data.

Assuming independence of shape and transformation parameters, as well as a uniform

distribution of the transformation parameters, the estimation of the second factor of (2.62)

reduces to the estimation of the conditional probability P (αt|α̂1:t−1), which encapsulates

the dynamics of the shape deformation. The author models this probability by an auto-

regressive model of order k:

P (αt|α̂1:t−1) ∝ exp

(

−1

2
v>Σ−1v

)

, (2.63)

where

v = αt − µ −A1α̂1 −A2α̂2 . . . Akα̂k. (2.64)
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and the model parameters, given by the mean µ ∈ R
n, and the transition and noise ma-

trices A1, . . . Ak, Σ ∈ R
n×n, are estimated from training data. The author also consid-

ers a joint dynamic model of shape and transformation parameters, based on the same

kind of autoregressive model and using a concatenated vector of shape parameters and

transformation-parameter differences α̃t = (αt,4θt)
>. The maximization of (2.62) is

equivalent to minimizing the negative logarithm of (2.62), which can be translated into

the variational optimization of an energy of the form:

E(αt, θt) = Edata(αt, θt) + νEshape(αt, θt). (2.65)

The author models Edata(αt, θt) by assuming pixel-wise Gaussian distributions for the ob-

ject of interest and the background and Eshape(αt, θt) is given by the negative logarithm

of (2.63) (or its variant for the joint modeling of shape and transformation parameters).

Manually segmented sequences of a walking person are used to estimate the parameters of

the autoregressive model. Then, the segmentation of noisy sequences of the walking person

is performed using the proposed energy (2.65). Results of this method are presented in

Fig. 2.19.

Figure 2.19 — Segmentation of a noisy sequence of a walking person. First row: segmentation
using a static prior, given by a uniform probability in the space of the first few eigenmodes. The
process is stuck in a local minimum after the first frames. Second row: segmentation using the
dynamic prior (energy (2.65)) proposed by [40]. The dynamic prior helps the segmentation cope
with the misleading image information due to noise. All images are reproduced from [40].

2.2 Behavior Recognition with Computer Vision Approaches

Behavior recognition is currently a very active research field, with the majority of efforts

dedicated to human behavior modeling and recognition. Good reviews of the topic can

be found in [2, 64]. A comprehensive survey of the literature in the field is performed by

Moeslund et al. in [101], which reviews a number of 424 publications in major conferences

and journals, 352 of which are recent, i.e. published between years 2000 and 2006. On

the one hand, the great popularity of the field can explained by the scientific challenge

posed by many behavior recognition problem, involving complex, ill-posed problems, such

the motion estimation and understanding of a self-occluding, non-rigid 3D object from 2D

images. On the other hand, the increased interest in behavior recognition is given by the
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wealth of its applications, including automated surveillance, human-computer interaction,

medical diagnosis, sports performance analysis and video indexing and retrieval.

The general trend reflected in the behavior recognition approaches that we have found in

the literature is the decomposition of the resolution in two sequential processes. The first one

is a feature extraction process, where features considered relevant for the recognition task

are extracted from the image sequence. The second one is the actual behavior recognition

process, which generally solves a classification problem in terms of the extracted features.

The main difference of our framework with respect to these approaches is the joining of the

two processes — feature extraction and behavior recognition. The purpose of our approach

is to enable the two processes to collaborate towards improved results for both, as will be

shown in Chapter 3. In the following, we will start with a few considerations relative to the

definition of the behavior recognition task. Then, we will present some of the approaches

for behavior recognition encountered in the literature. Our focus will be on emphasizing the

separation of the feature extraction and behavior recognition processes. Moreover, we will

outline the methods employed for each of these processes, and relate them to the methods

used in our framework.

The task of behavior recognition can be approached at different levels of detail, depend-

ing on the particular application which is considered and on the complexity involved in

the targeted behavior. In order to allow for a more clear delimitation of research goals in

this direction, several behavior hierarchies have been proposed, involving different terms,

such as action, activity, complex action, etc. The early work of Nagel [105] suggests the

use of a hierarchy composed of “change, event, verb, episode and history”. More recently,

Bobick [16] proposed the use of a hierarchy consisting of “movement, action and activi-

ty”, whereas Moeslund et al. [101] base their survey on a hierarchy composed of “action

primitives, actions and activities”. In the latter work, actions are made up of atomic units

which are the action primitives. Furthermore, activities are larger scale events, composed

of actions, and potentially involving causal relations, interactions among humans or with

objects in the environment. In our thesis, we denote the atomic primitives as “actions”,

and define “behavior” as a sequence of actions. Our general framework does not specifically

focus on human behavior, but rather uses the generic concept of object, which includes

humans, (moving) machines or animals. We delimit the scope of our work to single object

behavior recognition and do not consider the higher level of interactions between objects

(or humans), as specified by the “activity” category in the hierarchy of [101].

Another aspect which differentiates the multitude of existing approaches for behavior

recognition is the level of detail in the modeling and tracking of objects, which depends on

the targeted recognition application. At the coarsest level, the objects are represented by

their centroids or by their bounding boxes or ellipses. Such representations serve applica-

tions where the recognition and understanding of behavior can be performed in terms of

the moving trajectories of these centroids / bounding boxes. For instance, the recognition

of two-person pedestrian interactions is considered by Sato and Aggarwal [131], who track

persons as moving boxes and classify the motion patterns of the boxes. On a more de-

tailed analysis level, the silhouettes / contours of the human body as a whole are extracted
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from the input images. For example, Yu et al. [164] extract human contours and their

PCA representation from image sequences. Then they input the resulting trajectories in

eigenspace into a neural network to discriminate among the actions of “walking”, “running”

and “other”.

More precise modeling is obtained by distinguishing (in 2D) individual human body

parts, such as the head, torso, arms and legs. An example in this respect is Wren et al.’s

tracking system [157], which yields a human body representation in terms of 2D blobs,

associated with the head, torso, hands and feet. The system is used, among others, for the

gesture control of two virtual reality applications. In similar vein, Starner and Pentland [139]

track the human hands as 2D blobs and use HMMs to recognize a subset of the American

Sign Language (ASL). For applications concerning hand-gesture recognition, more detailed

descriptions of the hand need to be employed. For instance, Lockton and Fitzgibbon [91]

extract the hand mask based on skin color and recognize finger-spelling by using a nearest-

neighbor classification technique. Birk et al. [13] extract a PCA representation of the hand

image on a dark background (normalized with respect to similarity transformations) and

recognize finger-spelling at each frame by maximum likelihood estimation in the space of

the PCA coefficients.

The most complex descriptions of the human body (or of its parts), employed for motion

modeling, are 3D volumetric models. To our knowledge, complete systems which perform

3D motion reconstruction and behavior recognition have not been developed so far. Howev-

er, there is a large body of work regarding 3D tracking and motion reconstruction at various

complexity levels, either using stereo information acquired with multiple cameras or using

monocular image sequences, together with constraints on kinematics and movement (e.g.

[52, 137, 147]). Evidently, the results of these approaches can potentially be used in behav-

ior recognition tasks. Moreover, there are several behavior recognition approaches which

circumvent the vision problem and assume the existence of information regarding body

posture, generally in terms of joint locations, either in 2D or in 3D (e.g. [114, 151, 161]).

Finally, another category of approaches do not explicitly employ a method for object

modeling or tracking, but rather contain an implicit description of the object(s) of interest,

by modeling the regions of motion within the image sequence. Since they do not attempt to

explicitly identify the object(s) of interest, these methods generally assume that all moving

regions correspond to such objects (and are thus perturbed by regions not obeying this

rule). An example of such a motion-only approach is the method proposed by Bobick

and Davis [17]. They model the motion within an image sequence by extracting motion

energy images (MEI), which indicate the presence / absence of motion at a certain pixel,

and motion history images (MHI), where pixel intensities are functions of the recency of

motion at a certain pixel. From the MEIs and MHIs, they extract Hu moments, that

they subsequently use to classify the image sequence in terms of the shortest Mahalanobis

distance to learned models of each action. In similar spirit to the MHIs, Yi et al. [160]

extract motion characteristics of an image sequence via pixel change ratio maps (PCRM).

Then, they compute a motion histogram from the PCRM, which is used for classification

in terms of the Euclidian distance with respect to the histograms of training sequences.
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A sensitive point of these approaches is the ambiguity among different motions, induced

by the integration of information throughout the whole image sequence. Another inherent

difficulty is posed by the imprecise nature of the motion detection strategy (e.g., inner

regions of moving objects may not detected).

In our general framework, the level of detail that we use for image analysis and object

modeling is the highest permitted by a 2D representation and by the fact that we do make

any assumptions regarding the object targeted for behavior recognition (i.e., we do not

specify a particular 2D or 3D object model). That is, we represent the target object by its

contour within the image. This allows us to extract any object attributes which are functions

of the contour and the image, such as the color, texture properties or position (in 2D).

Obviously, such a representation is more general than blob or bounding box representations,

since the latter can be extracted from it.

Regarding the strategy used for recognition, we notice that according to the targeted

application, some of the existing approaches perform a frame-by-frame classification of the

input image sequences. The features extracted from each image are classified into one of the

given action classes, using the information gathered from training data, via methods like

maximum likelihood ([13]) or nearest-neighbor template matching, to which a deterministic

boosting method is added for speed-up ([91]). These methods are limited to cases where a

static recognition of each frame is feasible, without the need of using context information

from adjacent frames.

Alternatively, other approaches use features extracted from the whole image sequence

to globally classify it as one of a set of possible actions. In this direction, [17] and [160]

use nearest-neighbors methods for classification. Moreover, Efros et al. [58] track humans

in image sequences and eliminate global motion by extracting a window centered on the

tracked person. From the sequence within this window, they further compute a set of

motion features based on the blurred optical flow, which capture the residual motion of the

person’s body parts. Then, the features are matched with a database of learned motions

using spatio-temporal cross-correlation. One difficulty faced by this kind of methods arises

due to the differences in the speed of performing the compared actions. This creates the

necessity for temporal alignment between the compared sequences (when the feature set

dimension scales with the dimension of the image sequence, e.g. [58]), or for adjustment of

the temporal parameters used in computing global features over the image sequence (e.g.

[17]).

Another approach leading to the global classification of a sequence into one of a set

of (atomic) actions is that of extracting “space-time shapes” from the XYT volume of the

image sequence. Yilmaz and Shah [162] construct a spatio-temporal volume (STV) by

considering the 2D contour of a person extracted from images over time. This enables them

to estimate properties such as direction, velocity and shape by analyzing the geometry of

the STV. They solve action recognition as an object matching task, by considering the STV

as a 3D object. In a related approach, Gorelick et al. [70] analyze the STV by generalizing

methods for 2D shape analysis. They extract 3D shape features from a representation of

the STV obtained as the solution of a Poisson equation. For classification, they use the
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nearest neighbor method, based on the Euclidian distance between shape features. In order

to cope with variable-length movements and with the problem of temporal alignment, they

define short-length superposed temporal windows within the STV and classify each of these

with the method above.

A classic method used to deal with the problem of temporal alignment when performing

sequence comparisons is Dynamic Time Warping (DTW) [129]. DTW is an algorithm for

measuring similarity between two sequences which can vary in length or speed. It does so

by searching for an optimal match between the two sequences, with some restrictions (such

as monotonicity of the mapping in time). Such a match is found by performing operations

of deletion / insertion, compression / expansion and substitution on the two sequences. The

similarity measure between the sequences, which can be used for classification, is obtained

by defining a cost of the operations performed for the matching of the two sequences. A

recent paper which uses DTW for motion recognition belongs to Blackburn and Ribeiro

[14]. First the human silhouette is extracted by background substraction from an image

sequence. Then, the silhouettes are registered with respect to scale and translation and

a distance transform is applied. Next, the sequence of silhouettes is projected to a lower-

dimensional space by isometric non-linear manifold mapping (the latter being learned from

training data). Finally, the trajectory in this space is classified by a nearest neighbor scheme

based on the DTW matching score.

A general disadvantage of the DTW method is its ignorance of the interaction between

nearby subsequences. This makes it disregard the fact that in many cases sequences that

are closer in time have higher correlation than distant ones. A remedy in this respect

is offered by the Hidden Markov Model (HMM) [120], which is a probabilistic temporal

model. An HMM models the correlation between adjacent time instances by encapsulating

a Markov process. It is a generative model, which assumes that the observed sequence has

been produced by a hidden process, that performs transitions among a number of hidden

states. In this context, it defines transition probabilities between pairs of hidden states

and probabilities for observations given a certain state. HMMs have proved very successful

for speech recognition problems and therefore many computer vision researchers decided

to apply HMMs to visual recognition problems. Ahmad and Lee [3] extract the optical

flow from a bounding box of the target person, together with the PCA coefficients of the

human silhouette, obtained by background substraction. They use these features to classify

the actions of “walking”, “running”, “raising the hand” and “bowing”, by modeling their

dynamics with the aid of HMMs. Elgammal et al. [59] extract human silhouettes and

perform gesture recognition via HMMs. Each gesture is represented by an HMM and the

observation function of the HMMs is given by a non-parametric distribution, which enables

them to associate a large number of exemplars with a small set of states. Robertson and

Reid [123] build a hierarchical system for behavior understanding, where complex behavior

is composed out of a set of simple actions. On the highest level, they use HMMs to model

behavior. The observations of the HMMs are given by lower level features such as the

trajectory, velocity and local action descriptors. The latter are obtained with the method

proposed by Efros et al. [58]. Prior to feature extraction, a mean-shift tracker is used to
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follow the person throughout the image sequence.

A generalization of the HMM useful for behavior recognition is the Dynamic Bayesian

Network (DBN) [65]. A DBN is also a probabilistic temporal model, represented as a

directed graphical model of a stochastic process. It generalizes the HMM by allowing the

modeling of more complex dependencies between the hidden and observed variables. In

particular, it allows the arbitrary choice of the network structure at each time slice, which

can be computationally expensive, but appealing in terms of flexibility. Park and Aggarwal

[115] describe a method for recognizing two-person interactions using a hierarchical Bayesian

network (BN). First, multiple body parts are segmented and tracked within the image

sequence. Then, the poses of these parts are estimated at the low level of the BN, while the

overall body pose is estimated at the high level of the BN. The interactions are classified

by using a DBN which models the dynamics of body configuration changes throughout the

image sequence. Luo et al. [93] propose a strategy for video analysis and recognition which

uses DBNs to perform the mapping from low-level features to high-level video interpretation.

The low level features are extracted from key frames detected in the video sequences, and

more specifically from object silhouettes detected in these frames in a prior tracking phase.

Our framework is also formulated in terms of a DBN. In our case, the DBN permits the

joining of the two processes which are considered in separation by the previous approaches:

feature extraction and behavior recognition. Our proposed DBN is based on the coupling

between an HMM and a probabilistic image segmentation model, used for attribute extrac-

tion from the image sequence and influenced by knowledge from the HMM.

In our approach to behavior recognition, behavior is regarded as a succession of simpler

actions. As explained in the beginning of this section, this is a commonly used decomposi-

tion in behavior modeling. In this context, there are several publications which attempt to

decompose behavior into simple action primitives and interpret behavior as a composition

of these primitives. This topic is particularly interesting for the robotics community, in

relation to the concept of “imitation learning”. In imitation learning, the aim is to develop

an automatic system which can associate perceived actions to its own motor control, in

order to learn, recognize and reproduce the observed actions. Therefore, research in the

field is targeted at identifying a set of action primitives which enable the representation of

the perceived action, as well as motor control for imitation. For instance, Billard et al. [12]

use an approach based on HMMs to learn features of repetitively demonstrated movements.

They use an HMM to model the motion of each joint and constrain the HMM structure so

as to be able to synthesize joint trajectories of a robot. Vecchio et al. [148] use methods

from the dynamical systems framework to approach the decoupling of actions into action

primitives, without the constraints needed for performing action synthesis with the same

representation. Such approaches could be used in conjunction with our framework, in order

to identify the action primitives composing the particular behaviors involved in the targeted

application.
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In this chapter, we propose a general framework for fusing bottom-up segmentation with

top-down object behavior recognition over an image sequence. Such an approach is ben-

eficial for both tasks, by enabling them to cooperate. This allows knowledge relevant to

each task to aid in the resolution of the other, thus enhancing the final result of both

tasks. In particular, the behavior recognition process offers dynamic probabilistic priors to

guide segmentation. At the same time, segmentation supplies its results to the recognition

process, ensuring that they are consistent both with prior knowledge and with new image

information. The prior models are learned from training data and they adapt dynamically,

based on newly analyzed images.

Our approach constitutes an important contribution to the field of behavior recognition.

Namely, it offers a general solution for relieving recognition of its unconditional reliance on

the uncertain results of an independent feature extraction process. Instead, the recognition

takes an active part in guiding image segmentation, and invests into it all the knowledge pre-

viously acquired from training and analysis of earlier images. Furthermore, our work brings

a contribution to the field of variational image segmentation. It consists of a variational

formulation which incorporates multiple dynamic attribute priors, offered by the collabo-

rating recognition process. The effectiveness of our general framework will be demonstrated

in Chapter 4, via particular implementations that we have employed in the resolution of

two hand gesture recognition applications.

The content of this chapter is based on material that we have published in [72, 73, 75].

51



52
Chapter 3. A framework for Collaborative Segmentation and Behavior

Recognition from Image Sequences

3.1 Introduction

In the classical computer vision paradigm, image segmentation and object behavior recogni-

tion lie at different levels of abstraction. At a basic level, the objective of segmentation is to

separate the relevant objects from the target image(s). Recognizing the behavior exhibited

by such objects throughout an image sequence is a higher-level task towards comprehen-

sive visual perception. It generally relies on prior knowledge about possible behaviors and

their characteristics. Typically, the recognition problem is formulated in terms of a set of

relevant attributes (e.g., color histogram, object position, orientation, shape, size, etc.),

which have been extracted from the image sequence in a preceding phase (possibly, but

not necessarily, by image segmentation). Thus, the phase of attribute extraction is conven-

tionally performed separately from behavior recognition. In particular, this means that a

considerable amount of information is discarded prior to the recognition phase, based on

various criteria, which are not directly related to the recognition task. This happens while

a wealth of knowledge regarding object behavior is left unemployed until the later stages of

behavior recognition.

In this context, we pursue a joint solution to the problems of image segmentation and

object behavior recognition. Clearly, a precise segmentation of the target object would

greatly facilitate behavior recognition by offering access to any required object attributes.

Moreover, image segmentation could be drastically improved by exploiting the knowledge

which is available to the behavior recognition task. This knowledge can be used to guide the

segmentation of the target object(s) in challenging conditions (e.g., images affected by noise,

occlusions or cluttered background). Such a strategy can be regarded as a natural analogue

of the mechanism employed by human vision, consisting in the use of previously acquired

knowledge whenever there is a need to disambiguate or to complement scene information.

Furthermore, from the perspective of behavior recognition, which is subject to the results

provided by the attribute extraction process, an upper hand would be gained by influencing

the latter towards more accurate results through the infusion of higher level knowledge.

These considerations motivate us to introduce a general framework for collaborative

object segmentation and behavior recognition in image sequences. As shown in Chapter 2,

the existing approaches for behavior recognition regard it as a problem of classification,

using time-series of attributes extracted in a prior independent phase from the image se-

quence (see, e.g. [17, 57, 70, 132] and surveys like [64, 101]). Our framework is novel to the

field of behavior recognition, in that it associates the two steps which are traditionally per-

formed separately and sequentially: attribute extraction and actual behavior recognition.

The purpose of this association is the collaboration of the two processes towards mutual

improvement and better final results, in the spirit of the ideas presented in the previous

paragraph. Furthermore, we perform attribute extraction through image segmentation,

which, by delineating the object of interest, allows the flexible subsequent extraction of

any attributes which are relevant for the recognition task. We formulate segmentation in a

variational setting, which enables the smooth integration of both prior knowledge related

to the recognition task and of specific segmentation criteria for the target images.
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Variational methods offer a solid mathematical basis for the formulation and solution

of many computer vision problems. In particular, as we have seen in Chapter 1, the image

segmentation problem has been formulated in terms of energy minimization, allowing the

seamless blending of various criteria describing the desired solution, such as smoothness,

region homogeneity, edge correspondence, etc. Starting with the original active contour

model [81], variational segmentation has been steadily advancing through the introduction

of the Mumford-Shah model [103], the level set approach [108], geodesic active contours

[28, 82, 95] and, more recently, versatile segmentation approaches such as [112, 149]. The

segmentation of familiarly shaped objects in difficult cases was facilitated by the intro-

duction of statistical shape priors into active contours [35], into level set active contours

[32, 89, 126] and in the Mumford-Shah model [23, 49]. Variational methods have also been

adapted to the task of object tracking (e.g., [48, 81, 111]). In this context, the coherence

between consecutive frames has been exploited by variational approaches based on Kalman

filtering [141], particle filtering [122], and autoregressive models [40].

