4 research outputs found

    Random Forest Weighting based Feature Selection for C4.5 Algorithm on Wart Treatment Selection Method

    Get PDF
    Research in the field of health, especially treatment of wart disease has been widely practiced. One of the research topics related to the treatment of wart disease is in order to provide the most appropriate treatment method recommendations. Treatment methods are widely used by doctors for treatment of patients with wart disease that is the method of cryotherapy and immunotherapy. Previous research has been done on  cryotherapy and immunotherapy datasets which resulted in two different prediction methods, but the accuracy level has not been satisfactory. In this study, two datasets are combined to produce a single prediction method. The method uses C4.5 algorithm combined with  Random Forest Feature Weighting (C4.5+RFFW) used to select the relevant features to improve accuracy. Experimental results show that the proposed method can improve performance with accuracy and informedness are 87.22% and 71.24%, respectively. These results further facilitate physicians in determining treatment methods for patients with a single predictive method and better-predicted performance

    Artificial intelligence for the artificial kidney: Pointers to the future of a personalized hemodialysis therapy

    Get PDF
    Current dialysis devices are not able to react when unexpected changes occur during dialysis treatment, or to learn about experience for therapy personalization. Furthermore, great efforts are dedicated to develop miniaturized artificial kidneys to achieve a continuous and personalized dialysis therapy, in order to improve patient’s quality of life. These innovative dialysis devices will require a real-time monitoring of equipment alarms, dialysis parameters and patient-related data to ensure patient safety and to allow instantaneous changes of the dialysis prescription for assessment of their adequacy. The analysis and evaluation of the resulting large-scale data sets enters the realm of Big Data and will require real-time predictive models. These may come from the fields of Machine Learning and Computational Intelligence, both included in Artificial Intelligence, a branch of engineering involved with the creation of devices that simulate intelligent behavior. The incorporation of Artificial Intelligence should provide a fully new approach to data analysis, enabling future advances in personalized dialysis therapies. With the purpose to learn about the present and potential future impact on medicine from experts in Artificial Intelligence and Machine Learning, a scientific meeting was organized in the Hospital of Bellvitge (Barcelona, Spain). As an outcome of that meeting, the aim of this review is to investigate Artificial Intelligence experiences on dialysis, with a focus on potential barriers, challenges and prospects for future applications of these technologies.Postprint (author's final draft

    Prediction of the Mortality Risk in Peritoneal Dialysis Patients using Machine Learning Models: A Nation-wide Prospective Cohort in Korea

    Get PDF
    Herein, we aim to assess mortality risk prediction in peritoneal dialysis patients using machine-learning algorithms for proper prognosis prediction. A total of 1,730 peritoneal dialysis patients in the CRC for ESRD prospective cohort from 2008 to 2014 were enrolled in this study. Classification algorithms were used for prediction of N-year mortality including neural network. The survival hazard ratio was presented by machine-learning algorithms using survival statistics and was compared to conventional algorithms. A survival-tree algorithm presented the most accurate prediction model and outperformed a conventional method such as Cox regression (concordance index 0.769 vs 0.745). Among various survival decision-tree models, the modified Charlson Comorbidity index (mCCI) was selected as the best predictor of mortality. If peritoneal dialysis patients with high mCCI (>4) were aged ≥70.5 years old, the survival hazard ratio was predicted as 4.61 compared to the overall study population. Among the various algorithm using longitudinal data, the AUC value of logistic regression was augmented at 0.804. In addition, the deep neural network significantly improved performance to 0.841. We propose machine learning-based final model, mCCI and age were interrelated as notable risk factors for mortality in Korean peritoneal dialysis patients.ope
    corecore