Our framework fuses segmentation and behavior inference over image sequences. To our

knowledge, this idea is novel in the context of variational image sequence analysis, and it

capitalizes on existing developments in the use of shape priors. In previous works, segmen-

tation has been combined with object recognition, yielding good results in the case of single,

static images, both in variational [49] and non-variational [62, 84, 87, 145] settings. For

tracking, [40] demonstrates the use of single-class dynamic models of motion and deforma-

tion, based on auto-regressive modeling. For image registration, [47] dynamically chooses

the relevant modes of an a priori joint intensity distribution of registered image pairs, ac-

cording to their proximity to the current estimated distribution. The novelty of our work is

that we address the segmentation problem over image sequences, in a multi-class scenario,

i.e., where the actions of the tracked object belong to classes which vary over time. Via

a parallel classification strategy, we guide the segmentation dynamically towards the most

likely action class at the given time. This guidance is based on learning from a training set

and on accumulated evidence throughout the image sequence.

Due to its generality, our cooperative framework for the resolution of the two tasks, seg-

mentation and behavior recognition, can be employed to resolve a wide range of applications

by adapting its components and parameters according to the specific need. In particular,

in Chapter 4 we illustrate the potential of our approach in two gesture recognition applica-

tions, where the cooperation of segmentation and behavior inference dramatically increases

the tolerance to occlusion and background complexity present in the input image sequences.

The remainder of this chapter is organized as follows. Section 3.2 offers a general de-

scription of our framework. In Section 3.3, we formulate our joint segmentation/recognition

problem in terms of a Dynamic Bayesian Network. Our strategy for joint contour estima-

tion and behavior recognition, based on probabilistic inference through a Viterbi decoding

strategy, is presented in Section 3.4. Section 3.5 details the variational formulation that we

use for image segmentation. Section 3.6 presents a formal justification of an approximation

used to derive our Viterbi decoding strategy, and of our variational competition approach.

In Section 3.7, we explain the advantage of using our approach for competition among
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Figure 3.1 — Recognition of object behavior in image sequences. The recognized behavior is
expressed as the sequence of action classes corresponding to each time instant.

multiple priors, compared to a well-known approach proposed by Cremers et al. [46, 49].

Section 3.8 explains how the parameters of our model can be learned from adequate training

sequences. In Section 3.9, we introduce an extension of our model which allows the specific

treatment of behaviors belonging to a finite set of behavior types. Section 3.10 summarizes

our approach in an algorithmic setting and Section 3.11 concludes the chapter.

3.2 General Description of the Framework

Limiting the scope of our work to single object segmentation and behavior recognition,

we can define “behavior” as the temporal evolution of the object, observed in the image

sequence. Now, let us consider object behavior throughout an arbitrarily long image se-

quence as being composed of a set of basic primitives, that we call actions. Then, the

recognition of object behavior translates to assigning each object evolution instance the

appropriate action class, as illustrated in Fig. 3.1. The recognized behavior is given by the

succession of these action classes along the image sequence. At the basis of recognition lies

prior knowledge about the possible action classes, their characteristics and the typical ways

in which they associate to compose behaviors.

Figure 3.2 — The typical approach to behavior recognition, composed of two sequential steps:
attribute extraction and classification, the latter yielding the recognized behavior.

The approaches for behavior recognition encountered in the literature typically consist

of two separate steps, performed sequentially (see Fig. 3.2): the extraction of attributes
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from the target image sequence and the classification of the resulting attribute time-series,

leading to the recognition of the exhibited behavior. In contrast to these approaches, we

propose to fuse the two steps, by performing them simultaneously and in cooperation, as

shown in Fig. 3.3.

Figure 3.3 — Our framework for behavior recognition, based on the cooperation of the two pro-
cesses: attribute extraction and classification. Classification offers probabilistic attribute priors to
guide attribute extraction. In turn, the attribute extraction process supplies the newly detected
attribute values to classification, ensuring they are consistent with prior knowledge.

The attribute extraction process is performed through variational image segmentation,

which is guided towards the most likely target object by attribute priors supplied by the

classification. Our classification strategy is based on probabilistic inference. This means

that we use a learned model to answer the question of frame classification into one of several

possible action classes. To this end, we use dynamic models of behavior, which adapt to

incorporate information (attributes) from new images analyzed by segmentation. These dy-

namic probability models encapsulate typical behaviors and are learned from training data

during an initial training procedure, performed before the application of our cooperative

framework to new image sequences targeted for behavior recognition. After the training

phase, segmentation and probabilistic inference are run cooperatively in an interleaved man-

ner throughout a new test image sequence. More precisely, for each image, an inference step

is performed, generating probabilistic prior attribute models corresponding to each of the

possible action classes. These are used by the ensuing segmentation to identify the most

likely objects in the current image and subsequently provide their attributes to the next

inference step. The procedure continues in the same fashion up to the end of the image

sequence. At any time instance along the sequence, the most likely succession of action

classes up to that instance can be retrieved from the inference process. This makes our

framework suitable for the online processing of continuous behavior sequences of arbitrary
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length.

Before proceeding with the detailed illustration of the two halves of our framework

— classification by behavior inference and segmentation — let us define the generic term

“attribute”, relative to our framework where attributes are extracted by segmentation. In

this context, the “attribute” designates a vector which encapsulates visual properties of an

object, definable as a functional fA(I, C) of the image I and of the object’s segmenting

contour C (fA is assumed to be differentiable with respect to C). This definition includes

many object properties computable with boundary- and region-based functionals, such as

position, orientation, average intensity/color or higher order statistics describing texture.

Such flexibility in the choice of the extracted attributes makes our framework adaptable to

the needs of a wide range of behavior recognition applications.

3.3 A Model for the Joint Segmentation and Behavior Recog-

nition of Image Sequences

3.3.1 Motivation

The aim of our framework is to jointly segment the object of interest from an image sequence

and to recognize the corresponding behavior. We model this joint segmentation/recognition

problem using a Dynamic Bayesian Network (DBN) based on a Hidden Markov Model

(HMM). A DBN is a probabilistic temporal model that represents a sequence of variables.

An HMM is a particular type of DBN, which associates a sequence of discrete states to a

sequence of observations — in our case, a sequence of images. Each state is characterized by

a probability distribution, often called the emission distribution, which gives the probability

of an observation while being in the respective state. The evolution of the states with time

is controlled by a transition distribution, which represents the probability of switching

to a certain state given the current state. The states are considered as hidden and the

only evidence about them is given by the sequence of observations. An approach based

on an HMM is particularly appealing in the context of behavior recognition because a

discrete state is a natural representation of a behavior component, that we denote as action.

The transition distribution then models the fact that, inside a particular behavior, certain

sequences of actions are more likely to be observed than others.

3.3.2 The Model

Given an image sequence I1:T = {I1, I2, . . . , IT }, our segmentation task translates to finding

the target object’s contour Ct in each image It, yielding the contour sequence C1:T =

{C1, C2, . . . , CT }. Similarly, behavior recognition amounts to determining the action class

st which corresponds to the observed image It, yielding the action class sequence s1:T =

{s1, s2, . . . , sT }. The action classes that compose the behaviors under study belong to a

finite set S = {S1, S2, . . . , SM}. The different behaviors (and their component actions) are

distinguished in terms of the object attributes At, which are extracted from the images It
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by means of segmentation. Formally, this can be written as At = fA(It, Ct), where fA is a

function which associates to a given image It and contour Ct the corresponding extracted

attribute At.

In this context, we model the joint segmentation and behavior recognition problem using

the Dynamic Bayesian Network shown in Fig. 3.4. In this figure, we have represented the

model corresponding to two time slices — t− 1 and t — the dots implying that the DBN

structure and parameters repeat in a similar fashion, starting from the first time slice, up

to the one corresponding to the last image in the sequence that it models. Our model is

based on coupling an HMM — whose hidden state at time t is given by the action class st

— with a probabilistic generative segmentation model, where the image It depends on the

contour Ct and the attribute At. The coupling of the two models at each time t is realized

through the attribute At. We represent observed variables by shaded nodes (the images

It, t = 1..T ) and hidden variables by clear nodes (the classes st, the attributes At and the

contours Ct, t = 1..T ). Moreover, we depict discrete variables by square nodes (the classes

st, t = 1..T ) and continuous variables by circular ones (the attributes At, the contours Ct

and the images It, t = 1..T ).

Figure 3.4 — The Dynamic Bayesian Network supporting our joint segmentation / behavior recog-
nition framework. This model can be regarded as containing an HMM (in the upper half), coupled
with a probabilistic segmentation model (in the lower half). For time slice t, the hidden state of
the HMM is given by action class st. Within the generative segmentation model, the image It is
dependent on the contour Ct and the attribute At. The observation at time t is given by the image
It. We depict hidden variables by clear nodes and observed variables by shaded nodes. The square
nodes designate discrete variables, whereas circular ones designate continuous variables.

According to the DBN represented in Fig. 3.4, our model is characterized by the following
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joint variable distribution:

P (I1:T , C1:T , A1:T , s1:T ) =

T∏

t=1

P (It|At, Ct)P (Ct)P (At|st)P (st|st−1), (3.1)

where P (s1|s0) ≡ P (s1) is the initial action class distribution. In the following, we explain

the assumptions underlying our model and we detail each of the probability factors from

the right-hand side product in (3.1).

Our model relies on the first order Markov assumption, namely that the action class at

time t only depends on the action class at time t − 1, being independent with respect to

the action classes previous to time t− 1:

P (st|st−1, st−2, . . .) ≡ P (st|st−1). (3.2)

The right-hand side of (3.2), which is part of our model (3.1), is considered to be independent

of time, and thus definable in terms of the set of action class transition probabilities T =

{tij}:
P (st = Sj|st−1 = Si) = tij , i, j = 1..M, (3.3)

under the standard stochastic constraints:

tij ≥ 0

M∑

j=1

tij = 1.
(3.4)

The initial action class distribution, corresponding to the action class of the first image in

a sequence, is given by π = {πi}, with

πi = P (s1 = Si), i = 1..M. (3.5)

In order to incorporate the attributes At, the object contour Ct and the image It in

our probabilistic model, we need to treat those quantities as random variables. Within

our DBN, which is founded on an HMM, this is achieved by defining the joint distribution

of these variables given the action class st, that is, P (It, Ct, At|st). Directly working with

such a joint distribution is in general too complicated. The model can often be made more

tractable by considering a simpler factorized distribution, where some of the dependencies

between the variables are removed. In our model, we propose to use a joint distribution of

the form

P (It, Ct, At|st) = P (It|At, Ct)P (Ct)P (At|st). (3.6)

In our framework, the attributes At represent the essential characteristics of the object

captured in image It, which are relevant for the recognition task. The prior knowledge we

have about these attributes, associated to a particular action class, is given by P (At|st),

which represents the probability of the attributes At given the action class st. Of course,

the most suitable model for this probability depends on the application to be solved and



3.3. A Model for the Joint Segmentation and Behavior Recognition of

Image Sequences 59

on the type of attributes that were chosen. Thus, we let the modeling of this probability

constitute one of the “degrees of freedom” of our framework, to be performed according to

the application at hand. For notation simplification, we denote the attribute probability

given an action class Si by:

Pi(At) = P (At|st = Si). (3.7)

To support cooperation with the segmentation process, we only require that these probabili-

ties be modeled by functions Pi(At) which are differentiable with respect to At. Examples of

models for this probability will be offered in Chapter 4, where we present implementations

of our framework for particular applications.

The probabilities P (Ct) and P (It|At, Ct) in (3.1) constitute a probabilistic segmentation

model, that we will translate into a variational segmentation formulation. In this context,

we would like to note that the object contour C is a continuous function, belonging to an

infinite-dimensional space. Generally, the modeling of probability distributions on infinite-

dimensional spaces is an open issue. Thus, in practice, we consider a finite-dimensional

representation of the contour, obtained by sampling over a regular grid.

In our framework, the prior probability of the contour P (Ct) is another free parameter,

which gives us the possibility to include (application-dependent) a priori knowledge about

the target object contour, which is independent of the action class. As we have seen in

Chapter 2, a common choice for this probability in the variational segmentation community

favors a short length |Ct| of the segmenting contour:

P (Ct) ∝ e−ν|Ct|, ν > 0. (3.8)

Moreover, P (It|At, Ct) corresponds to a generative image formation model. This model

states that, given a set of prior attributes At and a prior contour Ct, an image It can be

obtained by sampling from the distribution P (It|At, Ct). In other words, this means that

we focus on the attributes and object contour only, and consider all the other properties of

the image as resulting from random variations. The distribution P (It|At, Ct) represents the

probability of observing image It, given that Ct is the boundary of the object of interest and

At = fA(It, Ct) are the attributes extracted from the image via the function fA. Since fA

is a deterministic function of It and Ct, we need to give it a probabilistic interpretation

in order to be able to incorporate it into our model. A simple approach is to consider

that the probability of observing an image It whose extracted contour is Ct and whose

extracted attributes At are different from fA(It, Ct), is zero. Formally, this can be achieved

by defining

P (It|At, Ct) ∝ δ(At − fA(It, Ct)) e
−Eimage(It,Ct), (3.9)

where δ represents a Dirac distribution, which selects the images with the right attributes.

Moreover, Eimage is a free parameter of our framework, given by a variational segmentation

energy, which expresses image-based constraints on the contour. It can be made up of any

boundary- or region-based energy terms suitable for the application at hand (such as the

ones adopted in [30] or [112], presented in Chapter 2). Denoting by Ω ⊂ R
2 the image

domain and by ω ⊂ Ω — the region inside Ct, a typical example for Eimage is given by
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assuming the values of the image feature values I(x, y) (which can be scalar or vectorial) to

be independent and identically distributed samples of two independent random processes,

corresponding to the object and background region, respectively:

Eimage(It, Ct) =

∫∫

ω
− log P (It(x, y)|(x, y) ∈ ω) dx dy

+

∫∫

Ω\ω
− logP (It(x, y)|(x, y) ∈ Ω \ ω) dx dy.

(3.10)

A common modeling choice for the region probabilities P (It(x, y)|(x, y) ∈ ω) and P (It(x, y)|(x, y) ∈
Ω \ ω) is the Gaussian distribution. Concrete modeling examples for the application-

dependent parameters of our framework, i.e., P (At|st), P (Ct) and Eimage(It, Ct), will be

offered in Chapter 4.

3.4 Joint Segmentation and Behavior Recognition in Image

Sequences

Our joint segmentation / behavior recognition problem can be formulated in probabilistic

terms as the task of finding the contours C1:T and the action classes s1:T whose probability

given the observed images I1:T is maximum:

(s∗1:T , C
∗
1:T ) = arg max

s1:T
C1:T

P (C1:T , s1:T |I1:T ). (3.11)

This can be equivalently written as:

(s∗1:T , C
∗
1:T ) = arg max

s1:T
C1:T

P (C1:T , s1:T , I1:T ), (3.12)

where P (I1:T , C1:T , s1:T ) is obtained by integrating the joint distribution given by Eq. 3.1

over the attributes A1:T , i.e.,

P (I1:T , C1:T , s1:T ) =

∫

A1:T

P (I1:T , C1:T , A1:T , s1:T ). (3.13)

Some insight on how to solve Eq. 3.12 can be gained by first considering the problem of

finding the likelihood of the most likely configuration (s∗1:T , C
∗
1:T ):

P (I1:T , C
∗
1:T , s

∗
1:T ) = max

s1:T
C1:T

P (I1:T , C1:T , s1:T ). (3.14)

The structure of the DBN of Fig. 3.4 suggests that, considering a time moment t ∈
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{1, . . . , T − 1}, the right-hand side of Eq. 3.20 can be written as:

max
s1:T
C1:T

P (I1:T , C1:T , s1:T )

= max
s1:T
C1:T

P (It+1:T , Ct+1:T , st+2:T |I1:t, C1:t, s1:t+1)P (I1:t, C1:t, s1:t+1)

= max
s1:T
C1:T

P (It+1:T , Ct+1:T , st+2:T |st+1)P (I1:t, C1:t, s1:t+1)

= max
st+1:T
Ct+1:T

P (It+1:T , Ct+1:T , st+2:T |st+1)max
s1:t
C1:t

P (st+1|I1:t, C1:t, s1:t)P (I1:t, C1:t, s1:t)

= max
st+1:T
Ct+1:T

P (It+1:T , Ct+1:T , st+2:T |st+1)max
st

P (st+1|st) max
s1:t−1
C1:t

P (I1:t, C1:t, s1:t). (3.15)

For the second equality, we used the fact that, according to the DBN of Fig. 3.4, the

future observations It+1:T , contours Ct+1:T and actions classes st+2:T are independent of

any past quantity once st+1 is known. Similarly, for the fourth equality, we used the fact

that st+1 is independent of the past images, contours and action classes once st is known.

The probability P (I1:t, C1:t, s1:t) from Eq. 3.15 can be written as:

P (I1:t, C1:t, s1:t) =P (It, Ct|I1:t−1, C1:t−1, s1:t)P (I1:t−1, C1:t−1, s1:t)

=P (It, Ct|st)P (st|I1:t−1, C1:t−1, s1:t−1)P (I1:t−1, C1:t−1, s1:t−1)

=P (It, Ct|st)P (st|st−1)P (I1:t−1, C1:t−1, s1:t−1) (3.16)

The second equality is motivated by the fact that the image It and the contour Ct are

independent of any past quantities once st is given. Likewise, the third equality results

from the fact that the action class st is independent of any past quantities once st−1 is

given. Using the result of Eq. 3.16, we can express the maximization over s1:t−1 and C1:t

in (3.15) as:

max
s1:t−1
C1:t

P (I1:t, C1:t, s1:t) = max
Ct

P (It, Ct|st) max
st−1

P (st|st−1) max
s1:t−2
C1:t−1

P (I1:t−1, C1:t−1, s1:t−1).

(3.17)

This formulation prompts us to the definition of the quantity δt(st) as:

δt(st) = max
s1:t−1
C1:t

P (I1:t, C1:t, s1:t). (3.18)

According to Eq. 3.17, δt(st) can be computed with the recursive formula:

δt(st) = max
Ct

P (It, Ct|st) max
st−1

P (st|st−1) δt−1(st−1), (3.19)

which is initialized by setting δ0(s0) = 1. Therefore, we can obtain the likelihood of the

most likely configuration (s∗1:T , C
∗
1:T ), defined by (3.20), by recursively estimating δt(st) for

each time step t ∈ {1, . . . , T} and each action class st ∈ S, and then maximizing δT (sT )

over the action class sT :

P (I1:T , C
∗
1:T , s

∗
1:T ) = max

sT

δT (sT ). (3.20)
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The recursive formulation used to calculate δt(st) allows us to exhaustively explore all

the possible action class sequences s1:T in order to find the one which, together with its

associated estimated contours C∗
1:T , achieves the global maximization of P (I1:T , C1:T , s1:T ).

This optimal action class sequence, defined by Eq. 3.12, can be retrieved by storing, at

each time step t and for each action class st, the action class st−1 which maximizes the

right-hand side of Eq. 3.19. Formally, if we denote by ψt(st) this latter quantity, then we

have

ψt(st) = arg max
st−1

P (st|st−1) δt−1(st−1). (3.21)

Therefore, the most likely action class sequence s∗1:T can be found by applying iteratively,

and backward in time, the formulae:

s∗T = arg max
sT

δT (sT ),

s∗t = ψt+1(s
∗
t+1), t = T − 1, T − 2, . . . , 1.

(3.22)

Equations 3.19 and 3.22 form a Viterbi decoding algorithm [150] adapted to our model.

A difference between our formulation and the one generally encountered in the HMM lit-

erature [120], is the presence of the additional maximization over the hidden variable Ct in

Eq. 3.19.

According to Eq. 3.19, once s∗1:T has been obtained, the most likely contour sequence C∗
1:T ,

defined by Eq. 3.12, is given by

C∗
t = arg max

Ct

P (It, Ct|s∗t ). (3.23)

Using Eq. 3.9, P (It, Ct|st) can be written as:

P (It, Ct|st) =

∫

At

P (It, At, Ct|st)

=

∫

At

P (It|At, Ct)P (Ct)P (At|st)

∝
∫

At

δ(At − fA(It, Ct)) e
−Eimage(It,Ct) P (Ct)P (At|st)

∝ e−Eimage(It,Ct) P (Ct)P (At = fA(It, Ct)|st). (3.24)

Using a Dirac distribution centered on the attributes At in P (It|At, Ct) proves to be par-

ticularly handy here because it allows us to easily integrate over At.

The maximization over Ct in Eq. 3.19 requires the computation of the locally most likely

contour C∗(st) for each action class st:

C∗(st) = arg max
Ct

P (It, Ct|st). (3.25)

However, since the estimation of C∗(st) needs to be performed by image segmentation,

the time costs of repeating the segmentation procedure for each action class st can be

prohibitive. We therefore prefer to choose an alternative solution, where the segmentation
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of the image It is performed only once. Such a solution is more desirable if we wish our

framework to scale well with an increasing number of action classes. A possible approach

is to approximate δt(st), given by Eq. 3.19, by

δ̃t(st) = P (It, C̃
∗
t |st)max

st−1

P (st|st−1) δ̃t−1(st−1), (3.26)

or equivalently

δ̃t(st) = P (It, C̃
∗
t |st)wt(st), (3.27)

where we define

wt(st) = max
st−1

P (st|st−1) δ̃t−1(st−1). (3.28)

In Eq. 3.26 and 3.27, C̃∗
t is an approximation of the most likely contour C∗

t (Eq. 3.23),

obtained from a single segmentation of the image It, and is given by

C̃∗
t = arg max

Ct

max
st

P (It, Ct|st)wt(st), (3.29)

where wt(st) is defined in Eq. 3.28. Equation 3.29 shows that we make an approximation

of the true most likely contour C∗
t for image It, based on the currently most likely action

class st, in the light of past evidence accumulated in the δ quantities and of the new image

information given by It. This constitutes a “greedy” technique, making a final and (most-

likely) locally optimum solution based on the current existing information. The details of

our segmentation method implementing (3.29) are presented in the next section. A formal

justification of our approximation of the true most likely contour C∗
t from(3.23) by the

locally most likely contour C̃∗
t in (3.29) is given in Section 3.6.

The first time step of our recursive formulation (3.26) reads

δ̃1(s1) = P (I1, C̃
∗
1 |s1)P (s1). (3.30)

Here C̃∗
1 is obtained by the segmentation of the first image I1 of the sequence I1:T , for

which no classification information regarding the current sequence is available yet (w1(s1) =

P (s1)).

Given the fact that our segmentation method is quite sensitive to its initial conditions

(as is the case with all variational segmentation methods) and also the fact that we use

the final segmentation contour of one image as the initial contour for the next image, it is

desirable to obtain a good segmentation of the first image in the sequence. Therefore, we

leave the particular segmentation method employed for the first image of a sequence as a

free parameter of our framework, to be chosen depending on the application. Along the lines

of our original formulation, one option is to perform this segmentation automatically, using

(3.29), with w1(s1) = P (s1), and the variational segmentation scheme that we propose in

the following section. Alternatively, one can perform the segmentation once for each possible

value of s1, as in (3.25) and then choose the most likely contour for the first image as the one

corresponding to the value of s1 which maximizes δ1(s1) given by (3.19). The segmentation

in this case can also be performed by a simplification of our variational scheme presented
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in the next section. The most reliable method, but also the most time-consuming for the

human operator, is the manual segmentation of the first image. Irrespective of the particular

method that is chosen, we consider for the moment that a satisfactory segmentation C1 of I1
is available. Concrete segmentation models of the initial image are provided in Chapter 4.

Similarly to our initial formulation of the Viterbi decoding algorithm, in order to be

able to retrieve the optimal action class sequence s∗1:T by backtracking, we need to store the

argument fulfilling the maximization from the computation of δ̃t(st) (3.26), for each time

slice t > 1 and each value of st, using:

ψt(st) = arg max
st−1

P (st|st−1) δ̃t−1(st−1), st ∈ S. (3.31)

Then, the optimal action class sequence s∗1:T can be obtained by backtracking from ψt(st),

using the equations

s∗T = arg max
sT

δ̃t(sT ),

s∗t = ψt+1(s
∗
t+1), t = T − 1, T − 2, . . . , 1.

(3.32)

3.5 Variational Segmentation Formulation for Contour Esti-

mation

Statistical interpretations of variational segmentation methods were offered, among others,

in [25, 39, 40, 50, 112, 166]. In the same spirit, we translate our probabilistic formulation

for attribute and contour estimation (3.29) into a variational segmentation formulation.

Combining Eq. 3.29 and 3.24, we obtain:

C̃∗
t = arg max

Ct

(

max
st

e−Eimage(It,Ct) P (Ct)P (At = fA(It, Ct)|st)wt(st)

)

= arg max
Ct

(

e−Eimage(It,Ct) P (Ct) max
st

P (At = fA(It, Ct)|st)wt(st)

)

(3.33)

Towards a variational segmentation formulation, we equate the maximization with respect

to the contour Ct in (3.33) with the minimization with respect to Ct of the negative loga-

rithm of the right-hand side quantity:

C̃∗
t = arg min

Ct

(

Eimage(It, Ct) − log P (Ct) − min
st

log (P (At = fA(It, Ct)|st)wt(st))

)

.

(3.34)

By identifying the first term of the right-hand side with an image-dependent energy term,

the second one with a contour-dependent energy term, and the third one with an energy

term embodying prior information offered by the recognition process, we can formulate our

total segmentation energy as the sum of three energies:

E(Ct,L, It) = Eimage(It, Ct) + νEcontour(Ct) + αEprior(Ct,L, It). (3.35)
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Here ν and α are positive constants which balance the contributions to segmentation of the

three terms and L = (L1, . . . LM ) is a set of labels, which serves in the implementation of

the minimization with respect to the class st from (3.34), as will be shown in the following.

As explained in Section 3.3, the image-dependent energy term Eimage(It, Ct) can con-

tain any region- or boundary-based energy term which suits the application to be solved.

A generic example of such energy, modeling the object and background pixels by two dif-

ferent probability distributions, is given by (3.10). Moreover, the contour dependent term

Econtour(Ct) expresses a priori knowledge regarding the contour, generally including smooth-

ness constraints on the contour. An example is the term limiting contour length, obtained

by choosing P (Ct) as in (3.8), that is:

Econtour(Ct) = |Ct|. (3.36)

The third term of the right-hand side of (3.34) is the one which incorporates prior

information, provided by the recognition process. We include the minimization implied

by this term within the variational segmentation formulation by means of a competition

approach, motivated by [46, 49]. To this end, we consider the following prior energy term:

Eprior(Ct,L, It) = −
M∑

i=1

log (P (At|st = Si)wt(Si)) L
2
i + β

(

1 −
M∑

i=1

L2
i

)2

, (3.37)

where At = fA(It, Ct). The set of labels L = (L1, . . . , LM ) controls the contribution

to segmentation of the attribute prior information corresponding to each action class Si,

according to its respective probability P (At|st = Si)wt(Si). The label Li is a scalar variable

that varies continuously between 0 and 1 during energy minimization, according to the

corresponding gradient descent evolution equation. The evolution of a label converges

either to 1 (for the winning prior class Si, corresponding to the probability P (At|st =

Si)wt(Si) that has been maximized through segmentation, since it has been present in the

energy (3.37)) or to 0 (for the other priors, whose contribution has thus been annulled).

Competition among priors is enforced by the constraint that the label factors should sum to

1, introduced by the term β (1−∑M
i=1 L

2
i )

2 in energy (3.37). Here β is a Lagrange multiplier,

updated at each energy minimization step to ensure that (1 −∑M
i=1 L

2
i )

2 ≈ 0, as will be

explained in the following. A similar technique has been applied to solve the problems of

vacuum and overlap for multi-phase image segmentation in [165]. The competition between

the attribute priors of the different action classes during energy minimization means that

the final estimated segmenting contour Ct will be obtained by the influence of the most

likely action class, in light of image evidence. Therefore, the minimization of our proposed

total energy (3.35) with respect to the labels L, can be considered as the equivalent of the

maximization with respect to the class st from (3.90). Naturally, since this minimization is

performed through gradient descent, only a local minimum of the energy with respect to L
will be attained.

To better understand the nature of the prior information that we infuse into our segmen-

tation model (3.35), we analyze the factors of the probability product P (At|st = Si)wt(Si)

corresponding to each action class Si:
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• P (At|st = Si) is the attribute probability function offered by the action class Si as an

indication of the detected object’s attributes in image It, and

• wt(Si) is the relative prior confidence that the image at time t will correspond to

class Si, given by the recognition scheme on the account of past evidence I1..t−1,

accumulated into δ̃t−1(st−1):

wt(Si) = max
st−1

P (st = Si|st−1) δ̃t−1(st−1). (3.38)

Given our introduced approximation for δt(st) from (3.19) as δ̃t(st) (3.26), this quan-

tity approximates the maximum probability that the image It belongs to action class

Si, after having observed images I1..t−1.

Therefore, the product of the two factors above encapsulates the maximum amount of a

priori knowledge regarding the action class and attribute at moment t, available within the

recognition scheme before the segmentation of image It.

We minimize the total energy (3.35) simultaneously with respect to the segmenting con-

tour Ct and the labels L using the calculus of variations and gradient descent. The contour

Ct is driven by image forces (region homogeneity, gradients, etc.) due to Eimage(It, Ct),

smoothing forces due to Econtour(Ct) and by the competing attribute priors of each action

class, due to Eprior(Ct,L, It):

∂Ct

∂τ
= −∂Eimage(It, Ct)

∂Ct
− ν

∂Econtour(Ct)

∂Ct
− α

∂Eprior(Ct,L, It)
∂Ct

. (3.39)

Here τ is the artificial time of variable evolution. The first variations of the energies
∂Eimage(It,Ct)

∂Ct
and ∂Econtour(Ct)

∂Ct
can be derived through the calculus of variations for the

particular chosen forms of Eimage(It, Ct) and Econtour(Ct), respectively. The third term

of (3.39) can be written as:

∂Eprior(Ct,L, It)
∂Ct

= −
M∑

i=1

L2
i

P (At|st = Si)

∂P (At|st = Si)

∂At

∂fA(It, Ct)

∂Ct
, (3.40)

where At = fA(It, Ct) and the derivatives ∂P (At|st = Si)/∂At and ∂fA(It, Ct)/∂Ct are

computed according to the particular probability model and attribute employed.

Through gradient descent derivation, we obtain the following evolution equations for

the labels Li:

∂Li

∂τ
= Li

(

log
(
P (At|st = Si)wt(Si)

)
+ 2β

(

1 −
M∑

i=1

L2
i

))

, i = 1..M. (3.41)

The labels are initialized with equal values, so that (1 −∑M
i=1 L

2
i )

2 ≈ 0, for instance by

Li = 1/
√
M − εL, εL = 10−5. (3.42)
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The update equation for the Lagrange multiplier β is deduced by imposing constancy of the

constraint over time: d(1 −∑M
i=1 L

2
i )

2/dτ = 0. This yields the following update equation:

β =

∑M
i=1 L

2
i log

(
P (At|st = Si)wt(Si)

)

2
∑M

i=1 L
2
i

(∑M
i=1 L

2
i − 1

) . (3.43)

Thus, the segmentation of an image It, t > 0 comprises the following steps:

1. Initialize contour Ct with the final estimated contour of the previous image: Ct =

C̃∗
t−1.

2. Initialize labels Li using (3.42).

3. while (not converged(Ct))

(a) Perform one contour evolution step given by (3.39).

(b) Update the Lagrange multiplier β, using (3.43).

(c) Perform one evolution step for each label Li, i = 1..M using (3.41).

4. end

5. C̃∗
t = Ct.

Like all variational segmentation methods, the practical implementation of our proposed

segmentation formulation implies the use of appropriate numerical schemes for the dis-

cretization of the evolution equations (3.39) and (3.41). Examples of such schemes will be

offered for the concrete implementations of our framework in Chapter 4. The convergence

with respect to the contour Ct, mentioned in the segmentation strategy above, can be tested

by verifying whether the contour rate of change falls below a predefined threshold (meaning

that it remains approximately constant).

3.6 Formal Derivation of our Competition-Between-Priors

Scheme

The competition-between-priors strategy that we used in Eq. 3.37 to solve Eq. 3.33 resulted

from our desire to approximate the true most likely contour C∗
t , given by Eq. 3.23, by

the locally most likely contour C̃∗
t , given by Eq. 3.29. In this section, we provide a formal

justification of our approximation based on an interpretation of the original δ quantity,

defined by Eq. 3.19, as a probability distribution.

If we denote by δt(Ct, st) the right-hand side of Eq. 3.19 without the maximization

over Ct, then

δt(Ct, st) = P (It, Ct|st)

P̂ (st)
︷ ︸︸ ︷

max
st−1

P (st|st−1) δt−1(st−1)

= P (Ct|st, It) P (It|st)max
st−1

P (st|st−1) δt−1(st−1)

︸ ︷︷ ︸

P̂ (It,st)

. (3.44)
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Although the factor P (Ct|st, It) is a proper distribution, P̂ (It, st) is not, hence δt(Ct, st) can-

not be considered as a distribution. However, since our interest is in maximizing over st−1,

it is only the relative proportion of the quantities P̂ (It, st) obtained for different st which

is important, not their exact values. If we define

P̂ (st|It) =
P̂ (It, st)

∑

s′t
P̂ (It, s

′
t)

(3.45)

then Eq. 3.44 can be written as

δt(Ct, st) ∝ P̂ (Ct, st|It) = P (Ct|st, It) P̂ (st|It), (3.46)

where P̂ (Ct, st|It) is a proper probability distribution∗. Considering the original δ formu-

lation (3.19) and the definition of δt(Ct, st) (3.44), the equation for the computation of the

optimal contour C∗
t (st) (3.25) is equivalent to

C∗
t (st) = arg max

Ct

δt(Ct, st), (3.47)

which, according to Eq. 3.46, can be written as

C∗
t (st) = arg max

Ct

P̂ (Ct, st|It). (3.48)

Since we want to avoid having to perform a segmentation for each possible action class st, we

are interested in approximating P̂ (Ct, st|It) by a simpler distributionQ(Ct, st) = Q(Ct)Q(st)

where the dependency between Ct and st has been dropped. The unique optimal contour

for frame It can then be obtained by maximizing Q(Ct) over Ct.

Our goal is to find the Q distribution which is as close as possible to the true P̂ distribu-

tion. A possible way to achieve this is to minimize the Kullback-Leibler (KL) divergence [85]

between the two distributions:

KL
(
Q || P̂

)
=
〈
logQ(Ct, st)

〉

Q(Ct,st)
−
〈
log P̂ (Ct, st|It)

〉

Q̂(Ct,st)
(3.49)

where 〈·〉Q denotes the average with respect to Q †. After expanding its right-hand side,

Eq. 3.49 can be written as

KL
(
Q || P̂

)
=
〈
logQ(Ct)

〉

Q(Ct)
+
〈
logQ(st)

〉

Q(st)
−
〈
log P̂ (It, Ct, st)

〉

Q(Ct,st)
+ log P̂ (It).

(3.50)

Differentiating this with respect to Q(st) and Q(Ct) respectively, and equating the result

to zero, yields

Q(st) ∝ exp
{〈

log P̂ (It, Ct, st)
〉

Q(Ct)

}

, (3.51)

Q(Ct) ∝ exp
{〈

log P̂ (It, Ct, st)
〉

Q(st)

}

. (3.52)

∗To facilitate understanding, we intentionally wrote the various quantities involved in a probabilistic

fashion—with a hat on top of the P however, to remind ourselves that they are fake distributions. For

example, in Eq. 3.45, the denominator corresponds to P̂ (It).
†For instance, for two distributions P (x) and Q(x), with x a continuous variable, we have

〈
log P (x)

〉

Q(x)
=
∫

x
Q(x) log P (x)dx. If x is discrete, the integration is replaced by a summation.
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In order to be able to compute Q(st), we need to choose a distribution Q(Ct) for which

the average in Eq. 3.51 is analytically tractable. Since our interest is in approximating the

most likely contour C∗
t , the simplest choice is to use a Dirac distribution centered on the

approximate contour C̃∗
t , i.e.,

Q(Ct) = δ(Ct − C̃∗
t ). (3.53)

Using this in Eq 3.51 leads to

Q(st) ∝ P̂ (It, C̃
∗
t , st)

∝ P (It, C̃
∗
t |st) P̂ (st)

∝ P (It, C̃
∗
t |st) max

st−1

P (st|st−1) δt−1(st−1).

(3.54)

Furthermore, from Eqs. 3.19, 3.44 and 3.46, we have

δt−1(st−1) = max
Ct−1

δt−1(Ct−1, st−1)

∝ max
Ct−1

P̂ (Ct−1, st−1|It−1)

≈ max
Ct−1

Q(Ct−1)Q(st−1)

≈ Q(st−1)max
Ct−1

Q(Ct−1), (3.55)

where we have used the fact that we approximate P̂ (Ct−1, st−1|It−1) by Q(Ct−1, st−1) =

Q(Ct−1)Q(st−1). Since maxCt−1 Q(Ct−1) is a quantity which does not depend on st−1,

Eq. 3.54 can be written as

Q(st) ∝ P (It, C̃
∗
t |st) max

st−1

P (st|st−1)Q(st−1).

︸ ︷︷ ︸

wt(st)

(3.56)

Since Eq. 3.56 is the same as Eq. 3.26, we conclude that our initial intuitive definition

of δ̃t(st) can be formally derived from the minimization of the KL divergence between

the true distribution P̂ and a simpler Q distribution, where the problematic dependency

between Ct and st has been removed.

In order to compute the right-hand side of Eq. 3.56, we first need to find the approximate

most likely contour C̃∗
t = arg maxCt

Q(Ct). After expanding the right-hand side of Eq. 3.52

and using Eq. 3.24, we have

C̃∗
t = arg max

Ct

〈
log P̂ (It, Ct, st)

〉

Q(st)

= arg max
Ct

〈

log
(
P (It, Ct|st) max

st−1

P (st|st−1)Q(st−1)
)〉

Q(st)

= arg max
Ct

(

− Eimage(It, Ct) + logP (Ct) +
〈

log
(
P (At|st)wt(st)

)〉

Q(st)

)

(3.57)
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where At = fA(It, Ct) and wt(st) is implicitly defined in Eq. 3.56. Following the notation

introduced in Section 3.5, we identify logP (Ct) as −Econtour and the average as −Eprior,

hence

Eprior = −
〈

log
(
P (At|st)wt(st)

)〉

Q(st)
= −

∑

st

Q(st) log
(
P (At|st)wt(st)

)
. (3.58)

ComputingEprior is problematic because the right-hand side of Eq. 3.58 depends onQ(st),

which itself indirectly depends on Eprior through the approximate contour C̃∗
t . A possible

solution to this problem could be to alternate between Eqs. 3.56 and 3.58 until convergence

is achieved. For example, starting from a random guess of Q(st) for each time step t, we

can compute the approximate most likely contours C̃∗
t with Eq. 3.57 and then use Eq. 3.56

to provide a new estimation of Q(st). However, this iterative approach is not satisfactory

because it requires performing a new image segmentation every time Q(st) is re-estimated,

and this goes against our main goal of performing a single segmentation at each time step

only.

A procedure for computing C̃∗
t and Q(st) in a single step can be derived form the

intuition that the action class st whose attributes At best correspond to those extracted from

the image It is likely to dominate the average in Eq. 3.58. We could therefore consider Q(st)

as a free parameter and optimize Eq. 3.58 over Q(st). We would then use the resulting C̃∗
t

to compute Q(st) using Eq. 3.56. In order to properly optimize Eq. 3.58 over Q(st) we need

to add the constraints

∀st, Q(st) ≥ 0 and
∑

st

Q(st) = 1. (3.59)

A possible way to achieve this is to defineQ(st = i) = L2
i and to use the method of Lagrange

multipliers, which consists in adding a term of the form

β
(

1 −
∑

i

L2
i

)2

to the right-hand side of Eq. 3.58. With this approach, Eprior is given by

Eprior(Ct,L, It) = −
∑

i

log
(
P (At|st = Si)wt(Si)

)
L2

i + β
(

1 −
∑

i

L2
i

)2
. (3.60)

Since Eq. 3.60 is the same as Eq. 3.37, and the contour C̃∗
t can be obtained by a single

segmentation using the energy (3.35), we conclude that our intuitive competition-between-

priors strategy can be formally justified as resulting from the construction of an approxi-

mate Q distribution through the minimization of the KL divergence KL(Q ||P̂ ).

3.7 On the Benefits of Our Strategy for Competition Among

Multiple Priors

In order to emphasize our contribution to the field of variational image segmentation, we

would like to present the advantages of using our proposed approach for introducing multiple
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competing priors into the segmentation formulation, compared to the well-known approach

of Cremers et al. [46, 49]. In particular, we will show that the latter introduces an unwant-

ed dependency between the relative contributions of each of the priors, which makes the

competition unfair.

As shown in Chapter 2, Cremers et al. propose the following energy for the introduction

of multiple shape priors into the segmentation:

Eshape(φ,L) =

m−1∑

i=1

∫∫

Ω

(φ− φi)
2

σ2
i

χi(L) dx dy + λ2

∫∫

Ω
χm(L) dx dy

+ γ
n∑

i=1

∫∫

Ω
|∇Li| dx dy.

(3.61)

Here φ is the level-set function of the segmenting contour, φi are the level-set functions of the

prior shapes, σ2
i represents the variance of φi. Furthermore, γ > 0 and the last energy term

imposes smoothness of the labeling function, whereas λ > 0 and its associated energy term

corresponds to a region where no prior is imposed, since the resemblance between φ and

any of the priors falls bellow a threshold dictated by λ. Moreover, L : Ω → R
n, L(x, y) =

(L1(x, y), . . . Ln(x, y)) is a vector-valued labeling function defined over the image domain,

which enforces the prior which is most similar to the level set φ at each image location.

Using this function, the authors employ the m = 2n vertices of the polytope [−1, 1]n to

encode m different regions, denoted by their respective indicator functions χi, i = 1..m

(depending on the vector L).

For instance, to encode three priors, a double-valued labeling function is used L(x) =

(L1(x), L2(x)). The corresponding indicator functions are given by:

χ1(L) =
1

16
(L1 − 1)2(L2 − 1)2

χ2(L) =
1

16
(L1 + 1)2(L2 − 1)2

χ3(L) =
1

16
(L1 − 1)2(L2 + 1)2

χ4(L) =
1

16
(L1 + 1)2(L2 + 1)2.

(3.62)

This means, for instance, that in order to enforce prior 1 at a location (x, y), we need both

labels L1(x, y) and L2(x, y) to converge to −1 for that location. In a fair competition, we

would like to enforce prior 1 if its has the shortest distance (lowest error) with respect to

the evolving level-set function at that location φ(x, y), while also being under the threshold

λ, i.e.,

(φ− φ1)
2

σ2
1

<
(φ− φ2)

2

σ2
2

and

(φ− φ1)
2

σ2
1

<
(φ− φ3)

2

σ2
3

and

(φ− φ1)
2

σ2
1

< λ2.

(3.63)
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To see how the use of the competition method involved in (3.61) might prevent the appli-

cation of prior 1, in spite of the right conditions being fulfilled (3.63), let us consider the

evolution equation for the label component L1:

∂L1

∂t
= − 1

16

(

(L1 − 1)(L2 − 1)2
(φ− φ1)

2

σ2
1

+ (L1 + 1)(L2 − 1)2
(φ− φ2)

2

σ2
2

+ (L1 − 1)(L2 + 1)2
(φ− φ3)

2

σ2
3

+ λ2(L1 + 1)(L2 + 1)2

)

− γdiv

( ∇L1

|∇L1|

)

.

(3.64)

To simplify understanding, let us now look at the value of L1(x, y) after the first evolution

step, given that we have initialized the labels with the neutral value: L1(x, y) = L2(x, y) =

0, ∀(x, y) ∈ Ω:

Lt=1
1 =

1

16

(

(φ− φ1)
2

σ2
1

− (φ− φ2)
2

σ2
2

+
(φ− φ3)

2

σ2
3

− λ2

)

. (3.65)

This means that L1 will advance towards the desired value −1 only if

(φ− φ1)
2

σ2
1

+
(φ− φ3)

2

σ2
3

<
(φ− φ2)

2

σ2
2

+ λ2. (3.66)

This condition is not necessarily satisfied given (3.63). For instance, it can happen that

(φ− φ3)
2

σ2
3

>
(φ− φ2)

2

σ2
2

+ λ2. (3.67)

Therefore, for reasons which do not depend on the prior 1, given by (3.67), the label L1

cannot converge towards −1 and thus prior 1 cannot be imposed, even though it would be

the fair winner of the competition, according to (3.63).

This is a general problem of the energy formulation (3.61), since it introduces a depen-

dency among the indicator functions corresponding to each prior χi, via the shared label

components L1, L2, . . . , Ln. For instance, in the presented case of three shape priors, it

creates an artificial grouping of priors into the ones supporting the convergence of label

L1 towards −1, i.e., priors 1 and 3, and the ones supporting its convergence towards 1,

i.e. prior 2 and the threshold λ. Therefore, the evolution of each label component receives

mixed influences from several shape priors, as in (3.65). This means that the simple con-

ditions (3.63) for the fair emergence of one winner prior (i.e., the most similar to φ) are

not sufficient, and supplementary conditions need to be fulfilled (3.66). Such conditions go

beyond the terms of fair competition and are therefore unacceptable.

The solution to this problem is to use an individual labeling of the priors, as we propose

in (3.37). We use multiple competing priors in a slightly different context: our priors

compete globally for one image, and not at the level of image locations. Moreover, the nature

of our priors is different, since they are provided by the recognition scheme as functions of

the object attribute P (At|st = Si)wt(Si). Nevertheless, the competition concept is similar.

As we mentioned, the main difference of our approach is that we use an individual label Li
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for each prior, and thus our “indicator functions”, given by L2
i , do not mix several labels.

This solves the problem of mixed influences from several priors in the evolution of one

label. As we can see in (3.41), only the prior information P (At|st = Si)wt(Si) is involved

in the evolution of Li. In our approach, the coupling of labels is only at the level of the

constraint (1−∑M
i=1 L

2
i )

2 ≈ 0, imposed via the use of the Lagrange multiplier β. Therefore,

the label of the prior which best suits the attributes of the detected object will be the one

advancing fastest towards value 1, to the detriment of the others. This suits the spirit of

fair competition that we intended to implement.

3.8 Learning the Parameters of Our Model

Prior to testing our framework by applying it to the segmentation and behavior recogni-

tion of new image sequences, the proposed model needs to be trained. More precisely, its

parameters need to be estimated from training data.

Looking at the joint distribution of our model (3.1), we note that its parameters are the

ones characterizing the probability distributions P (s1), P (st|st−1), P (At|st), P (It|At, Ct)

and P (Ct). Supposing that we have at our disposal a training set of N image sequences

{I1
1:T1

, . . . , IN
1:TN

} — where Tn is the length of the n-th sequence — the training of our

model consists in finding the parameter setting which maximizes the total log-likelihood of

the training data, i.e.,

Ψ∗ = arg max
Ψ

N∑

n=1

log P (In
1:Tn

|Ψ). (3.68)

Here Ψ denotes the set of model parameters and

P (I1:T |Ψ) =
∑

s1:T

∫

A1:T

∫

C1:T

P (I1:T , A1:T , C1:T , s1:T |Ψ). (3.69)

Note that here we write explicitly the dependency on Ψ of the joint distribution defined by

(3.1). The summation and integration make the direct optimization difficult because they

couple all the factors together.

To simplify the problem, we propose to decompose it in two parts: one corresponding

to the HMM which is at the core of our model and the other one corresponding to our

segmentation model. To this end, first of all, we suppose that we can directly observe the

attributes An
1:Tn

of the training images. This can be realized by the segmentation of the

training image sequences. To favor automatic segmentation, the training sequences should

contain the object of interest evolving on a simple background, while displaying similar

behavior content as the images targeted for recognition in the testing phase. Once the

object attributes have been extracted from the training sequences, our problem is reduced

to the classical HMM training. In this case, the set of parameters is reduced to the ones

characterizing the HMM core of our model, i.e., the parameters of the action class initial

and transition distribution P (s1) and P (st|st−1), as well as the parameters of the attribute

probability model P (At|st).
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HMM training can be performed either in a supervised or in a unsupervised fashion. In

the unsupervised case, the action classes (states) corresponding to the observed attributes

are considered as hidden and the parameter estimation can be expressed as:

Ψ∗
H = arg max

ΨH

N∑

n=1

log P (An
1:Tn

|ΨH), (3.70)

where ΨH denotes the set of HMM parameters and

P (A1:T |ΨH) =
∑

s1:T

P (A1:T , s1:T |ΨH), (3.71)

with

P (A1:T , s1:T |ΨH) =
T∏

t=1

P (st|st−1,ΨH)P (At|st,ΨH),

P (s1|s0,ΨH) =P (S1|ΨH).

(3.72)

This problem can be solved by the Expectation Maximization (EM) algorithm [54], which,

for the HMM, yields the Baum-Welch algorithm [11, 120]. The alternative is supervised

training, where the action classes corresponding to the training attribute sequences are

also considered as visible (observed). To this end, a manual classification of attribute

sequences into action classes is necessary. This makes possible the individual estimation

of the parameters for each of the probabilities involved (P (s1) , P (st|st−1) and P (At|st))

by maximum likelihood. This simplification is due to the fact that by observing the action

classes, we can re-write the estimation problem (3.70) as:

Ψ∗
H = arg max

ΨH

N∑

n=1

logP (An
1:Tn

, sn
1:Tn

|ΨH). (3.73)

Substituting the expression of the HMM joint variable distribution (3.72), we obtain:

Ψ∗
H = arg max

ΨH

(
N∑

n=1

log P (sn
1 |ΨH) +

N∑

n=1

Tn∏

t=2

logP (sn
t |sn

t−1,ΨH) +

N∑

n=1

Tn∏

t=1

log P (An
t |sn

t ,ΨH)

)

,

(3.74)

which leads to the maximum likelihood estimation, separately for the sets of parameters

corresponding to each of the probabilities P (s1), P (st|st−1) and P (At|st). In particular,

for the initial action class distribution P (s1), this estimation yields, for each action class

s1 ∈ S, its relative frequency of occurrence at the first frame of the sequences from the given

training set. Similarly, for the transition probability distribution P (st|st−1), the estimation

yields, for each action class pair (st, st−1), its relative frequency of occurrence among the

consecutive frames of the sequences from the given training set. The supervised training

method of the HMM is potentially more reliable than the unsupervised one — which relies

on an automatic optimization algorithm susceptible to local minima — but also more time

consuming for the human operator, due to the necessary manual labeling of the attribute

sequences.
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Let us now look at the training of the segmentation model parameters, i.e., the param-

eters of P (Ct) and P (It|At, Ct), the latter being actually the parameters of Eimage(It, Ct),

due to (3.9). As shown in Chapter 2, an example of parameters for the image-dependent

segmentation energy Eimage(It, Ct), is given by the intensity means corresponding to the

object and background region, respectively. Such parameters can be learned from training

data by maximum likelihood estimation, given appropriate segmentations of training image

sequences. The learning of the parameter values for Eimage(It, Ct) and P (Ct) imposes some

degree of similarity (in terms of these parameters) among the images of a test sequence —

since the model is fixed throughout the test sequence — and also between the images of

the testing set and the ones of the training set. Some relief from this constraint would be

brought by learning these parameters from the first frame of a test sequence, assuming that

they remain relatively constant throughout the test sequence. The least engaging option,

that we also chose in our implementations in Chapter 4, is to deduce and update these pa-

rameters dynamically at testing time, during the segmentation of each image. In this case,

there is no need for image similarity between the training and the testing set. An example

of such a dynamic estimation is given by the Chan-Vese segmentation model, presented in

Chapter 2.

3.9 Extension of Our Framework for the Recognition of a

Predefined Behavior Set

In simple application cases, where the analyzed behaviors are composed of few and relatively

well differentiated action classes, whose succession can be well characterized by the set the

class transition probabilities (3.3), the use of our model represented by the DBN in Fig. 3.4

is sufficient to model behavior dynamics and perform inference about object behavior,

as described in the previous sections. One example of such application, together with

a proposed solution, using an implementation of our framework as depicted in Fig 3.4, is

detailed in Chapter 4. Nevertheless, many practical applications require analysis of complex

behavior scenarios, involving numerous classes, often poorly discriminated in terms of the

available attributes. In such cases, the behavior inference process can be greatly aided

by imposing stricter coherence conditions on the resulting succession of behavior classes,

stemming from prior knowledge about possible behaviors. In particular, in the following we

will consider that the analyzed behaviors can be assigned to one of a finite set of behavior

types. We will focus on the case of isolated behavior recognition, by considering finite

length image sequences, featuring one of the set of predefined behavior types. A behavior

of a certain type can be characterized by its particular decomposition into a succession of

basic actions, each belonging to an action class. Since in most applications there exist basic

actions which are common among different behaviors, the set of basic actions is modeled as

shared among behaviors of all types. This means that a behavior of any type can potentially

include any action class, its composition being given by the values of the model parameters.

In order to capture these considerations, we modify the DBN in Fig. 3.4 to yield the
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DBN in Fig. 3.5. The modification consists in introducing a dependence between the action

class at each moment st and the exhibited behavior type b, which belongs to a finite set

of behavior types B = {B1, B2, . . . BK}. Since all the action classes depend on a single

behavior type, the model also states that the analyzed image sequences feature a single

behavior type, i.e., that we perform isolated behavior recognition.

Figure 3.5 — Our DBN for the recognition of a predefined behavior set. Compared to our original
model, note the added dependence of the action class at each moment st on the particular behavior
type b which is being exhibited. Additionally, please observe that the recognized sequence is con-
sidered to feature one type of behavior, meaning that we perform isolated behavior recognition. We
maintain the same convention of representing hidden variables by clear nodes, observed variables by
shaded nodes, discrete variables by square nodes and continuous variables by circular nodes.

Let us now look at how this modification affects the formulation of our joint segmen-

tation / behavior recognition problem. We will present the joint variable distribution of

our new model, detail the estimation of our unknowns through modified Viterbi decoding

and variational segmentation and then we will explain model training. To this end, we

will follow the same rationalism as in case of our initial model of Fig. 3.4 (presented in

Sections 3.3, 3.4 and 3.8), while emphasizing the differences due to the model modification.

The joint variable distribution which characterizes our model represented in Fig. 3.5

can be written as:

P (I1:T , C1:T , A1:T , s1:T , b) =

T∏

t=1

P (It|At, Ct)P (Ct)P (At|st)P (st|st−1, b)P (b), (3.75)

with P (s1|s0, b) ≡ P (s1|b) — the initial action class distribution given the behavior type

b. The modifications to this distribution with respect to (3.1) consist of the added depen-

dence of the action class initial and transition distributions P (s1|b) and P (st|st−1, b) on
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the behavior type b, as well as the addition of the prior probability of the behavior type

P (b). The latter can be chosen depending on the application, in order to reflect the fact

that some behavior types may be more probable than others. In the absence of such infor-

mation, a uniform prior P (b) can be chosen. Given its dependence on the behavior type,

the transition distribution P (st|st−1, b) is characterized by K sets of transition probabilities

T k = {tkij}, k = 1..K:

P (st = Sj |st−1 = Si, b = Bk) = tkij , i, j = 1..M, (3.76)

under the same constraints (3.4) applied to each set T k. Similarly, the initial action class

distribution is given by πk = {πk
i }, k = 1..K, with

P (s1 = Si|b = Bk) = πk
i , i = 1..M. (3.77)

Regarding the rest of the probabilities composing the distribution (3.75), i.e., P (It|At, Ct),

P (Ct) and P (At|st), the considerations expressed in Section 3.3 remain valid.

Our joint segmentation / behavior recognition problem in terms of the modified model

implies the addition of the optimization with respect to the behavior type to the probabilistic

formulation (3.12), yielding:

(b∗, s∗1:T , C
∗
1:T ) = arg max

b
s1:T
C1:T

P (I1:T , C1:T , s1:T , b). (3.78)

Considering the estimation of the likelihood of the most likely configuration (b∗, s∗1:T , C
∗
1:T ),

we can write:

P (I1:T , C
∗
1:T , s

∗
1:T , b

∗) = max
b

s1:T
C1:T

P (I1:T , C1:T , s1:T , b)

= max
b

max
s1:T
C1:T

P (I1:T , C1:T , s1:T , b).

(3.79)

The last equality suggests the use of a Viterbi decoding approach similar to the one used

for our original model in order to compute the inner maximization for each behavior type

b ∈ B, followed by the maximization over the behavior type of the resulting quantities.

The Viterbi decoding algorithm can be deduced in a similar manner to the one used for our

original model, described in Section 3.4.

Analogously to Section 3.4, we define a δ quantity for time slice t, action class st and

behavior type b as:

δt(st, b) = max
s1:t−1
C1:t

P (I1:T , C1:T , s1:T , b). (3.80)

Its recursive computation is given by:

δt(st, b) = max
Ct

P (It, Ct|st)max
st−1

P (st|st−1, b) δt−1(st−1, b). (3.81)
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Following the retrieval of the optimal action class sequence s∗1:T by backtracking from the

maximizing arguments of Eq. 3.81, the optimal contour sequence C∗
1:T would be retrieved

as:

C∗
t = arg max

Ct

P (It, Ct|s∗t ). (3.82)

Similarly to our original model, the recursion for the computation of δ implies the estimation

via image segmentation of the locally most likely contour C∗(st) corresponding to each

action class st ∈ S:

C∗
t (st) = arg max

Ct

P (It, Ct|st), (3.83)

where P (It, Ct|st) is given by Eq. 3.24. In similar fashion to our original model, we wish

to avoid the computational costs associated with the repeated segmentation procedure and

thus replace the estimation of δt(st, b) by (3.81) with:

δ̃t(st, b) = P (It, C̃
∗
t |st)max

st−1

P (st|st−1, b) δ̃t−1(st−1, b), (3.84)

equivalent to

δ̃t(st, b) = P (It, C̃
∗
t |st)wt(st, b), (3.85)

where wt(st, b) is defined as

wt(st, b) = max
st−1

P (st|st−1, b) δ̃t−1(st−1, b). (3.86)

Here, the contour C̃∗
t is an approximation of the optimal contour C∗

t from Eq. 3.82, obtained

by a single segmentation of image It, according to:

C̃∗
t = arg max

Ct

(

max
st,b

P (It, Ct|st)wt(st, b)

)

. (3.87)

The difference with respect to the formulation in our original model (3.29) is given by the

added maximization with respect to the behavior type b. Defining

w̃t(st) = max
b
wt(st, b), (3.88)

we can express (3.87) as:

C̃∗
t = arg max

Ct

(

max
st

P (It, Ct|st) w̃t(st)

)

. (3.89)

which is similar to the expression obtained for our initial model in Section 3.4. Substituting

P (It, Ct|st), Eq. 3.89 becomes:

C̃∗
t = arg max

Ct

(

e−Eimage(It,Ct) P (Ct) max
st

P (At = fA(It, Ct)|st) w̃t(st)

)

. (3.90)

For segmentation, we use the same variational segmentation formulation as for our initial

model, described in Section 3.5. The difference lies in the attainment of the infused a priori

knowledge, this time given by P (At|st) w̃t(st), with At = fA(It, Ct).
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Returning to the Viterbi decoding scheme, we associate the following initialization to

our recursion for δ̃t(st, b) (3.84):

δ̃1(s1, b) = P (I1, C̃
∗
1 |s1)P (s1|b)P (b). (3.91)

The contour C∗
1 is obtained by the segmentation of the first image I1, following the same

considerations as in Section 3.4.

Similarly to our Viterbi decoding formulation in Section 3.4, for the purpose of retrieving

the optimal action class sequence corresponding to the optimum behavior type, we store

the argument which satisfies the maximization from the computation of δ̃t(st, b) (3.84), for

each time slice t > 1, each value of st and each value of b:

ψt(st, b) = arg max
st−1

P (st|st−1, b) δ̃t−1(st−1, b), st ∈ S, b ∈ B. (3.92)

Therefore, at the final time moment T , we can retrieve the optimal (winning) behavior

type, as:

b∗ = arg max
b

max
sT

δ̃T (sT , b). (3.93)

Its corresponding optimal action class sequence s∗1:T can be retrieved by backtracking:

s∗T = arg max
sT

δ̃t(sT , b
∗),

s∗t = ψt+1(s
∗
t+1, b

∗), t = T − 1, T − 2, . . . , 1.
(3.94)

Concerning the training of our modified model from Fig. 3.5, we note that this model has

a similar structure and set of parameters as our initial model in Fig. 3.4, with the exception

of the action class dependence on the behavior type, implying a difference in action class

transition and initial probabilities. Therefore, the considerations referring to the training of

our initial model, presented in Section 3.8, can also be applied to our modified model from

Fig. 3.5. The main difference regards the training of the action class initial and transition

distributions P (s1|b) and P (st|st−1, b), respectively, which will now be realized separately

for each of the behavior types involved b ∈ B, from specific training data.

3.10 Summary

To sum up, we present a schematic description of the steps involved in the use of our

framework for joint segmentation and behavior recognition. We unify the descriptions

corresponding to the two proposed models, denoted as “model A” (Fig. 3.4) and “model B”

(Fig. 3.5), respectively. The use of our framework consists of the following:

• Training phase: estimate parameters of the model (A or B) from training attribute

sequences, as explained in Sections 3.8 and 3.9, respectively.

• Testing phase: perform joint segmentation and behavior recognition on new image

sequences I1:T :
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1. Segment first image in the sequence I1, according to the options given in Sec-

tion 3.4, resulting in contour C̃∗
1 .

2. Initialize δ variables according to (3.30), for model A and (3.91) for model B.

3. For t = 2..T

– Compute wt(st), st ∈ S according to (3.28) for model A or w̃t(st), st ∈ S

according to (3.88) and (3.86) for model B.

– Estimate contour C̃∗
t by segmenting image It using energy (3.35), where the

priors are given by P (At|st)wt(st) for model A and by P (At|st) w̃t(st) for

model B, with At = fA(It, Ct). The initial contour for the segmentation is

given by C̃∗
t−1.

– Compute δt(st) and ψt(st), st ∈ S, using (3.26) and (3.31) for model A, or

compute δt(st, b) and ψt(st, b), st ∈ S, b ∈ B, using (3.84) and (3.92) for

model B.

4. For model B, estimate optimal behavior type using (3.93).

5. Backtrack to infer the action class of each image s∗1..T using (3.32) for model A

and (3.94) for model B.

3.11 Conclusion

In this chapter, we presented a general framework for the cooperative resolution of the tasks

of image segmentation and behavior recognition from image sequences. The cooperation of

the two tasks enables the sharing of all existing information resources, which is beneficial to

both tasks. On the one hand, dynamical probabilistic priors are offered by the recognition

process to guide the segmentation of each image. On the other hand, accurate segmentation

results enable the extraction of the desired attributes that are used by the recognition

process.

More specifically, our framework is based on the formulation of a Dynamic Bayesian

Network, which unites the estimation of the object contour in each image with the clas-

sification of the corresponding extracted attributes. The DBN enables the statement of

our joint estimation problem in terms of probabilistic inference, thereby allowing its reso-

lution via a variation of the Viterbi decoding algorithm for HMMs. The resulting strategy

consists of interleaving a dynamic programming scheme for action class estimation with

the greedy estimation of the optimal contour for each image by variational segmentation.

In this context, we propose a novel variational segmentation formulation, which combines

image-related constraints on the contour with multiple priors over the attributes of the

detected object, offered by the recognition scheme. The integration of multiple priors into

the segmentation is performed via a competition approach, which can be considered the

equivalent of the maximization of a probabilistic criterion with respect to the class label,

as required by the probabilistic inference formulation. We also explain how the model

parameters can be learned from appropriate training data.
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An advantage of formulating our framework in terms of a DBN is that it allows the

explicit statement of the assumptions that we make, regarding the dependencies among the

different variables involved. In particular, this facilitates the understanding of the model and

of the possibilities for its extension / modification, depending on the applications that need

to be solved. One such modification, that we treat in this chapter, concerns the ability of the

model to incorporate constraints regarding the possible exhibited behaviors. More precisely,

the behaviors are restricted to a set of allowed behavior types, each characterized by a

particular succession of basic actions. We show that the training and inference strategies

for our original model can be applied with slight modifications to its modified version.

To conclude, our work constitutes an important contribution to the field of behavior

recognition, by reconsidering the general assumption that attribute extraction and actual

behavior recognition are two separate tasks, solved sequentially. In our framework, the col-

laboration of the two tasks allows the maximum exploitation of the available information,

towards improved results for both tasks. Moreover, we introduce a novel approach for vari-

ational image segmentation, by incorporating multiple dynamic attribute priors provided

by the collaborating recognition process.

Our general framework for joint segmentation and behavior recognition presents several

degrees of freedom, which allow its flexible adaptation to the particular needs of various

applications. This freedom mainly concerns the choice of attributes employed in the recog-

nition process, the choice of the attribute probability model for the involved action classes

and finally the choice of the image-driven segmentation energy, according to the particular

type of images considered. Additional options regard the training of the DBN parameters

and the segmentation of the first image of each test sequence. In the next chapter, we will

present specific examples for each of the free parameters of our framework, and illustrate

the use of the resulting models in the resolution of two particular applications, thereby

demonstrating the efficiency of our general framework.
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Applications and

Solutions Implementing

our Framework 4
In this chapter we present two applications pertaining to the field of gesture recognition,

together with their solutions, derived from our general framework for cooperative segmen-

tation and behavior recognition, introduced in Chapter 3. The first application regards

finger-counting recognition and can be assigned to the area of human-computer interaction.

We solve it using the framework that we proposed in Section 3.3 of Chapter 3. To this

end, we instantiate the free parameters of our framework, by choosing specific probability

and image-based segmentation models. These consist of a Gaussian probability model in

the level set function space and of the piecewise-constant Chan-Vese segmentation model,

respectively. We explain how we estimate the values of model parameters from the avail-

able training data. Finally, we present experimental results of segmentation and gesture

recognition, obtained by applying our instantiated framework on difficult image sequences,

featuring a cluttered background, as well as noise and occlusions of the target object.

The second application concerns finger-spelling recognition, which is a research topic in

the field of sign-language recognition. Its resolution is based on the extension of our frame-

work for the recognition of a predefined behavior set, introduced in Section 3.9 of Chapter 3.

Following the same course as for our first application, we begin by choosing particular prob-

abilistic and image-based segmentation models. This time, our probabilistic model for each

class relies on a distance function between the evolving contour and a PCA-based prior

contour corresponding to the class. We detail the estimation of model parameters from our

training database. We finish off by presenting segmentation and recognition results, ob-

tained by testing our model on difficult image sequences, which capture a hearing-impaired

person gesturing in realistic conditions that involve a cluttered background.

The material in this chapter is based on work that we have published in [72–75].

83
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4.1 Introduction

Apart from spoken language, hand gestures are a natural part of human communication,

serving to express emotion and intention. Moreover, for the hearing-impaired, gestures

represent the main means of communication. In this context, the computer vision commu-

nity has devoted considerable effort to the recognition of human gestures. The automatic

visual recognition of gestures is an issue of great practical impact in applications such as

teleconferencing, sign-language translation or advanced interfaces for human-computer in-

teraction. Regarding the latter application, gestures are a more natural way of interacting

with a computer than manipulating the mouse or keyboard, since they are already an es-

tablished means of human communication. Based on these considerations, we will focus our

attention on two gesture recognition applications, that we will solve using our cooperative

framework for image segmentation and behavior recognition, introduced in Chapter 3.

The first application that we consider belongs to the area of human-computer interaction

(HCI) and regards the recognition of finger-counting gestures. Such gestures could be used

in a variety of scenarios involving the transmission of different commands to the computer

(choice of menus, choice of operation sequences, etc). Related work has been presented in

[94], where a hand gesture recognition method is proposed, as a part of a “stereo active

vision interface” system. Each gesture consists of showing a different number of fingers

to the camera. Towards recognition, the system undergoes a phase of hand detection,

followed by the tracking of the hand region as a skin-colored blob. Actual recognition relies

on empirical measures over the hand skeleton, extracted from the binarized hand region.

The hand is supposed to be roughly in vertical orientation. Recognition also involves the

assumption that the correct hand region has been extracted by the tracking module. In

[96], gesture recognition for the control of a video-game is performed via three steps: hand

segmentation (based on skin color), hand tracking (using a constant velocity model) and

identification of the hand configuration from a set of extracted features, using a finite state

model. The gesture set is composed of four hand gestures, out of which one has four sub-

classes, differing in hand orientation. In [144], a game based on HCI involves the recognition

of three hand gestures, differing in finger number. The recognition algorithm consists of

three stages: skin-color detection, time-delimitation of each gesture (by studying hand-

center motion) and actual recognition, relying on the count of finger regions, subsequent to

their extraction by morphological operations. Literature reviews concerning visual-based

gesture recognition can be found in [56, 117, 158], with [117] focusing on gesture recognition

for HCI.

In all these reviews, as well as in the above-mentioned papers, the recognition approaches

are divided into an image analysis phase, resulting in the extraction of a set of image

features, and a subsequent recognition phase, where gestures are recognized based on the

extracted features, and on knowledge encapsulated in a particular gesture model. Therefore,

the recognition phase is heavily dependent on the result of analysis phase (and extracted

features), without any possibility to intervene. In contrast to these approaches, for our

finger-counting application we use a framework where the two phases are performed in
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collaboration, allowing the improvement of final results by the sharing between them of

the maximum amount of available information. This framework, which has been developed

in Chapter 3, is instantiated in this chapter with a particular image-based segmentation

energy, as well as an attribute probability model capturing the specifics of each gesture class.

The parameters of the resulting concrete model are then learned from training data. Model

testing on difficult situations including noisy images, occlusions of the gesturing hand and a

cluttered background yields promising segmentation and recognition results. Additionally,

our model does not impose restrictions on the position, scale or orientation of the hand,

unlike some of the existing methods, since it naturally incorporates the alignment of the

prior model to the hand contour into the segmentation formulation.

The second application that we address concerns finger-spelling recognition, which per-

tains to the larger field of sign-language recognition. Sign language is the main means of

communication within hearing-impaired communities. It is a visual language, in which the

signer conveys meaning through dynamic combinations of hand shapes, arm and body mo-

tions and orientations, as well as facial expressions. Information is mainly conveyed through

a word-level sign vocabulary. Finger-spelling is the component of sign language which acts

as bridge with the surrounding (oral) languages. It consists of manual representations of

alphabet letters [109] and it is used for spelling words that have no sign equivalent (such as

proper nouns or foreign words), when teaching/learning a sign language or for clarification

purposes.

For word-level sign recognition, the most successful approaches [151, 153] rely on the

use of devices such as data-gloves and magnetic trackers to extract hand shapes and mo-

tions. Compared to these, purely vision-based approaches are preferable, since they are

cheaper in terms of technology and also less cumbersome for the signer. Among these, the

American Sign Language (ASL) recognition system proposed in [139] tracks hands as skin-

colored blobs, extracts global features (such as positions, inertia axis angles and bounding

ellipse eccentricities), and then classifies them via Hidden Markov Models (HMMs). In

[19], linguistic high level descriptions of the hands’ motion, shape and relative positions are

extracted from video sequences. These are filtered using Independent Component Analysis

(ICA) and classified using a bank of Markov models trained for individual signs. An ap-

proach for Australian sign language recognition, based on similar ideas is presented in [77].

It tracks the hands and face of the signer based on skin color and extracts a set of geomet-

ric features (positions, global shape descriptors and movement directions), which are then

used as input into a HMM classifier. All these systems have shown good performances in

their respective sign recognition tasks, but they cannot be directly applied to finger-spelling

recognition because of the different nature of the problem, as shown in the following.

Generally, in finger-spelling the discrimination between letters is based on particular

hand and finger configurations, rather than on global hand and arm motions, as in word-

level signing. Thus, global features (such as the ones used in the above-mentioned systems)

are not adequate for finger-spelling recognition and one needs to employ more detailed de-

scriptions of the hand shape. In [91], finger-spelling recognition is addressed by the extrac-

tion of hand masks based on skin color and subsequent classification via nearest neighbor
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template matching and deterministic boosting. In [69], the authors present a recognizer

for Australian finger-spelling (which uses two handed dynamic signs, unlike ASL). They

obtained good recognition results based on general geometric and motion features, recog-

nized using HMMs. In both approaches, the feature extraction phase relies on skin color

for hand region detection and performance is only guaranteed in a controlled laboratory en-

vironment, with constant-color background and similar lighting conditions throughout the

training and testing phases. In [61], isolated ASL finger-spelling poses are recognized using

a special capture setup with a multi-flash camera, which helps detect depth discontinuities

within the scene, while assuming constant background. The method helps disambiguate

cases of hand self-occlusion, at the cost of using specialized equipment, and still requires a

plain, constant background.

Similarly to the cited gesture recognition approaches related to our finger-counting ap-

plication, all the above-presented sign-language and finger-spelling recognition methods

strongly depend on the feature extraction task, fact which could compromise their per-

formance. That is why they are obliged to impose restricting conditions on the signing

environment (background, lighting), and often on the hand position, size and orientation

(assumed to remain constant and similar to training values). In contrast to these meth-

ods, we introduce a method for finger-spelling recognition which is robust against cluttered

background and changing lighting conditions, while being invariant to 2D similarity trans-

formations of the signing hand (translation, rotation and scaling). This is achieved by

performing feature extraction and classification / recognition jointly, rather than separate-

ly, as is done in the existing recognition methods. To this end, we employ the extension

of our collaborative segmentation / recognition framework designed for the recognition of

a predefined behavior set, introduced in the Section 3.9 of Chapter 3. In this chapter, we

propose a concrete implementation of our framework, derived by using a particular image-

based segmentation energy, and a PCA-derived attribute probability model for each action

class. The latter is based on a PCA-represented prior contour corresponding to its action

class, which evolves dynamically during segmentation alongside the main contour, adapting

to new image content. To improve the robustness of segmentation, as well as to reduce

computation costs, we introduce a pruning strategy, allowing us to select a reduced number

of active priors for each image in the sequence, based on their probabilities given by the

recognition process. By the infusion of supplementary knowledge gained by recognition

from training and from previously analyzed images, our segmentation process is able to

cope with difficult situations of cluttered background, without imposing conditions on the

lighting conditions. Moreover, invariance with respect to 2D similarity transformations is

obtained by including the alignment of the prior models to the current hand shape into the

segmentation formulation.

The remainder of this chapter is organized as follows. Section 4.2 presents the finger-

counting application and Section 4.3 deals with the finger-spelling application. Both sections

include a description of the task, followed by the introduction of the segmentation and

probabilistic models used to instantiate the respective frameworks. Next, model training is

explained and finally experimental results are presented. Section 4.4 concludes the chapter.
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Class 0 Class 1 Class 2 Class 3

Figure 4.1 — Samples from the four gesture classes that we use in our finger-counting application.

4.2 A Finger-counting Application

4.2.1 Task Description

In our finger-counting application, we identify four gesture classes consisting of a right hand

(facing the camera) going through four finger configurations: fist (Class 0), thumb extended

(Class 1), thumb and index finger extended (Class 2) and thumb, index, and middle finger

extended (Class 3). An example image of each gesture class is shown in Fig. 4.1.

Our typical gesture image sequences depict finger-counting from 1 to 3 (starting from

the fist position) and from 3 to 1 (ending with the fist position), which is, in terms of

gesture class successions, 0,1,2,3 and 3,2,1,0. Our aim is to perform joint segmentation and

behavior recognition of image sequences containing such successions; i.e., for each image,

extract the segmenting contour of the hand and determine the gesture class to which it

belongs.

To solve our application, we use our general framework described in Sections 3.3 and

3.5 of Chapter 3. We start by instantiating this framework with particular image-based

segmentation and attribute probability models. Then, we estimate the model parameters

from training data and finally we test the resulting implementation on new gesture image

sequences.

4.2.2 Implementation Based on Our Framework

Our application features a relatively small number of gesture classes (four), which are quite

well discriminated in terms of the hand contour. Therefore, the object attribute that we

employ is the level set function corresponding to the hand contour fA(It, Ct) = φ(It, Ct)

(for better readability, in the following φ(It, Ct) will be expressed simply as φ). The level

set function is defined as φ : Ω → R, where Ω is the image domain. In particular, φ is

chosen to be the signed distance function to the contour:







φ(x, y) = d(x, y), for (x, y) ∈ ω,

φ(x, y) = −d(x, y), for (x, y) ∈ Ω \ ω,
φ(x, y) = 0, for (x, y) ∈ C,

(4.1)
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where ω ⊂ Ω denotes the region enclosed by the contour C and d(x, y) represents the

Euclidian distance from point (x, y) to the contour C. Thus, the contour Ct is given by

the zero level set of function φ: C ≡ {(x, y) : φ(x, y) = 0}. We will therefore express the

probabilistic and segmentation models of our framework, corresponding to each time slice

t, in terms of the function φ, which represents the contour at time slice t.

For the image- and contour-based terms in the segmentation energy (3.35), we use the

piecewise-constant Chan-Vese model [30], presented in Chapter 2:

Eimage(It, φ) + νEcontour(φ) =

∫∫

Ω
(It − µ+)2H(φ) dx dy +

∫∫

Ω
(It − µ−)2H(−φ) dx dy

+ ν

∫∫

Ω
|∇H(φ)| dx dy.

(4.2)

Here It represents the gray-level value of an image location (for better readability the index

(x, y) was dropped from the notation). H is the Heaviside function H(x) =

{

1 if x ≥ 0,

0 if x < 0,

and µ+, µ− are the mean image intensities corresponding to the positive, respectively

negative regions of φ (i.e., the inside, respectively outside, of the hand region). This term

aims to separate the two regions (background/hand) by maximizing the distance between

their observed mean intensities.

To describe each gesture class Si, we use a local Gaussian model of the level set function

[126]:

p
(x,y)
i (φ) = p(x,y)(φ|φi, σi) =

1√
2πσi(x, y)

e
−

(φ(x, y) − φi(x, y))
2

2σ2
i (x, y) . (4.3)

Here (x, y) ∈ Ω is an image location, φi represents the average level set function of class

Si and the variance σi(x, y) models the local variability of the level set at (x, y). The two

parameters φi and σi are estimated from appropriate training data for each gesture class

Si. Assuming the independence of φ values across image locations, the probability density

function of the level set function φ, corresponding to class Si, is given by the product of

local φ probabilities over the image domain:

Pi(φ) = P (φ|st = Si) =
∏

(x,y)∈Ω

(

p
(x,y)
i (φ)

)dx dy
, (4.4)

where dx dy represents the infinitesimal bin size.

For a“fair”evaluation of the probability of a level set function φ with respect to a gesture

class model Si, represented by the mean and variance parameters (φi and σi), we need to

align the model with respect to φ prior to probability evaluation. We opt for an alignment

with respect to similarity transformations, including translation, rotation, and scaling. A

viable alternative, involving more parameters, would be the alignment with respect to

affine transformations. We denote as h
τ

i the similarity transformation corresponding to

the alignment of class Si. The parameters of this transformation are τ = {s, θ, Tx, Ty},
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i.e., the scale, rotation angle and x- and y-axis translations, respectively. Their values are

re-estimated at each segmentation step via gradient descent. The similarity transformation

acts on the (x, y) coordinates of the model parameters φi and σi:

hτ

(

[x y]>
)

= s

(

cos θ sin θ

− sin θ cos θ

)[

x

y

]

+

[

Tx

Ty

]

, (4.5)

Within the prior energy (3.37), we substitute the probabilities P (At|st = Si) with Pi(φ)

from (4.4) and augment by similarity transformations h
τ

i (4.5) that align the prior model

of class Si with contour φ, yielding:

Eprior(φ,L, τ i=1..M) =

M∑

i=1

(

− logwt(Si) +

∫∫

Ω

(
(φ(x, y) − φi(hτ

i(x, y))/si)2

2σ2
i (hτ

i(x, y))

+ log σi(hτ
i(x, y))

)

dxdy

)

L2
i + β

(

1 −
M∑

i=1

L2
i

)2

,

(4.6)

where wt(Si) is the relative confidence of class Si (3.28), as explained in Chapter 3.

The total energy (3.35), combining the image-based term (4.2) and the prior term (4.6),

is minimized via the calculus of variations and gradient descent, following (3.39), (3.40)

and (3.41). This results into evolution equations for the contour φ, the labels L and the

alignment parameters τ i=1..M , which are presented in the Section A.2 from the Appendix

of this thesis. The numerical approximation of these equations is also described in the same

section of the Appendix.

4.2.3 Training the Model

In the training phase, we use counting gesture sequences (0,1,2,3 and 3,2,1,0) performed on

a simple contrasting background, as in Fig. 4.1. We begin by segmenting the gesturing hand

in each of these images. The good discrimination of the hand grey-level with respect to

the uniform dark background allows us to use variational segmentation with the piecewise-

constant Chan-Vese model (the image-based term (4.2)). Then, we manually assign gesture

class labels to the segmentation contours. Next, we align the resulting contours for each class

with respect to similarity transformations (scale, rotation and translation) using a genetic

algorithm [51], whose numeric implementation is by courtesy of Dr. Xavier Bresson.

Afterwards, we use the aligned contours corresponding to each class to estimate the

parameters of our probability models. Namely, for the Gaussian probabilities, we employ

the method described in [126] to obtain smooth estimates of the mean φi and variance σi

for each class Si. That is, we wish to maximize the joint probability of the training samples

φ1, φ2, . . . , φK with respect to the model parameters φi and variance σi:

(φi, σi) = arg max
φ,σ

P (φ1, . . . , φK |φ, σ)

= arg max
φ,σ

K∏

k=1

P (φk|φ, σ),
(4.7)
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(a) Seq. 1 Fr. 2 (b) Seq. 1 Fr. 26 (c) Seq. 1 Fr. 51 (d) Seq. 1 Fr. 80

(e) Seq. 1 Fr. 2 (f) Seq. 1 Fr. 26 (g) Seq. 1 Fr. 51 (h) Seq. 1 Fr. 80

(i) Seq. 2 Fr. 2 (j) Seq. 2 Fr. 22 (k) Seq. 2 Fr. 68 (l) Seq. 2 Fr. 100

(m) Seq. 2 Fr. 2 (n) Seq. 2 Fr. 22 (o) Seq. 2 Fr. 68 (p) Seq. 2 Fr. 100

Figure 4.2 — (a)–(d), (i)–(l) Segmentation with the proposed implementation of our general
framework (using Gaussian probability models) of two image sequences in the presence of occlusion,
background complexity and noise (second sequence). (e)–(h), (m)–(p) Conventional segmentation of
the same image sequences. For the latter, we used the Chan-Vese piecewise-constant segmentation
model (the image-based term of our energy (4.2)).
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where in the last line we assume independence of the training samples. Applying the

negative logarithm and substituting P (φk|φ, σ) with (4.4), (4.7) becomes:

(φi, σi) = arg min
φ,σ

−
K∑

k=1

∫∫

Ω
log p(x,y)(φk|φ, σ) dx dy, (4.8)

which is the formulation of a functional which can be minimized through variational meth-

ods to obtain φi and σi. In order to impose spatial coherence over the variance estimates

throughout the image, we add a smoothness constraint to the energy, yielding:

E(φ, σ) =
K∑

k=1

∫∫

Ω
log σ(x, y) +

(φk(x, y) − φ(x, y))2

2σ2(x, y)
dx dy

+ γ

∫∫

Ω
|∇σ(x, y)|2 dx dy.

(4.9)

This results in the following evolution equations for the mean φ and variance σ:

∂φ

∂t
(x, y) =

K∑

k=1

φk(x, y) − φ(x, y)

2σ2(x, y)
,

∂σ

∂t
(x, y) =

K∑

k=1

− 1

σ(x, y)
+

(φk(x, y) − φ(x, y))2

σ3(x, y)
+ 2γ4σ(x, y).

(4.10)

Since we wish to obtain the mean level set function φ as a signed distance function, we

insert a step of re-initialization of φ to the signed distance function after each evolution

step by (4.10), following the method of [1]. To obtain our final estimates of the mean φi and

variance σi for each class Si, we run equations (4.10), interleaved with the re-initialization

step, until we reach their steady state.

In order to assess the action class initial and transition probabilities (3.3) and (3.5),

we estimate the relative occurrence frequency of starting classes and of transitions between

classes from the training sequences. Using Bayes’ rule, the transition probability from a

class Si to a class Sj can be written as:

tij = P (st = Sj|st−1 = Si) =
P (st = Sj , st−1 = Si)

P (st−1 = Si)
. (4.11)

Considering a set of N training sequences of labeled gestures, each of length Tn, n = 1..N ,

we estimate the probabilities from the right-hand side of (4.11) as:

P (st−1 = Si) =

∑N
n=1

∑Tn
t=2 δ(s

n
t−1, Si)

∑N
n=1

∑Tn
t=2 1

,

P (st = Sj, st−1 = Si) =

∑N
n=1

∑Tn
t=2 δ(s

n
t−1, Si) δ(s

n
t , Sj)

∑N
n=1

∑Tn
t=2 1

.

(4.12)
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Here, sn
t is the class label of frame t from the n-th training sequence and δ is the Kronecker-

delta symbol: δ(s, S) =

{

1 if s = S,

0 otherwise
. Thus, the transition probability is given by:

tij =

∑N
n=1

∑Tn
t=2 δ(s

n
t−1, Si) δ(s

n
t , Sj)

∑N
n=1

∑Tn
t=2 δ(s

n
t−1, Si)

. (4.13)

Similarly, the initial action class probabilities are given by:

πi =

∑N
n=1 δ(s

n
1 , Si)

∑N
n=1 1

=

∑N
n=1 δ(s

n
1 , Si)

N
. (4.14)

Alternatively, one can estimate these parameters (the class mean and variance, as well

as the action class initial and transition probabilities) using an expectation-maximization

(EM) approach. More precisely, since once the attributes are observed, our model consists

of an HMM, the parameter estimation can be performed via the Baum-Welch algorithm

(see [11, 120]).

4.2.4 Experimental Results

We tested the implementation of our framework, resulting after model instantiation and

training, on new gesture image sequences of a counting hand. In particular, we used the

succession of gestures 0,1,2,3,2,1,0, performed in front of a complex background and degrad-

ed by occlusions. The segmentation contour for the first image of each sequence has been

determined by a manual initialization in the proximity of the hand, followed by segmen-

tation using only the image-based term of our segmentation energy (4.2). The parameters

for the variational segmentation were α = 5000 and ν = 4000. The average execution time

using un-optimized code (Matlab and C) was 3-4 minutes per frame.

Our framework brings considerable improvements to the segmentation/behavior recog-

nition task, even by modeling class contour characteristics via the unsophisticated Gaussian

probability model. By virtue of the prior information supplied by the recognition process,

segmentation is able to cope with severe occlusions, as can be seen in Fig. 4.2 (a)–(d),

(i)–(l). For comparison, Fig. 4.2 (e)–(h), (m)–(p) shows the results obtained on the same

sequence with conventional segmentation, i.e., by using the Chan-Vese piecewise-constant

model (the image-based term of our model (4.2)). The latter are clearly inferior, since the

desired shape of the object cannot be recovered because of the occlusions.

Figure 4.3 shows the recognition results for the first test sequence, which correctly follow

the test gesture sequence and our understanding of it in terms of the executed gestures.

Moreover, the frame classification obtained by backtracking from the recognition process

corresponds to the partial classification results obtained throughout the sequence, which

have been used to guide segmentation. This concordance can be seen in Fig. 4.3, which

exhibits, as functions of time (frame), (a) the final classification, (b) the logarithm of

the δ̃ quantities for each gesture class, and (c) the log prior confidence of each class (the

logarithm of wt(Si)) used as input to the segmentation. Thus, online recognition (yielding
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Figure 4.3 — Behavior recognition results plotted per frame. (a) Final frame classification. (b)
Logarithm of the δ̃ quantities for each class. (c) Logarithm of wt(Si) — the prior confidence of each
class Si, used as input to the segmentation. The logarithm values are scaled with respect to their
maximum value for each frame.

classification results at each frame) is possible within our framework and also yields the

correct recognition results.

4.3 A Finger-spelling Application

4.3.1 Application Description

The second application that we used to test our framework focuses on finger-spelling recogni-

tion. As explained in the introductory section of this chapter, finger-spelling is a component

of sign language which consists of manual representations of alphabet letters. Therefore, the

gesture classes involved in our application correspond to these manual letter descriptions.

This makes it more challenging than our finger-counting application, since it entails a larger

number of classes and poorer discrimination among them, as we will see in the following.

We use the manual alphabet of the French-speaking part of Switzerland (Suisse Ro-

mande) [63], which is depicted in Fig. 4.4. As can be seen in Fig. 4.4, the gestures corre-

sponding to different letters are not easy to differentiate, with letter pairs such as (A, S),

(M, N) or (R, U) easily confoundable. In this context, our goal is to perform finger-spelling
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recognition on a 15-word vocabulary containing country names, as presented in Table 4.1.

Figure 4.4 — Manual alphabet of the French-speaking part of Switzerland. Reproduced from [63].

With the support of the Swiss Federation for the Hearing-Impaired (Fédération Suisse

des Sourds) [63], we have acquired a data base containing image sequences of a hearing-

impaired person finger-spelling the above mentioned words. Acquisition has been performed

both in ideal conditions (contrasting background, low speed gesturing), for training purpos-

es, and realistic ones (cluttered background, normal speed gesturing), for testing purposes.

The two acquisition scenarios are illustrated in Fig 4.5, (a) and (b) respectively.

Table 4.1 — Vocabulary of our finger-spelling application

ALBANIA ALGERIA ARMENIA AUSTRIA BELARUS

BELGIUM BURUNDI CROATIA DENMARK ECUADOR

ERITREA ESTONIA FINLAND GEORGIA GERMANY

4.3.2 Solution Based on the Proposed Framework

For this application, we use the same object attribute as for our finger-counting application,

i.e., the hand contour, represented via the level set function φ: fA(It, Ct) = φ(It, Ct), where

φ : Ω → R. As before, φ is given by the signed distance function to the hand contour Ct,
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(a) (b)

Figure 4.5 — Image sequence acquisition for our finger-spelling application, with the aid of a
hearing-impaired person from the Swiss Federation for the Hearing-Impaired. (a) Acquisition for
model training, on contrasting background. (b) Acquisition for testing, on cluttered background.

according to (4.1). Moreover, the probabilistic and segmentation models corresponding to

time slice t will be expressed in terms of the function φ, which encapsulates the contour Ct.

In order to overcome the difficulty in discriminating among the different letter classes in

our alphabet (as seen in Fig. 4.4), we make use of the supplementary knowledge regarding

the allowed words, that is, the ones belonging to the vocabulary in Table 4.1). To this

end, we employ the extension of our framework designed for the recognition of a predefined

behavior set (presented in Section 3.9 of Chapter 4), enabling us to introduce constraints

regarding the allowed behavior types.

For the case of our application, the behavior types correspond to the 15 words in our

vocabulary. Each of the words can be decomposed into its basic components — the letters

— which are shared among all words and constitute the action/gesture classes of our model.

Thus, we have a total of 18 action classes, corresponding to the 18 letters making up the

chosen vocabulary: A, B, C, D, E, F, G, I, K, L, M, N, O, R, S, T, U, Y.

Regarding the class probability models, a limitation of the Gaussian model that we used

in our first application is the fact that the mean and variance of the prior corresponding

to each class are fixed throughout the image sequence, and thus cannot adapt to varying

shapes of the same class. This makes it difficult to obtain accurate segmentations for

images where the winning class prior doesn’t offer a close match to the image, even after

the similarity transformation. For this application, we obtain an improvement with respect

to this limitation by using PCA-based probability models, which adapt dynamically to the

content of new images, as we describe in the following.

The probability model Pi(φ) corresponding to class Si relies on a shape distance function

between the segmenting contour and a prior contour corresponding to that class, motivated

by [23]. The prior contours for each class are computed via principal components analysis

(PCA) from specific training data for each class. They evolve during segmentation so as



96 Chapter 4. Applications and Solutions Implementing our Framework

best to match image information, within class constraints imposed by the PCA. We improve

the distance function proposed in [23] by making it symmetric, resulting into probability

models which are suitable for classification. Symmetry in the construction of shape priors

for level set functions is advocated in [41].

In the context of level-set-based variational image segmentation, the PCA representa-

tion is promoted by approaches such as [23, 40, 89]. The purpose of PCA is to reduce

redundant information and summarize the main variations of a training set. It is math-

ematically defined as an orthogonal linear transform, that transforms the data to a new

coordinate system, where the greatest variance is obtained by projecting the data onto the

first coordinate, the second greatest variance — by projecting it on the second coordinate,

and so on. In this way, the dimensionality of the data can be reduced by retaining only

those data characteristics which mostly contribute to its variance.

More precisely, given a training set of level set functions, which have been discretized

on a rectangular grid and arranged in vector format {φ1, . . . ,φn}, φk ∈ R
m, its principal

directions of variation are captured by the eigenvectors {e1, . . . , em}, ek ∈ R
m of the

covariance matrix Σ = 1
n−1M M>. The column vectors of the matrix M are the n mean-

centered training level set functions, obtained by extracting the mean φ = 1
n

∑n
k=1 φk

from each training sample φk. Given the eigen-decomposition of the covariance matrix

Σ = UΛU>, an approximate representation M∗ of the training data M can then be

obtained in the reduced space of the p < m eigenvectors {e1, . . . , ep}, which are the columns

of U corresponding to the p largest eigenvalues in the diagonal matrix Λ: M∗ = E>M,

with E = [e1, . . . , ep]. In particular, each training sample φk is reduced to ck = E>(φk−φ),

thus M∗ = [c1, . . . , cn]. A new level set function φ̂ can then be approximated with respect

to the extracted PCA eigenvectors as:

φ̂ = φ + E c. (4.15)

Here c is the p-dimensional vector of eigen-coefficients, which constitutes the reduced rep-

resentation of φ̂.

Therefore, a PCA-prior contour, corresponding to a particular gesture class, can be

represented in terms of the PCA coefficients c, using the class-specific mean level set function

and eigenvectors. These enable us to obtain the level set function of the prior contour φ̂, as

the continuous interpolation throughout the image domain of the discrete level set function

φ̂, computed from the PCA coefficients c as in (4.15). Moreover, similarly to our finger-

counting application, we introduce the alignment of a prior contour with respect to the

current segmenting contour. This alignment is in terms of similarity transformations acting

on the image domain hτ(x, y), as in (4.5). Such a transformation is parameterized by the

vector τ = {s, θ, Tx, Ty}, where s represents scale, θ is the rotation angle and Tx, Ty are

the x- and y-axis translations, respectively. Thus, we obtain the level set function of the

prior contour φ̂(c, τ ) from its class-specific PCA and alignment parameters c and τ , as the

interpolation of

φ̂(c, τ ) =
1

s

(
φ(hτ (x, y) + E(hτ (x, y)) c

)
. (4.16)
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In this context, we define our shape distance function between the current segmenting

contour φ and the prior contour φ̂, with the latter being parameterized by c and τ , as

d(φ, c, τ ) =

∫∫

Ω

(

φ̂2(c, τ ) |∇φ| δ(φ) + φ2 |∇φ̂(c, τ )| δ(φ̂(c, τ ))
)

dx dy, (4.17)

where δ is the Dirac function. Since
∫∫

Ω |∇φ| δ(φ) dx dy represents the length of the zero

level set of φ and the level set functions are represented as signed distance functions, we

readily observe that the first term of (4.17) approximates the minimal Euclidian distance

to the prior contour, integrated along the segmenting contour. This is an approximation

because the level set function φ̂ resulting from PCA is not the exact distance function, but

just a reasonable approximation of it. The second term of (4.17) exchanges the roles of φ

and φ̂ relative to the first term, making the distance function symmetric and thus suitable

for use in classification. Based on this distance function, we define the probability of the

segmenting contour represented by φ, corresponding to class Si, as

Pi(φ) ∝ e−d(φ,ci,τi). (4.18)

As image- and contour-dependent terms, guiding the evolution of the main contour φ

and prior contours φ̂i(c
i, τ i) (in terms of their parameters ci and τ i), we use the piecewise

constant Chan-Vese model [30], adapted to color images given by the red, green and blue

components I(x, y) = (IR(x, y), IG(x, y), IB(x, y)):

Eimage(It, φ) + Eimage(It, c
i=1..M , τ i=1..M ) + νEcontour(φ)

=
∑

k∈{R,G,B}

λk

∫∫

Ω
(Ik

t − µk
φ+)2H(φ) + (Ik

t − µk
φ−)2H(−φ) dx dy

+
∑

k∈{R,G,B}

λk

M∑

i=1

∫∫

Ω
(Ik

t − µk
φ̂i+

)2H(φ̂i) + (Ik
t − µk

φ̂i−
)2H(−φ̂i) dx dy

+ ν

∫∫

Ω
|∇H(φ)| dx dy.

(4.19)

Here H is the Heaviside function, µk
φ+, µ

k
φ̂i+

and µk
φ−, µ

k
φ̂i−

are the mean values of the k-th

component of the image vector (k ∈ {R,G,B}) over the positive, respectively negative,

regions of the level set functions φ and φ̂i. The ratio between the RGB components is

given by the weights λk ≥ 0, k ∈ {R,G,B}. Function φ̂i = φ̂i(c
i, τ i) is the continuously

interpolated level set function of the prior contour (4.16), and the last term of (4.19) imposes

smoothness of contour φ.

The prior term of the energy is obtained from (3.37) by using the prior information cor-

responding to our modified model P (At|st) w̃t(st), as described in Section 3.9 of Chapter 3.

The probabilities P (At|st = Si) are substituted with Pi(φ) (4.18), yielding:

Eprior(φ,L, ci=1..M , τ i=1..M) =

M∑

i=1

(
− log w̃t(Si) + d(φ, ci, τ i)

)
L2

i + β

(

1 −
M∑

i=1

L2
i

)2

.

(4.20)
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Towards computational efficiency, we adopt a pruning strategy, using only the top 4 most

probable priors (out of the 18 available priors) to guide the segmentation of each image.

These top 4 prior letters are chosen using the maximum prior letter probabilities, computed

with (3.88). Our pruning strategy does not affect recognition performance, while diminish-

ing segmentation time and improving convergence towards the optimal prior. This consti-

tutes an advantage of our dynamic framework over the simple use of competing multiple

priors for the segmentation of each image, which would imply the simultaneous optimization

and competition between 18 priors, with little chances of convergence towards the optimum

prior due to local minima.

The total energy (3.35), summing (4.19) and (4.20), is minimized via the calculus of

variations and gradient descent. The evolution equations for the level set function φ, the

labels L, the PCA and alignment parameters ci and τ i, are presented in Section A.3 from

the Appendix of this thesis.

4.3.3 Management of Co-articulation Effects

A frame-by-frame inspection of sample image sequences in our finger-spelling application

reveals the fact that a considerable part of these are actually frames of transition between

the spelling of different letters. The hand configurations in these frames do not correspond

to the gesture class models for any of the letters, or, even worse, they may match the models

of spurious letters that are not actually present in the finger-spelt word. This kind of gesture

modifications under the influence of neighboring gestures is similar to the phenomenon of

co-articulation in phonetics.

Obviously, these co-articulation effects are an impediment to the gesture recognition

task, potentially causing erroneous classification. A solution used in the field of speech

recognition is to include the co-articulated part in the modeling, by creating models of

pairs or triplets of sounds. In our framework, a possibility would be to model the frames of

transition between various letter pairs as different classes. However, such a solution would

be prohibitive in terms of computation and would not scale up with a large number of letter

/ gesture classes (due the large number of possible letter pairs). Therefore, we adopted a

more pragmatic solution, which involves a slight modification of our framework.

The main idea of our modification is to discard the transition frames from the behavior

estimation and rely solely on the frames belonging the gestures themselves. To this end,

we implement a mechanism for detecting transition frames, based on the monitoring of the

momentary best estimate for the letter class of a certain frame. In our practical experiments,

we noticed that this estimate remains unchanged throughout the main gesture duration,

and changes (as we would expect) at the moment of the gesture transition. Birk et al. [13]

also aim at discarding transition frames from the recognition task, but adopt a different

technique for detecting them, based on monitoring the amount of motion between frames.

In our implementation, after detecting a gesture transition, we enter into a transition

phase, with a limited maximum duration (given as a number of frames). During this phase,

we do not compute the values of our variables δ̃t(st, b) and ψt(st, b) recursively, in the
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usual manner, but by relying on their last valid estimates, obtained before the transition

period. The determined δ̃ and ψ values for each transition frame are used to guide the

segmentation of the respective frames, but are discarded from the final behavior estimation

by backtracking. Therefore, in the final classification, the transition frames are assigned

the label “transition”. Their adjacent frames are classified by referring to the closest validly

classified frame.

To exit the transition phase before its maximum duration, we search for evidence of

stable letter recognition. That is, if the estimation of the best momentary letter class

remains constant for a given number of consecutive frames, we consider that the gesture

has become stable and we return to the normal course of computation. To this end, we

look for the first occurrence of the stable letter class and recompute the past values of

the δ̃ and ψ variables, up to the current frame where we exited the transition phase. We

also remove the transition status of the frames corresponding to the stability period, so

that their δ̃ and ψ values can be used in the final classification by backtracking. In the

case where we did not detect stable letter recognition, we return to normal computation

after the given maximum transition duration. To compute the new δ̃ and ψ values, we

rely on their last valid estimates before the transition. To eliminate some cases of spurious

transition detections, we also exit the transition phase if we detect a transition to the last

valid letter estimated before the transition (self-transition). In this case, we compute all

the past δ̃ and ψ values up to the current frame, and remove the transition status of the

respective frames.

To summarize, we present a schematic description of our modified algorithm. To this

end, we introduce the constants MaxTransFrames to denote the maximum duration of

the transition period, and StabilityThreshold to denote the number of consecutive frames

where the momentary gesture estimation needs to be stable, in order to exit the transition

period. Additionally, we introduce the variable transitionStep(t) to indicate whether frame

t is a transition frame and if so, to store the transition step count: 1 ≤ transitionStep(t) ≤
MaxTransFrames if t is a transition frame and transitionStep(t) = 0 otherwise. More-

over, we use the variable winnerClass(t) to store the best momentary estimate for the

letter class corresponding to frame t. Denoting by NPriors the reduced number of class

priors used to guide image segmentation after pruning, we use the set topS(t) ⊂ S to hold

the NPriors top most probable letter classes st at time t. The joint segmentation and

recognition of a new test sequence I1:T proceeds as follows ∗.

1. Extract contour C̃∗
1 by segmenting image I1, according to the considerations given in

Chapter 3.

2. Estimate δ̃1(s1, b), s1 ∈ S, b ∈ B, according to (3.91).

3. Compute best momentary estimate for the letter class

winnerClass(1) = arg maxs1
max b δ̃1(s1, b).

∗For notation correspondence with Chapter 3, we write probabilities and variables in terms of Ct, and

imply the use of their corresponding expressions in terms of the level set function φ, given in the current

chapter.
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4. Compute w2(s2, b) and w̃2(s2) for s2 ∈ S, b ∈ B, using (3.86) and (3.88), respectively.

5. Compute top NPriors most probable priors for next frame:

topS(2) = {s2 ∈ S, s2 ∈ top NPriors ranked by w̃2(s2)}.

6. Set I1 as a non-transition frame: transitionStep(1) = 0.

7. for t = 2 to T

(a) Estimate contour C̃∗
t by segmenting image It using energy (3.35), composed of

(4.19) and (4.20), where Eprior includes the priors of the classes st ∈ topS(t).

Initialize segmentation with C̃∗
t−1.

(b) Compute current δ̃t(st, b) and winnerClass(t) and update current transition

state transitionStep(t).

(c) Compute wt+1(st+1, b), ψt+1(st+1, b), w̃t+1(st+1) and topS(t+ 1).

end

8. Estimate optimal behavior type and backtrack to infer the optimal letter class se-

quence s∗1..T .

Step 7(b) of our algorithm can be detailed as follows:

δ̃t(st, b) = P (It, C̃
∗
t |st)wt(st, b), st ∈ S, b ∈ B;

winnerClass(t) = arg maxst
max b δ̃t(st, b);

if 0 < transitionStep(t− 1) < MaxTransFrames

• Get time of last frame before the transition:

tV alid = largest t with transitionStep(t) == 0;

• if winnerClass(t) 6= winnerClass(tV alid) ⇒ true transition:

– transitionStep(t) = transitionStep(t− 1) + 1;

– if winnerClass(t) == winnerClass(t− 1) ⇒ stable letter:

∗ stabilityCounter = stabilityCounter+ 1;

– else

∗ stabilityCounter = 1;

– end

– if stabilityCounter == StabilityThreshold⇒ reached letter stability threshold,

exit transition phase and compute past δ̃-s for the stability period:

∗ transitionStep(t) = 0;

∗ Get beginning time of stability period: tStable = t−StabilityThreshold+1;

∗ while tStable < t
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· for stStable ∈ S, b ∈ B

wtStable(stStable, b) = max
stV alid

δ̃tV alid(stV alid, b)P (stStable|stV alid, b);

ψtStable(stStable, b) = arg max
stV alid

δ̃tV alid(stV alid, b)P (stStable|stV alid, b);

δ̃tStable(stStable, b) =P (ItStable, C̃
∗
tStable|stStable)wtStable(stStable, b);

· end

· winnerClass(tStable) = arg maxstStable
max b δ̃tStable(stStable, b);

· transitionStep(tStable) = 0;

· tV alid = tStable;

· tStable = tStable+ 1;

∗ end

∗ Compute w and ψ values for current frame:

wt(st, b) = maxst−1 δ̃t−1(st−1, b)P (st|st−1, b), st ∈ S, b ∈ B;

ψt(st, b) = arg maxst−1
δ̃t−1(st−1, b)P (st|st−1, b), st ∈ S, b ∈ B;

– end

• else ⇒ self-transition, cancel transition phase, recompute past δ̃-s:

– transitionStep(t) = 0;

– tT rans = tV alid+ 1;

– while tT rans < t

∗ for stT rans ∈ S, b ∈ B

wtT rans(stT rans, b) = max
stTrans−1

δ̃tT rans−1(stT rans−1, b)P (stT rans|stT rans−1, b);

ψtT rans(stT rans, b) = arg max
stTrans−1

δ̃tT rans−1(stT rans−1, b)P (stT rans|stT rans−1, b);

δ̃tT rans(stT rans, b) =P (ItT rans, C̃
∗
tT rans|stT rans)wtT rans(stT rans, b);

∗ end

∗ winnerClass(tT rans) = arg maxstTrans
max b δ̃tT rans(stT rans, b);

∗ transitionStep(tT rans) = 0;

∗ tT rans = tT rans+ 1;

– end

– Compute w and ψ values for current frame:

wt(st, b) = maxst−1 δ̃t−1(st−1, b)P (st|st−1, b), st ∈ S, b ∈ B;

ψt(st, b) = arg maxst−1
δ̃t−1(st−1, b)P (st|st−1, b), st ∈ S, b ∈ B;

• end

else ⇒ not in transition phase, detect possible transition:
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• if winnerClass(t) 6= winnerClass(t− 1) ⇒ transition detected:

– transitionStep(t) = 1;

– stabilityCounter = 1;

• else

– transitionStep(t) = 0;

• end

end

Step 7(c) of our algorithm consists of the following:

if 0 < transitionStep(t) ≤MaxTransFrames⇒ transition phase, transmit past informa-

tion to next stage:

• wt+1(s, b) = wt(s, b), s ∈ S, b ∈ B;

• ψt+1(s, b) = ψt(s, b), s ∈ S, b ∈ B;

• w̃t+1(s) = w̃t(s), s ∈ S;

• topS(t+ 1) = topS(t);

else ⇒ prepare w and topS for next frame:

• wt+1(st+1, b) = maxst

(
δ̃t(st, b)P (st+1|st, b)

)
, st+1 ∈ S, b ∈ B;

• ψt+1(st+1, b) = arg maxst

(
δ̃t(st, b)P (st+1|st, b)

)
, st+1 ∈ S, b ∈ B;

• w̃t+1(st+1) = max bwt+1(st+1, b);

• topS(t+ 1) = {st+1 ∈ S, st+1 ∈ top NPriors ranked by w̃t+1(st+1)}.

end

Step 8 of our algorithm is performed as follows:

if transitionStep(T ) == 0

• tV alid = T ;

else

• Get time of last frame which did not belong to a transition phase:

tV alid = largest t with transitionStep(t) == 0;

end

Determine winner behavior type: b∗ = arg max b maxstV alid
δ̃tV alid(stV alid, b);

tV alidLast = tV alid;

for t = tV alid− 1 down to 1
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• if transitionStep(t) 6= 0

– s∗t = transition;

• else

– if transitionStep(t+ 1) == 0

∗ s∗t = ψt+1(s
∗
t+1, b

∗);

– else

∗ s∗t = ψtV alidLast(s
∗
tV alidLast, b

∗);

– end

– tV alidLast = t;

• end

end

4.3.4 Database and Training of the Model

We trained our model using image sequences of each vocabulary word from the acquired

database. For training, the gesturing person was filmed on a dark, contrasting background

and the gestures were performed at slow speed. Figure 4.6 presents images from the training

sequences.

First, the gesturing hand was segmented in each training sequence and the resulting con-

tours were assigned to their respective letter classes and aligned with respect to similarity

transformations (scale, rotation and translation) using genetic algorithms [51]. Subsequent-

ly, the parameters of the observation probability model P (At|st = Si) = Pi(φ) (4.18) for

each letter class Si were learned by PCA (p = 20) separately from the training contours of

the respective letter class. This resulted in a corresponding mean φi and eigenvectors Ei

for each letter/behavior class Si.

Afterwards, the action class initial and transition distributions P (s1|b) and P (st|st−1, b)

were learned separately for each behavior type (word) b, from specific training sequences.

Similarly to our finger-counting application, these probability distributions were learned

by counting the occurrences of starting classes and of transitions between classes from the

training sequences (see Section 4.2.3). As mentioned in Section 4.2.3, one could alternatively

estimate these parameters through an expectation-maximization (EM) approach, via the

Baum-Welch algorithm (see [11, 120]).

4.3.5 Experimental Results

We tested the resulting implementation of our framework on image sequences of the same

person finger-spelling words from the vocabulary. For testing, we have considered realistic

conditions, involving a cluttered background, normal gesturing speed and changed lighting

conditions with respect to the training image sequences. Despite the complexity of the task,
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Letter A Letter B Letter C Letter D Letter E

Letter F Letter G Letter I Letter K Letter L

Letter M Letter N Letter O Letter R Letter S

Letter T Letter U Letter Y

Figure 4.6 — Sample images (and corresponding letter/action classes) from training sequences
used in our application.
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Figure 4.7 — Rows 1 — 3: correct segmentation and behavior recognition using our framework,
demonstrated on a test sequence representing the word “Albania”. Rows 4 — 6: erroneous segmen-
tation and behavior recognition of the same sequence, using the traditional sequential approach.
The recognized word is “Algeria”.
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Figure 4.8 — Rows 1 — 3: correct segmentation and behavior recognition using our framework,
demonstrated on a test sequence representing the word “Belarus”. Rows 4 — 6: erroneous segmen-
tation and behavior recognition of the same sequence, using the traditional sequential approach.
The recognized word is “Belgium”.
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Figure 4.9 — Rows 1 — 3: correct segmentation and behavior recognition using our framework,
demonstrated on a test sequence representing the word “Denmark”. Rows 4 — 6: erroneous seg-
mentation and behavior recognition of the same sequence, using the traditional sequential approach.
The recognized word is “Burundi”.
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Figure 4.10 — Rows 1 — 3: correct segmentation and behavior recognition using our framework,
demonstrated on a test sequence representing the word “Ecuador”. Rows 4 — 6: erroneous segmen-
tation and behavior recognition of the same sequence, using the traditional sequential approach.
The recognized word is “Finland”.
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Figure 4.11 — Rows 1 — 3: correct segmentation and behavior recognition using our framework,
demonstrated on a test sequence representing the word “Estonia”. Rows 4 — 6: erroneous segmen-
tation and behavior recognition of the same sequence, using the traditional sequential approach.
The recognized word is “Ecuador”.
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the results are accurate in terms of the recognized words, due to the infusion of knowledge

about the dynamics of vocabulary words via our collaborative framework.

In Figures 4.7, 4.8, 4.9, 4.10 and 4.11, rows 1 — 3, we present examples of collabora-

tive segmentation and behavior recognition on five image sequences, which are correctly

recognized by our framework as the words “Albania”, “Belarus”, “Denmark”, “Ecuador” and

“Estonia” respectively. The recognition framework helped orient segmentation towards the

correct action classes at each time instance. Moreover, the dynamical PCA-based class

prior models adapted to significant shape variations within behavior classes, allowing the

segmentation of the hand in difficult cases of cluttered background. The frame-wise behav-

ior recognition results for these sequences, yielded by backtracking for the winner behavior

type, are presented in row 3 of each of these figures and correspond to our understand-

ing of the sequences in terms of the executed gestures. In contrast, using the traditional

(sequential) approach for recognition, i.e. first segmenting the image sequences (with the

same variational approach, without prior models) and then performing recognition using

the extracted contours (with the same Viterbi decoding scheme), produces completely er-

roneous results. Such results are presented for each of the above sequences, in Figs 4.7, 4.8,

4.9, 4.10 and 4.11, rows 4 — 6. In all these cases, the segmentation was side-tracked by

the cluttered background, and as a result the sequences were miss-classified (as “Algeria”,

“Belgium”, “Burundi”, “Finland” and “Ecuador”, respectively).

The variational segmentation parameters for the presented test sequences were α = 4000,

ν = 4000, λR = 1, λG = 0 and λB = 0. The average execution time using un-optimized

code (Matlab and C) was 6-7 minutes per frame. The segmenting contour of the first image

of each sequence was determined by a rough manual initialization of the contour, followed

by segmentation using only the image- and contour-based terms given by the piecewise-

constant Chan-Vese model, adapted to color images:

Eimage(I1, φ) + νEcontour(φ) =
∑

k∈{R,G,B}

λk

∫∫

Ω
(Ik

1 − µk
φ+)2H(φ) + (Ik

1 − µk
φ−)2H(−φ) dx dy

+ ν

∫∫

Ω
|∇H(φ)| dx dy.

(4.21)

As an alternative, our experience has shown that similarly good results can be obtained by

using the following automatic segmentation method:

1. initialization with regularly distributed small circles,

2. variational segmentation with the piecewise-constant Chan-Vese model for color im-

ages (4.21),

3. elimination of small regions by morphological operations,

4. alignment of the mean level set functions φi for each letter prior Si with respect to

the current contour, with genetic algorithms [51],
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5. choice of the best fitting priors in terms of the distance:

d(φ, φi) =

∫∫

Ω φ
2 |∇φi| δ(φi) dx dy

∫∫

Ω |∇φi| δ(φi) dx dy
, (4.22)

6. variational segmentation using the image and contour terms (4.2) and the top 4 best

fitting priors obtained at step 5, in a competition approach (prior term (3.37) with

w1(Si) = 1 and P (A1|s1 = Si) = Pi(φ), given by (4.18)).

This process is illustrated in Fig. 4.12 for the first image of the “Belarus” sequence.

(a) (b) (c) (d) (e)

Figure 4.12 — Initialization process for the first frame of the “Belarus”sequence. (a) Initialization
with small circles (step 1), (b) variational segmentation with the piecewise-constant Chan-Vese
model for color images (step 2), (c) elimination of small regions by morphological operations (step
3): resulting binary mask, (d) alignment of the mean level set functions for the 4 top fitting priors
(steps 4 and 5): image of the current level set function and its zero level set in black, together with
the aligned means of the best fitting 4 priors (B, R, U, A) in color, (e) variational segmentation
using the piecewise-constant Chan-Vese model for color images and the top 4 best fitting priors in
a competition approach (step 6).

One of the advantages of performing behavior recognition (via the Viterbi decoding

scheme) in collaboration with image segmentation is the fact that it offers us, at each in-

stance t, the optimal classification of the sequence up to time t, which is used to guide

further segmentation. This allows the correction of potential cases of miss-classification of

previous frames, thus adding robustness to our approach. An example of miss-classification

which is corrected in later frames is presented in Fig. 4.13, which shows partial classifica-

tion results for the “Belarus” sequence. The partial classification result at frame 19 yields

erroneous results (letter U instead of either B or E) for frames 17-19 , which are transition

frames between two letters (see Fig. 4.13, first row). This result is corrected at frame 20,

where letter E is clearly perceived and the Viterbi algorithm corrects the classification of

the previous frames (Fig. 4.13, second row).

In order to show some limitations of the chosen implementation of our framework, in

Fig. 4.14 we present two examples of miss-classification using our method. Rows 1 and

2 present the segmentation and recognition results of an image sequence representing the

word “Belgium”. This word is wrongfully classified as “Belgium”. Examining the reasons

for this decision, we note the similarity of the two words in terms of the contained letters —

they have 4 common letters (B, E, L, U) in identical positions within the word — and also
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Frame number

Frame number

Figure 4.13 — Partial classification results for the “Belarus” sequence: at frame 19 (first row) and
at frame 20 (second row). Mislabeling of 3 frames starting at frame 17 (first row), corrected in
subsequent frames starting with 20 (second row).

in terms of the outlines of the rest of the letters (pairs (G, A) and (M, S)). Indeed, the first

part of the word was correctly recognized as containing letters B, E, L. Further along, G was

correctly segmented, but recognized as A, due the contour similarity between the two letters.

Letter I was not correctly segmented due to the strong influence of the prior information,

which was inclining towards the word “Belarus”, due to the first letters recognized as B, E,

L, A. Letter U was correctly segmented and recognized, being common to the two words

and finally letter M, though correctly segmented, was recognized as S. Segmentation and

recognition results for the second sequence, representing the word “Eritrea”, are illustrated

in rows 3 — 4 of Fig. 4.14. This sequence has been miss-classified as “Estonia”. Similarly to

the previous case, we note the three common letters of the two words: E, T and A. The first

letter E was correctly segmented and classified, but the segmentation and recognition of the

subsequent R was impaired by the strong prior information, imposing letter E. For similar

reasons, the little finger differentiating I from S was not perceived. Common letter T was

correctly segmented and classified, as expected. Then, during the transition from T to R,

two frames were correctly segmented, and then classified as O and N, respectively. These

are frames 88 and 89, illustrated in row 3 of Fig. 4.14. Indeed, the obtained contours of these

transition frames resemble the contours of letters O and N from our training set (Fig. 4.6).

Due to the amount of prior knowledge influence, the segmentation of the subsequent frames

was affected and they were classified as letter A.

To interpret these results, we note that we performed our experiments by maintaining

unchanged parameters for the segmentation of all images in all the test sequences. However,

our experience has shown that improved results can be obtained by tuning these parameters

to different test sequences. We did not consider such an approach, since it would render

our method impractical to use. In the case of the above presented sequences, an important
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Figure 4.14 — Examples of erroneous classification using our method. Rows 1 — 2: segmentation
and recognition of a sequence representing the word “Belgium”, classified as “Belarus”. Rows 3 — 4:
segmentation and recognition of a sequence representing the word “Eritrea”, classified as “Estonia”.

factor for the failure of our method (beside the inherent similarity of the confounded words)

is the misleading of the segmentation due to the too powerful influence of prior recognition

information. The remedy for this problem would consist in slightly diminishing the weight

α of the prior term in our segmentation energy. This would allow segmentation to better

capture new letter characteristics, while receiving more moderate guidance from the recog-

nition. For the reasons mentioned above, we did not consider such sequence-dependent

parameter modifications.

Further analyzing the potential of the proposed framework implementation, we note

that it can cope with difficult cluttered background, as shown by our experimental results.

In this respect, it was shown to perform better than the traditional approach consisting

of sequential segmentation and classification. However, its performance is still bounded

due to the simplicity of the segmentation model. For instance, a challenging case for our
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method would be one where the average color levels of the background are similar to that

of the hand. In this case, our method would be incapable of discriminating the hand from

the background, despite prior knowledge regarding the most likely letter classes, offered

by the recognition process. The solution lies in choosing more complicated segmentation

models, (potentially involving histograms or texture information), which would in turn

augment the computational costs of the method. Other challenges for our method would

be poor resolution images (since it would increase class ambiguity in terms of hand contour),

very noisy images (leading segmentation into unwanted local minima that match the wrong

class prior information) or an important number of missing frames from the video sequences

(misleading for the inference process). Moreover, an important factor for the success of our

method is the clear spelling of the letters of each word, where the main letter durations are

larger than the transitions between letters. A problematic situation for our approach would

be given by very fast spelling, where the letter shapes would be undistinguishable due to

co-articulation effects. This limitation could be partially overcome by training the method

on such fast spelling sequences and/or inclusion of separate modeling for the transitions

between letters.

Table 4.2 — Confusion matrix. Each row corresponds to the test sequences of one of the countries
in our vocabulary (represented on the left of the row). The row entries for each column contain the
percentage of these test sequences which were classified as belonging to the country associated with
that column (represented on top of each column). The last column of the table gives the percentage
of correctly classified test sequences for each country. The figure at the end of the last row represents
the total percentage of correct classification over the ensemble of the test sequences.
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Albania 90 10 0 0 0 0 0 0 0 0 0 0 0 0 0 90

Algeria 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Armenia 20 0 80 0 0 0 0 0 0 0 0 0 0 0 0 80

Austria 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100

Belarus 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 100

Belgium 0 0 0 0 10 90 0 0 0 0 0 0 0 0 0 90

Burundi 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100

Croatia 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 100

Denmark 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 100

Ecuador 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 100

Eritrea 0 0 0 0 0 0 0 0 0 0 50 50 0 0 0 50

Estonia 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 100

Finland 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 100

Georgia 10 50 0 10 0 0 0 0 0 0 0 0 0 30 0 30

Germany 0 20 0 30 0 0 0 0 0 0 0 0 0 0 40 40

Total(%) 85.3

To finish off the presentation of our experimental results, in Table 4.2 we illustrate the

confusion matrix between the words in our vocabulary and the statistic recognition results
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per word and for the whole vocabulary. These results were obtained on a test sample of

relatively limited size, which is ten words for each of the vocabulary words, obtained by

courtesy of the Swiss Federation for the Hearing Impaired. As can be seen, for only 3 words

out of 15 the results are quite poor (≤ 50 %), mainly due to problems of parameter tuning,

such as the ones exemplified above. However, for most words (12 out of 15), we obtain

excellent recognition results (more than 80%), with a total recognition rate of 85.3 %.

4.4 Conclusion

In this chapter we presented two gesture recognition applications and their solutions in

terms of our cooperative framework for segmentation and behavior recognition, developed

in Chapter 3.

The first application concerns a finger-counting experiment involving four classes of hand

gestures. For the discrimination of these gestures, the attribute we used is the hand contour,

in a level set representation. We derived the solution to this application by choosing a par-

ticular implementation of our segmentation / recognition model presented in Section 3.3

of Chapter 3. To this end, we chose a Gaussian model for the class probabilities of the

hand contour. Moreover, we instantiated the image- and contour-based terms of our seg-

mentation model with the piecewise-constant Chan-Vese model. The training of our model

was performed by segmentation of training image sequences, followed by the estimation of

model parameters (mean and variance for the Gaussian class models, action class initial

and transition distributions for our DBN) based on the extracted contours. The testing of

the trained model on finger-counting image sequences featuring noisy images, a cluttered

background and occlusions of the hand, yielded good segmentation and recognition results.

This showed that the collaboration between image segmentation and behavior recognition

renders our model robust against adverse imaging conditions.

The second application belongs to the area of sign-language recognition and regards

the finger-spelling component of sign-language. Our target for recognition was a 15-word

vocabulary based on the finger-spelling alphabet of the French-speaking region of Switzer-

land. A database of finger-spelling sequences of these words was obtained with the aid of

the Swiss Federation for the Hearing Impaired. For the solution of the application, we used

the extension of our framework for the recognition of a predefined behavior set, presented

in Section 3.9 of Chapter 3. To this end, our vocabulary words were modeled as behavior

types, while the action classes were given by the letters composing our vocabulary words.

Similarly to the finger-counting application, we used a level set representation of the hand

contour as attribute for the recognition task. To instantiate our framework, we chose a

class probability model relying on a distance function with respect to a PCA-based class

prior contour. For each letter class, these prior contours evolved during image segmentation

in terms of their PCA coefficients, in order to match image characteristics. The evolution

of the main segmentation contour, as well as the one of the prior contours, was based on

the piecewise-constant Chan-Vese model. For the training of our model, slow-speed im-

age sequences of our vocabulary words, finger-spelt in front of a simple background, were
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automatically segmented. Then PCA parameters were learned for each class from its corre-

sponding extracted contours, after they were aligned for similarity transformations. Action

class initial and transitions probabilities were learned separately for each word from corre-

sponding training sequences. The trained model was tested on normal-speed finger-spelling

sequences filmed in front of a cluttered background, which poses problems for regular feature

extraction methods. A comparison with the traditional approach, where the segmentation

and recognition phases are performed separately, shows the better performance of our col-

laborative approach.
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The core issue that we have investigated in this thesis is the joining of two tasks that tra-

ditionally have been performed separately — image segmentation (for attribute extraction)

and behavior recognition. The purpose of this union was to allow their collaboration to-

wards improved results for both of them. In the following, we summarize the contributions

of our study, discuss the limitations of the proposed methods and provide directions for

future work.

5.1 Achievements

On the theoretical level, this thesis proposed a general framework for performing joint

image segmentation and behavior recognition from image sequences. This framework was

developed by formulating the double segmentation / recognition problem in terms of a

Dynamic Bayesian Network, which incorporates a Hidden Markov Model and a generative

image formation model. The solution to the problem was elaborated as a modified Viterbi

decoding scheme, which blends recognition with segmentation along the image sequence.

Guidelines and examples were provided regarding the choice of the free parameters of our

framework, consisting mainly of modeling choices for the included probabilities, such as the

attribute likelihood given the action class, the image probability given the object contour

and attribute or the prior contour probability. Moreover, alternative learning methods for

the parameters of the probability models were described.

In the context of our framework, a variational image segmentation model was pro-

posed, as a natural derivation of the probabilistic segmentation formulation. This model

is composed of a generic image segmentation term, including image- and contour-related

constraints, and of a term which encapsulates a priori information about the attributes of

the target object, offered by the recognition process. This term implements a competition

117
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between multiple priors stemming from several action classes, so that the final segmented

object belongs to the most probable action class in light of image evidence and based on

past experience accumulated by the recognition process.

Furthermore, the original framework was extended in order to allow the recognition of

a predefined set of behavior types, each made up of a succession of simple actions, chosen

from a finite set. A suitable Viterbi decoding scheme was proposed, in order to permit

collaborative segmentation and behavior recognition in the new setting.

On a more practical level, two particular models implementing our general framework

and its extension were proposed. These models were developed in order to solve two applica-

tions belonging to the field of gesture recognition. The first application is a finger-counting

experiment involving four gesture classes and was solved via a particular model imple-

menting our original general framework. The second application concerns finger-spelling

recognition. The scope of this application was set to a vocabulary of 15 words, whose

finger-spelling involved a number of 18 letter classes. The solution was provided via a

model implementing the extension of our original framework for the recognition of a pre-

defined behavior set. For both applications, the attribute used by recognition was the level

set representation of the hand contour. Particular probabilistic models were chosen to fill

in the optional parts of our framework. For both applications, the image- and contour-

based segmentation terms were based on the piecewise-constant Chan-Vese model. For the

finger-counting application, the attribute probability given the class was represented by a

pixel-wise Gaussian model of the level set function. For the finger-spelling application, a

class probability model based on a symmetric distance with respect to a PCA-represented

class prior contour was chosen. Model training was detailed for both applications, following

the guidelines provided in the general framework description. Testing of the two concrete

models on image sequences from the two corresponding applications revealed their robust-

ness with respect to difficult conditions, including noisy images, occlusions of the gesturing

hand and cluttered background. Moreover, in the case of the finger-spelling application,

a comparison with the traditional approach, which separates attribute extraction (via seg-

mentation) and behavior recognition, showed the better performance of our collaborative

model in terms of both segmentation and recognition results.

5.2 Discussion and Future Work

In the formulation of our general segmentation / recognition framework, we regard behavior

as a succession of simple actions. We describe these actions in terms of object attributes

that are emitted with a certain probability given a particular action class. Furthermore,

we characterize the succession of action classes by a Markov chain. This kind of behavior

description corresponds to a Hidden Markov Model. The temporal dependency between

successive attributes is modeled in terms of transition probabilities between the discrete

hidden action classes that produce the attributes. As future work, we can imagine exten-

sions of our model in order to incorporate more complex temporal dependencies between

attributes. One example could be the inclusion of a auto-regressive dependency between
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successive attributes, whose parameters would depend on the action class. Such an ex-

tension would facilitate the application of the model to scenarios where the attributes are

changing continuously, but in a predictable way depending on the action class, for example

when wishing to discriminate between activities like walking and running.

Let us now look at the application of our framework to applications such as the finger-

spelling recognition one. As our experimental results have shown, our model is able to cope

with important amounts of background clutter due to the infusion of prior knowledge from

the recognition process. Nevertheless, our proposed model can still become sidetracked

from the correct segmentation if the objects in the background are too similar in average

color with respect to the hand. This aspect could be improved by the incorporation of more

complex image-based segmentation models, including more complex models of color (e.g.

histogram-based), texture models, or the use of a piecewise-smooth formulation instead of

the piecewise-constant model that we have employed. Another idea would be to incorporate

a form of background modeling, which could be rendered adaptive in time, so as not to con-

strain the application to a fixed background. However, we should mention that our choice

of a rather simplistic model was partly motivated by considerations regarding computation

time, which would augment with the use of more complicated models.

Indeed, computation time is one of the sensitive points of our framework. This is mainly

due to the fact that it relies on a variational method for image segmentation. The numerous

advantages of variational segmentation methods, among which the rigorous mathematical

formulation and the flexible inclusion of various criteria, were explained in Chapter 2. How-

ever, the typical numerical implementations of these methods require the iterative evolution

of the segmentation contour until convergence, using evolution time steps which are limited

in size by considerations regarding the stability of the numerical schemes. This translates

into relatively long computation times per image. In our case, to speed up computation,

we used the narrow-band method [1] for updating the level set function representing our

segmentation contour, and the fast-marching method [1] for the re-initialization of the level

set function to a signed distance function. However, additional computation time could be

gained by considering a multi-grid numerical implementation. Another option would be

to replace the level set contour representation by a B-spline parametric one, which would

drastically reduce the dimensions of our problem. However, we would loose the ability to

capture interior object contours (without additional complications), which come up for in-

stance in representing the hand contour for letter O in our finger-spelling application. Last,

but not least, the optimization of the code could be considered, by a C-only implementation

and processor optimizations.

Regarding the testing of our framework, it would be interesting to extend our applica-

tions (in particular the finger-spelling one) to several gesturing persons, and also to extend

the testing scenarios to different background and lighting configurations, as well as cases of

missing frames from the test image sequences.
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Appendix A
A.1 The Minimization of Functionals Using the Calculus of

Variations and Gradient Descent

In the following, we briefly outline a classical method used for the minimization of typical

functionals encountered in image processing problems. This method is based on the calculus

of variations and gradient descent (cf. [130]).

We begin by presenting the one-dimensional (1D) case. Given a 1D function u(x) :

[0, 1] −→ R, we wish to minimize a given energy functional

E(u) =

∫ 1

0
F (u, u′)dx, (A.1)

subject to given boundary conditions u(0) = a and u(1) = b. Here F : R
2 −→ R is dictated

by the particular application to solve and depends on the function u and on its derivative

u′.

In classical calculus, the extrema of a function f(x) : R −→ R are reached in those

points of the domain where f ′(x) = 0. Likewise, in the calculus of variations we can attain

the extrema of the functional E(u) in those points where E′ = 0, where E′ = ∂E
∂u is the

first variation of E(u). As shown in [130], this leads to the following necessary condition in

order for u to be an extremum of E(u):

∂F

∂u
− d

dx

(
∂F

∂u′

)

= 0. (A.2)

This is the Euler-Lagrange equation for the 1D case. Similarly, for an energy of the form

E(u) =

∫ 1

0
F (u, u′, u′′)dx, (A.3)
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the Euler-Lagrange equation is given by

∂F

∂u
− d

dx

(
∂F

∂u′

)

+
d2

dx2

(
∂F

∂u′′

)

= 0. (A.4)

For the 2D case, the equations are analogous. Given a function u(x, y) : Ω ⊂ R
2 −→ R,

we wish to minimize the following energy with respect to u:

E(u) =

∫∫

Ω
F (u, ux, uy, uxx, uyy) dx dy. (A.5)

The necessary condition for u to be an extremum point for E is given by the Euler-Lagrange

equation:

∂F

∂u
− d

dx

(
∂F

∂ux

)

− d

dy

(
∂F

∂uy

)

+
d2

dx2

(
∂F

∂uxx

)

+
d2

dy2

(
∂F

∂uyy

)

= 0. (A.6)

The remaining problem now is finding a solution for the Euler-Lagrange equation, that

we denote by

L(u) = 0,

where L(u) designates the left-hand side of equations such as (A.6). Generally, in image

processing tasks this equation is impossible to solve analytically. Therefore, numerical

solutions are usually preferred. One of the most commonly used methods is the gradient

descent. The basic idea is that in order to find a solution for L(u) = 0, we numerically solve

the PDE
∂u

∂t
= L(u), (A.7)

starting from the initial condition u(0) = u0, where u0 is the given initial data and t is an

artificial time-marching parameter. Once we reach the steady state of this equation, that

is, when

∂u

∂t
= 0, (A.8)

then we have found the solution u∗ = u to the Euler-Lagrange equation:

L(u∗) = 0.

This gradient descent method is not guaranteed to reach the optimal solution. If the energy

to minimize is not convex, the solution to the PDE (A.7) may not be unique or may vary

depending on the initial condition which is used. Its use is nonetheless widespread, since in

many cases a local minimum of the energy functional constitutes an acceptable solution to

the given problem.
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A.2 Image Segmentation Using the Gaussian Prior Model,

for the Finger-counting Application

A.2.1 Evolution Equations

Let us denote φ̂i(hτ
i(x, y)) = φi(hτ

i(x, y))/si. Then, the evolution equation for the seg-

menting contour φ is given by:

∂φ

∂t
(x, y) = δε(φ(x, y))

(

(I(x, y) − µ−)2 − (I(x, y) − µ+)2

+ ν div

( ∇φ(x, y)

|∇φ(x, y)|

))

+ α

M∑

i=1

φ̂i(hτ
i(x, y)) − φ(x, y)

σi(hτ
i(x, y))

L2
i ,

(A.9)

where δε is a regularized version of the Dirac function:

δε(x) =
ε

π(x2 + ε2)
. (A.10)

The similarity transformation parameters of each prior evolve according to:

∂τ i

∂t
= −

∫∫

Ω

1

σi(hτ
i(x, y))

(

∇σi(hτ
i(x, y)) · ∂

∂τ i
(h

τ
i(x, y))

)

dx dy

+

∫∫

Ω

φ(x, y) − φ̂i(hτ
i(x, y))

σ2
i (hτ

i(x, y))

∂

∂τ i
(φ̂i(hτ

i(x, y))) dx dy

+

∫∫

Ω

(φ(x, y) − φ̂i(hτ
i(x, y)))2

σ3
i (hτ

i(x, y))

(

∇σi(hτ
i(x, y)) · ∂

∂τ i
(h

τ
i(x, y))

)

dx dy

(A.11)

where τ i stands for each of si, θi, and T i. Moreover,

∂

∂τi
(φ̂i(hτ

i(x, y))) = ∇φ̂i(hτ
i(x, y)) · ∂

∂τi
(h

τ
i(x, y)), (A.12)

if τ i = θi, T i and

∂

∂τi
(φ̂i(hτ

i(x, y))) = ∇φ̂i(hτ
i(x, y)) · ∂

∂τi
(h

τ
i(x, y)) − 1

si
φ̂i(hτ

i(x, y)), (A.13)

if τ i = si. The derivatives ∂(h
τ

i(x, y))/∂τ i are computed as follows:

∂

∂s
(hτ(x, y)) =

(

cos θ sin θ

− sin θ cos θ

)[

x

y

]

, (A.14)

∂

∂θ
(hτ(x, y)) = s

(

− sin θ cos θ

− cos θ − sin θ

)[

x

y

]

, (A.15)

∂

∂Tx
(hτ(x, y)) =

[

1

0

]

, (A.16)
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∂

∂Ty
(hτ (x, y)) =

[

0

1

]

. (A.17)

The labels Li, i = 1..M evolve according to:

∂Li

∂t
=Li

(

logwt(Si) −
∫∫

Ω

(

(φ(x, y) − φ̂i(hτ
i(x, y)))2

2σ2
i (hτ

i(x, y))

+ log σi(hτ
i(x, y))

)

dx dy + 2β

(

1 −
M∑

i=1

L2
i

))

.

(A.18)

The update equation for the Lagrange multiplier β is as follows:

β =

∑M
i=1 L

2
i log (wt(Si)Pi(φ))

2
∑M

i=1 L
2
i

(∑M
i=1 L

2
i − 1

) , (A.19)

with Pi(φ) given by (4.4).

A.2.2 Numerical Approach

To minimize the total energy (3.35), with Eimage(It, Ct) + νEcontour(Ct) given by (4.2) and

Eprior given by (4.6), we use the evolution equations (A.9), (A.11) and (A.18). We solve

these equations numerically by iterating the following steps until convergence is reached:

1. Computation of the mean intensities µ+ and µ− over image I regions corresponding

to the positive, respectively negative regions of the level set function φ.

2. Computation of the class prior information φ̂i(hτ
i(x, y))) and σi(hτ

i(x, y)) from the

average LSF φi(x, y) and the variance σi(x, y), by applying the similarity transforma-

tions h
τ

i (4.5) via the B-splines interpolation method [146].

3. Computation of the curvature div(∇φ(x, y)/|∇φ(x, y)|) and of the gradients ∇σi(hτ
i(x, y))

and ∇φ̂i(hτ
i(x, y)) using a central difference scheme.

4. Calculation of the temporal derivatives in (A.9), (A.11) and (A.18) using a forward

difference approximation.

5. Re-distancing of the level set function φ to a signed distance function, using the fast

marching method of [1].

6. Update of the Lagrange multiplier β according to (A.19).
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A.3 Image Segmentation Using the PCA-based Prior Model,

for the Finger-spelling Application

A.3.1 Evolution Equations

The evolution of the main contour, given by the level set function φ, is governed by the

equation:

∂φ(x, y)

∂t
= δε(φ(x, y))

(

(I(x, y) − µ−)2 − (I(x, y) − µ+)2

)

+ ν div

( ∇φ(x, y)

|∇φ(x, y)|

)

+ α

M∑

i=1

(

φ̂2
i (hτ

i(x, y))div

( ∇φ(x, y)

|∇φ(x, y)|

)

δε(φ(x, y))

+

(

∇φ̂2
i (hτ

i(x, y)) ·
( ∇φ(x, y)

|∇φ(x, y)|

))

δε(φ(x, y))

− 2φ(x, y)|∇φ̂i(hτ
i(x, y))|δε(φ̂i(hτ

i(x, y)))

)

L2
i .

(A.20)

The similarity transformation parameters of each prior evolve according to:

∂τ i

∂t
=

∫∫

Ω
(I(x, y) − µφ̂i−

)2δε(φ̂i(hτ
i(x, y)))

∂

∂τi
(φ̂i(hτ

i(x, y)) dx dy

−
∫∫

Ω
(I(x, y) − µφ̂i+

)2δε(φ̂i(hτ
i(x, y)))

∂

∂τi
(φ̂i(hτ

i(x, y)) dx dy

− 2

∫∫

Ω
φ̂i(hτ

i(x, y)
∂

∂τi
(φ̂i(hτ

i(x, y))|∇φ(x, y)|δε(φ(x, y)) dx dy

−
∫∫

Ω
φ2(x, y)

(

|∇φ̂i(hτ
i(x, y)|δ′ε(φ̂i(hτ

i(x, y))
∂

∂τi
(φ̂i(hτ

i(x, y))

+ δε(φ̂i(hτ
i(x, y)))

1

|∇φ̂i(hτ
i(x, y)|

(

ˆ(φi)x(h
τ

i(x, y))
∂

∂τi
( ˆ(φi)x(h

τ
i(x, y))))+

ˆ(φi)y(hτ
i(x, y)

∂

∂τi
( ˆ(φi)y(hτ

i(x, y))

))

dx dy,

(A.21)

where τ i stands for each of si, θi, and T i, and ˆ(φi)x, ˆ(φi)y are the x and y derivatives of

φ̂i. The derivatives ∂φ̂i(hτ
i(x, y))/∂τi, ∂(φ̂i)x(h

τ
i(x, y))/∂τi and ∂(φ̂i)y(hτ

i(x, y))/∂τi are

computed as in (A.12), (A.13).
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The evolution equation for the jth PCA coefficient of prior class Si is:

∂ci
j

∂t
=

1

si

∫∫

Ω
(I(x, y) − µφ̂i−

)2δε(φ̂i(hτ
i(x, y)))Eij(hτ

i(x, y)) dx dy

− 1

si

∫∫

Ω
(I(x, y) − µφ̂i+

)2δε(φ̂i(hτ
i(x, y)))Eij(hτ

i(x, y)) dx dy

− 2

si

∫∫

Ω
φ̂i(hτ

i(x, y))Eij(hτ
i(x, y))|∇φ(x, y)|δε(φ(x, y)) dx dy

− 1

si

∫∫

Ω
φ2(x, y)

(

|∇φ̂i(hτ
i(x, y))|δ′ε(φ̂i(hτ

i(x, y)))Eij(hτ
i(x, y))

+ δε(φ̂i(hτ
i(x, y)))

1

|∇φ̂i(hτ
i(x, y))|

(

ˆ(φi)x(h
τ

i(x, y))(Eij)x(h
τ

i(x, y))

+ ˆ(φi)y(hτ
i(x, y))(Eij)y(hτ

i(x, y))

))

dx dy,

(A.22)

where Eij is the jth eigenvector of class Si, arranged as the columns of an image-sized matrix

(continuously interpolated) and (Eij)x and (Eij)y are its x and y derivatives, respectively.

The labels Li, i = 1..M , evolve according to:

∂Li

∂t
=Li

(

logwt(Si) −
∫∫

Ω
φ̂i

2
(h

τ
i(x, y))|∇φ(x, y)|δε(φ(x, y)) dx dy

−
∫∫

Ω
φ2(x, y))|∇φ̂i(hτ

i(x, y))|δε(φ̂i(hτ
i(x, y))) dx dy

+ 2β

(

1 −
M∑

i=1

L2
i

))

.

(A.23)

The update equation for the Lagrange multiplier β is as follows:

β =

∑M
i=1 L

2
i log (wt(Si)Pi(φ))

2
∑M

i=1 L
2
i

(∑M
i=1 L

2
i − 1

) , (A.24)

with Pi(φ) given by (4.18).

A.3.2 Numerical Approach

To minimize energy (3.35), with Eimage(It, Ct) + νEcontour(Ct) given by (4.19) and Eprior

given by (4.20), we use the evolution equations (A.20), (A.21), (A.22) and (A.23). We solve

these equations numerically by iterating the following steps until convergence is reached:

1. Computation of the mean intensities µ+ and µ− over image I regions corresponding

to the positive, respectively negative regions of the level set function φ.

2. Computation of the mean intensities µφ̂i+
and µφ̂i−

over image I regions corresponding

to the positive, respectively negative regions of the level set functions φ̂i.
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3. Computation of the class prior information φ̂i(hτ
i(x, y))) and Eij(hτ

i(x, y)) from the

average LSF φi(x, y) and the eigenvectors Eij(x, y), by using (4.16) and applying the

similarity transformations h
τ

i (4.5) via the B-splines interpolation method [146].

4. Computation of the curvature div(∇φ(x, y)/|∇φ(x, y)|), derivatives ˆ(φi)x, ˆ(φi)y, (Eij)x

and (Eij)y and gradients ∇φ(x, y) and ∇φ̂i(hτ
i(x, y)) using a central difference scheme.

5. Calculation of the temporal derivatives in (A.20), (A.21), (A.22) and (A.23) using a

forward difference approximation.

6. Re-distancing of the level set function φ with the fast marching method of [1].

7. Update of the Lagrange multiplier β according to (A.24).
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